
High frequency trading (Machine learning, Neural networks), 

Algorithmic trading 

 

Machine learning for high frequency trading and market microstructure 

data and problems.  

Machine learning is a vibrant subfield of computer science that draws on 

models and methods from statistics, algorithms, computational 

complexity, artificial intelligence, control theory, and a variety of other 

disciplines. Its primary focus is on computationally and informationally 

efficient algorithms for inferring good predictive models from large data 

sets. 

The special challenges for machine learning presented by HFT generally 

arise from the very fine granularity of the data — often microstructure 

data at the resolution of individual orders, (partial) executions, hidden 

liquidity, and cancellations — 

• understanding of how such low-level data relates to actionable 

circumstances (such as profitably buying or selling shares, optimally 

executing a large order, etc,  

• how the distribution of liquidity in the order book relates to future price 

movements,   

• feature selection or feature engineering  

- are the important process in machine learning for HFT 

 



High Frequency Data for Machine Learning 

High frequency trading - holding periods, order types (e.g. passive versus 

aggressive), and strategies (momentum or reversion, directional or 

liquidity provision, etc.). 

Data driving HFT activity tends to be the most granular available. 

Typically microstructure data - every order placed, every execution, and 

every cancellation, and reconstruction (at least for equities) of the full 

limit order book. 

A single day’s worth of microstructure data on a highly liquid stock is 

measured in gigabytes. Storing this data historically for any meaningful 

period and number of names requires both compression and significant 

disk usage; processing this data efficiently generally requires streaming 

through the data by only uncompressing small amounts at a time.  

What systematic signal or information is contained in microstructure 

data? - What “features” or variables can we extract from this extremely 

granular, lower-level data. 

 

  



Limit Order Trading and Market Simulation  

Limit order markets: By this we  mean that  buyers  and  sellers  specify  

not  only  their  desired volumes, but their desired prices as well. A limit 

order to buy (respectively, sell) V shares at price p may partially or 

completely execute at prices at or below p (at or above p).  

For example, suppose that NVIDIA Corp. (NVDA) is currently trading at 

roughly $27.22 a share (see Figure 1, which shows an actual snapshot of 

an NVDA order book), but we are only willing to buy 1000 shares at 

$27.13 a share or lower. We can choose to submit a limit order with this 

specification, and our order will be placed in the buy order book, which is 

ordered by price, with the highest price at the top (this price is referred to 

as the bid; the lowest sell price is called the ask). In the example 

provided, our order would be placed immediately after the extant order 

for 109 shares at $27.13; though we offer the same price, this order has 

arrived before ours. If an arriving limit order can be immediately 

executed with orders on the opposing book, the executions occur. For 

example, a limit order to buy 2500 shares at $27.27will cause execution 

with the limit sell orders for 713 shares at $27.22, and the 1000-share and 

640-share sell orders at $27.27, for a total of 2353 shares executed. The 

remaining (unexecuted) 147 shares of the arriving buy order will become 

the new bid at $27.27. It is important to note that the prices of executions 

are the prices specified in the limit orders already in the books, not the 

prices of the incoming order that is immediately executed. Thus we 

receive successively worse prices as we consume orders deeper in the 

opposing book. 



 

Performance and policies found by RL vary with stock properties such as 

liquidity, volume traded, and volatility 

Submit and leave (S&L)  policies 

State-based strategies – strategies that can examine salient features of the 

current order books and our own activity – in order to decide what to do 

next. 

Variables: elapsed time t, remaining inventory i, which represent how 

much time of the horizon H has passed and how many shares we have 

left to execute in the target volume V. Different resolutions of accuracy 

will be investigated for these variables, which we refer to as private 

variables, since they are essentially only known and of primary concern 

to our execution strategy. More precisely, we pick I and T, which are the 



resolutions (maximum values) of the private variables i and t, 

respectively. I represents the number of inventory units our policy can 

distinguish between – if V = 10,000 shares, and I = 4, our remaining 

inventory is represented in rounded units of V/I= 2,500 shares each. 

Similarly, we divide the time horizon H into T distinct points at which 

the policy is allowed to observe the state and take an action; for H= 2 min 

and T= 4 we can submit a revised limit order every 30 seconds, and the 

time remaining variable t can assume values from 0 (start of the episode) 

down to 4 (last decision point of the episode).  

