INDIAN STATISTICAL INSTITUTE Mid-Semester Examination : 2015–16

Course : Post Graduate Diploma in Business Analytics (First Year)

Subject : Computing for Data Sciences : BAISI-4 for PGDBA-I

Date : 11 September 2015

Maximum Marks : 90

Duration : 3 Hours

Problem A

- 1. Define *norm* on the *n*-dimensional vector space \mathbb{R}^n . Given a norm $\rho(\cdot)$ on \mathbb{R}^n , define a related notion of *distance* between any two vectors in \mathbb{R}^n , and state its properties. [2 + 3]
- 2. Let the ℓ^p norm of a vector $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ in \mathbb{R}^n be defined as $||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p}$. Comment on the significance of the ℓ^1 and ℓ^2 norms of \mathbf{x} in \mathbb{R}^n , in terms of the geometrical depiction of the unit vectors in \mathbb{R}^n . Is there any relation between the ℓ^1 and ℓ^2 norms of \mathbf{x} and the statistical properties of the set of real numbers $\{x_1, x_2, \dots, x_n\}$? [5 + 5]
- 3. Let an *inner product* on \mathbb{R}^n be defined as the *dot product* of two vectors: $\mathbf{x} \cdot \mathbf{y} = \sum_{i=1}^n x_i y_i$, where $\mathbf{x} = [x_1, x_2, \dots, x_n]^T$ and $\mathbf{y} = [y_1, y_2, \dots, y_n]^T$. What is the geometrical significance of this inner product in \mathbb{R}^n ? Is there any statistical significance of this inner product in connection with the sets of real numbers $\{x_1, x_2, \dots, x_n\}$ and $\{y_1, y_2, \dots, y_n\}$? [2 + 3]
- 4. Suppose that you have an $n \times p$ matrix **X** representing a dataset, comprising of n independent observations along p features. Assume that the dataset is *centered*, that is, the mean of values along each column in **X** is zero. Comment on the statistical significance of the matrix $\mathbf{X}^T \mathbf{X}$ in terms of the features and observations in the dataset. [5]
- 5. What can you say about the dataset if the matrix $\mathbf{X}^T \mathbf{X}$ is diagonal? What can you say if the matrix $\mathbf{X}^T \mathbf{X}$ is block-diagonal, with k distinct blocks along the main diagonal? [2 + 3]

Problem B

- 1. Describe the role of an $m \times n$ matrix **X** as a linear operator from \mathbb{R}^n to \mathbb{R}^m . Your description should include the conceptual notions of the fundamental subspaces RowSpace, ColSpace and NullSpace of **X**, as well as Rank of **X**. [7]
- 2. Given the fundamental subspaces of an m×n matrix X, how do you determine the following?
 (a) Whether the matrix is a 1-to-1 linear map from ℝⁿ to ℝ^m;
 - (b) Whether the matrix is an onto linear map from \mathbb{R}^n to \mathbb{R}^m ;
 - (c) Whether the matrix is an invertible linear map from \mathbb{R}^n to \mathbb{R}^m . [3]

[30]

[30]

3. Suppose that the *full* Singular Value Decomposition of an $m \times n$ matrix **X** results in:

$$\mathbf{X} = \begin{bmatrix} \begin{vmatrix} & & & & \\ \mathbf{u}_1 & \cdots & \mathbf{u}_r & \cdots & \mathbf{u}_m \\ & & & & \end{vmatrix} \begin{bmatrix} \sigma_1 & & & & \\ & \ddots & & 0 \\ & & \sigma_r & & \\ \hline & 0 & & 0 \end{bmatrix} \begin{bmatrix} & & & & & \\ \mathbf{v}_1 & \cdots & \mathbf{v}_r & \cdots & \mathbf{v}_n \\ & & & & & \end{vmatrix}^T$$

Represent this decomposition as $\mathbf{X} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^T$, and comment on the dimension of each matrix in this representation. Discuss the connection of these matrices with the fundamental subspaces of \mathbf{X} . How can you determine the Rank of \mathbf{X} given this SVD representation? [3 + 5 + 2]

- 4. As per the above representation of the SVD of **X**, determine the dimension and rank of each of the matrices $\mathbf{Z}_i = \sigma_i \mathbf{u}_i \mathbf{v}_i^T$, where $1 \le i \le r$. Is there a way to reconstruct the original matrix **X** given the matrices \mathbf{Z}_i for $1 \le i \le r$? [3 + 2]
- 5. Is there a way to reconstruct the original matrix \mathbf{X} given the matrices \mathbf{Z}_i for $1 \le i \le k$, where k is strictly less than r? If so, provide such a construction. If not, provide an *approximate* reconstruction of \mathbf{X} using the available matrices \mathbf{Z}_i for $1 \le i \le k$, and comment on the quality of such an approximation. [2 + 3]

[15]

|15|

Problem C

Represent a book in the form of an $m \times n$ matrix **B**, where *m* is the total number of sentences in the book and *n* is the total number of distinct words in the book, such that the entry **B**[*i*, *j*] in this matrix represents the frequency of occurrence of the *j*-th word W_j in the *i*-th sentence S_i .

Importance of the words and sentences are denoted by *scores*. The score u_i of S_i is equal to the sum of scores of the words in it, weighted by the frequencies of occurrence. The score v_j of W_j is equal to the sum of scores of the sentences it is contained in, weighted by the frequencies of occurrence.

$$u_i = \sum_{j=1}^n \mathbf{B}[i,j] \cdot v_j$$
 for $i = 1, 2, ..., m$ $v_j = \sum_{i=1}^m \mathbf{B}[i,j] \cdot u_i$ for $j = 1, 2, ..., n$

Devise an efficient strategy to identify 10 keywords (i.e., the most important words) from the book.

Problem D

Suppose that you have a dataset where m individuals have reviewed a collection of n movies, and have provided scores (between 0 to 9, say) for each one. Suppose that I have also watched and reviewed some (not all) of these n movies, and you know my scores. Devise a strategy to suggest movies for me, from within the same set of the n movies, which I have not watched, but I may like.

Answer ALL questions, respecting the order of sub-questions. Problems C and D will be considered for bonus marks.