Additional state variables:  market variables, a state has the form  

xm = <t, i, o1, …, oR>, where the oj are market variables.  

Action space: simple limit order price at which to reposition all of our 

remaining inventory, for the problem of selling V shares, action a 

corresponds to placing a limit order for all of our unexecuted shares at 

price ask - a. Thus we are effectively withdrawing any previous 

outstanding limit order we may have (which is indeed supported by the 

actual exchanges), and replacing with a new limit order. Thus a may be 

positive or negative, with a = 0 corresponding to coming in at the current 

ask, positive a corresponding to "crossing the spread" towards the buyers, 

and negative a corresponding to placing our order in the sell book.  

Rewards: An action from a given state may produce immediate rewards, 

which are essentially the proceeds (cash inflows or outflows, depending 

on whether we are selling or buying) from any (partial) execution of the 

limit order placed. Furthermore, since we view the execution of all V 



shares as mandatory, any inventory remaining at the end of time His 

immediately executed at market prices --- that is, we eat into the 

opposing book to execute, no matter how poor the prices, since we have 

run out of time and have no choice.  

Measure the execution prices achieved by a policy relative to the mid-

spread price (ask+bid)/2 at the start of the episode in question. Thus, we 

are effectively comparing performance to the idealized policy which can 

execute all V of its shares immediately at the mid-spread, and thus are 

assuming infinite liquidity at that point.  

Trading cost of a policy: the underperformance compared to the 

midspread baseline. 

We assume that commissions and exchange fees are negligible.  

  



Predicting Price Movement from Order Book State 

 

Learn models that themselves profitably decide when to trade and how to 

trade: 

• The development of features that permit the reliable prediction of 

directional price movements from certain states. By “reliable” we do 

not mean high accuracy, but just enough that our profitable trades 

outweigh our unprofitable ones. 

• The development of learning algorithms for execution that capture this 

predictability or alpha at sufficiently low trading costs. 

First find profitable predictive signals: 

• Bid-Ask Spread:  

• Price: A feature measuring the recent directional movement of 

executed prices. 

• Smart Price: A variation on mid-price where the average of the bid and 

ask prices is weighted according to their inverse volume. 

• Trade Sign: A feature measuring whether buyers or sellers crossed the 

spread more frequently in recent executions. 

• Bid-Ask Volume Imbalance: 

• Signed Transaction Volume: 

Features above were normalized. In order to obtain a finite state space, 

features were discretized into bins in multiples of standard deviation 

units. 



Learning algorithm: buying 1 share at the bid-ask midpoint and holding 

the position for t seconds, at which point we sell the position, again at the 

midpoint; and the opposite action, where we sell at the midpoint and buy 

t seconds later. In the first set of experiments we describe, we considered 

a short period of t = 10 seconds. 

The methodology can now be summarized as follows: 

 For each of 19 names, order book reconstruction on historical data was 

performed. 

At each trading opportunity, the current state (the value of the six 

microstructure features described above) was computed, and the profit or 

loss of both actions (buy then sell, sell then buy) is tabulated via order 

book simulation to compute the midpoint movement. 

Learning was performed for each name using all of 2008 as the training 

data. For each state 𝑥 in the state space, the cumulative payoff for both 

actions across all visits to 𝑥 in the training period was computed. 

Learning then resulted in a policy π mapping states to action, where 𝜋(𝑥) 

is defined to be whichever action yielded the greatest training set 

profitability in state 𝑥. 

 Testing of the learned policy for each each name was performed using 

all 2009 data. For each test set visit to state 𝑥, we take the action 𝜋(𝑥)  

prescribed by the learned policy, and compute the overall 2009 

profitability of this policy. 

 



 

FIGURE 4: Correlations between feature values and learned policies. For 

each of the six features and 19 policies, we project the policy onto just 

the single feature compute the correlation between the feature value and 

action learned (+1 for buying, -1 for selling). Features indices are in the 

order Bid-Ask Spread, Price, Smart Price, Trade Sign, Bid-Ask Volume 

Imbalance, Signed Transaction Volume. 



 

FIGURE 5: Comparison of test set profitability across 19 names for 

learning with all six features (red bars, identical in each subplot) versus 

learning with only a single feature (blue bars). 

 

  



Optimal strategy found: 

• momentum behaviour for time periods of milliseconds to seconds,  

• reversion strategies for dozens of seconds to several minutes 

Aspects that one must consider when applying machine learning to high 

frequency data: the nature of the underlying price formation process, and 

the role and limitations of the learning algorithm itself. 

  



Empirical Limitations on High Frequency Trading Profitability 

Empirical study estimating the maximum possible profitability of the 

most aggressive such practices: trading strategy exclusively employing 

market orders and relatively short holding periods.  

The overarching fear is that quantitative trading groups, armed with 

advanced networking and computing technology and expertise, are in 

some way victimizing retail traders and other less sophisticated parties. 

The HFT debate often conflates distinct phenomena, confusing, for 

instance, dark pools and flash trading, which are essentially new market 

mechanisms, with HFT itself, which is a type of trading behaviour 

applicable to both existing and emerging exchanges. The core concern 

regarding HFT, however, is relatively straightforward: that the ability to 

electronically execute trades on extraordinarily short time scales, 

combined with the quantitative modelling of massive stores of historical 

data, permits a variety of practices unavailable to most parties. A broad 

example would be the discovery of very short-term informational 

advantages (for instance, by detecting large, slow trades in the market) 

and profiting from them by trading rapidly and aggressively. 

We demonstrate an upper bound of $21 billion for the entire universe of 

U.S. equities in 2008 at the longest holding periods, down to $21 million 

or less for the shortest holding periods (see discussion of holding periods 

below). Furthermore, we believe these numbers to be vast overestimates 

of the profits that could actually be achieved in the real world. These 

figures should be contrasted with the approximately $50 trillion annual 



trading volume in the same markets. We believe our findings are of 

interest in their own right as well as potentially relevant to the ongoing 

debate over HFT.  

Tension between two basic quantities: the horizon or holding period, as 

measured by the length of time for which a (long or short) position in a 

stock is held; and the costs of trading, as measured by (at least) the bid-

ask spread that must be crossed by market orders. 

We compute the profit or loss of the HF trader in hindsight, and reach 

empirical overestimates of profitability.  

Data: A small set of the most liquid (and therefore most profitable) stocks 

on NASDAQ, and then use a slightly less detailed data set and regression 

methods to scale up our estimates to a much larger universe of all US 

stocks, and across all exchanges.  

 

 

Related literature: Aldridge examines foreign exchange trading. 

Chaboud et al. study foreign exchange markets: HFT does not cause an 

increase in volatility. Hendershott et al. analyze trading of US equities, 

and find that HFT improves liquidity. The same authors examine German 

markets. 

  



Constraints on HFT: aggressive order placement and short holding 

periods. We propose that aggressive orders are the greatest cause for any 

concerns about the negative impacts on trading counterparties; passive 

order placement can only improve the market both in prices and volumes. 

If one of the advantages of (and concerns over) HFT is the ability to very 

rapidly take and liquidate positions to profit from short-term 

informational advantages, aggressive order placement is necessary. 

For these reasons we shall restrict our attention to aggressive order 

placement. 

We shall consider holding periods as short as 10 milliseconds and as long 

as 10 seconds. 

Two different sources of raw trading data: order book data and Trade and 

Quote, or TAQ, data on a much larger set of stocks and exchanges. 

In this framework, we simulate the profitability of the following OT, 

whose only parameter is the holding period h: 

• At each time t, the OT may either buy or sell v shares, for every integer 

v ≥ 0. The purchase or sale of the v shares occurs at market prices; thus 

according to the standard U.S. equities limit order mechanism, the OT 

crosses the spread and consumes the first v shares on the opposing order 

book, receiving possibly progressively worse prices for successive 

shares. 

  



• If at time t the OT bought/sold v shares, at time t + h it must liquidate 

this position and sell/buy the shares back, again by crossing the spread 

and paying market prices on the opposing book. (We later discuss the 

effects of allowing a variable holding period.) 

• At each time t, the OT makes only that trade (buying or selling, and the 

choice of v) that optimizes profitability. Obviously it is this aspect of the 

OT that requires knowledge of the future. Note that if no trade at t has 

positive profitability, the OT does nothing. 

 

 

 

 

Details:  

1. If ℎ   ↓ 0 then v = 0 for most of t. This design for the OT accurately 

captures the fundamental tension of (aggressive) HFT. If we denote the 

bid-ask spread at time t by st, it is clear that the purchase or sale of even a 

single share by the OT will incur transaction costs on the order of at least 

½ (st + st+h
)  — the mean of the spreads at the onset and liquidation of the 

position. Larger values for v will increase these costs, since eating further 

into the opposing books effectively widens the spreads. Thus, in order for 

a trade of v shares to be profitable, the share price must have time to 

change enough to cover the spread-based transaction costs. (Since we 

omnisciently optimize between buying and selling, as well as the trade 



volume, sufficient movement either up or down will result in some 

profitable trade.) Of course, the smaller the holding period h, the less 

frequently such fluctuations will occur — indeed, we find that for 

sufficiently small h, the vast majority of the time the optimal choice is v 

= 0 — that is, no trade is made by the OT. 

2. Large data ⟹ high computation time. 

3. We assume the trades of the OT have no impact on the market. 

4. We assume no trading fees or commissions are paid by the HFT. 

5. We assume that offers taken by the trader remain on the books, 

allowing the trader to repeatedly profit from a single opportunity as often 

as 100 times per second. 

6. No mixing: We do not allow the OT to enter a postion with a market 

order but exit with a limit order (or vice versa). 

7. No forward looking strategy 

8. We allow trading every 10 milliseconds conditioned on there being any 

change. 

9. This also replicates the actual HFT during this period. 

  



Omniscient Order Book Trading: Even at the longest holding period of 

10 seconds the total 2008 OT profits are only $3.4 billion, down to just 

$62,000 for the shortest (10ms) holding period. 

 

 

  

  



Market-Wide Extrapolation 

Extrapolate our results to all stocks and all exchanges by utilizing the 

broader but somewhat less detailed Trade and Quote (TAQ). We estimate 

a primary-to-composite conversion ratio (in a given name, around 50% of 

profits come from the primary exchange. 

The earlier target 19 stocks traded primarily on NASDAQ, are also traded 

on a variety of alternative exchanges that in some instances may offer 

better pricing. TAQ data are limited in do not record liquidity offered 

beyond the current bid and ask prices. 

  



At each time t, the OT can buy or sell v shares, where v ≥ 0 is an integer 

bounded by the number of shares available to buy (sell) at the ask (bid) at 

time t as well as the number of shares available to sell (buy) at the bid 

(ask) at time t + h. For example, if 100 shares are offered at the ask price 

at time t and 50 shares are offered at the bid price at time t + h, then the 

OT can only consider buying up to 50 shares at time t. (Since the trader is 

omniscient, it can compute these limits even though they depend on 

future information.) As before, any position taken at time t must be 

liquidated at time t + h. 

The modified OT (simulated on TAQ data) occasionally achieves higher 

profits than the original OT. Correlation is 0.969. We assume that the 

original OT’s profits are closely estimated as a multiple of the modified 

OT’s profits. So we directly apply extrapolation ratios. 

  



Extrapolation scheme: 

Other exchanges            TAQ modified OT  (1)      (2)    

Profit vs. Quote 

regression 

NASDAQ Order book OT 

 19 stocks All of Ω 

 

 

Step (1): On average, profits increase by a factor of 2.1. Finally, we 

estimated composite profits of the original OT by multiplying the profits 

reported in Section 6 by the corresponding ratios depicted in Figure 6. 

 

Step (2) Regression: Figure 7 shows the fit between profits and the 

number of TAQ quotes achieved by a simple two-parameter power law 

model for the same 19 stocks. The R2 value is 0.968. Using this 

regression, we can quickly estimate potential profits for a full universe of 

6,279 US stocks, yielding a bound on the total HFT profits available in 

all of 2008 at 10 second holding: $21.3 billion. 



 

 

 

 

Machine learning approach offers no easy paths to profitability: Even 

if all the features we enumerate here are true predictors of future returns, 

and even if all of them line up just right for maximum profit margins, one 

still cannot justify trading aggressively and paying the bid-ask spread, 

since the magnitude of predictability is not sufficient to cover transaction 

costs. 
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