
‘WHAT’S COOKING?’
A SNEAK PEEK INTO CLASSIFIERS AND WEB SCRAPING

CDS 2015, Group 4

Bodhisattwa Prasad Majumder (11)

Dattatreya Biswas (13)

Keshav Sehgal (20)

Rachit Tripathi (33)

‘EVERY METHOD HAS ITS
OWN FLAVOR!’

MENU

Starters
Introduction to Kaggle Dataset

Data Preparation, Feature Engineering

Main Course

Application of different algorithms

Naïve Bayes

XGBoost

Indian Database

Introduction to Scrapy

Data preparation ~ spell-check, stemming

Feature Engineering ~ Spice Dictionary

New Cluster set

Algorithms considered

Dessert

Importance Matrix and Importance Plot

Challenges and Future Scope

INTRODUCTION TO DATASET

Objective of the Kaggle competition named “What’s Cooking” was to

Use recipe ingredients to categorize the cuisine

• Train data consists of 39774 dish-ids along with their ingredients and cuisine

• Test data consists of 9944 dish-ids along with their ingredients

• There are 20 cuisines listed in data.

INTRODUCTION TO DATASET

• There are 20 cuisines listed in data. An comprehensive view of dishes per cuisine would be:

DATA PREPARATION

• Tokenization:

We have tokenized all the ingredients as a single word to emphasis the pattern present in data. For example: Red Chili Pepper

would appear after tokenization as Red_Chili_Pepper. This would minimize misclassification error from taking Red, Chili and

Pepper as three separate tokens.

• Case modification:

We deliberately changed all text data in lower case to avoid inconsistency.

• Sparse term modification:

After creating document term matrix we removed terms those occurred for less than 3 times. This was a heuristic choice

which we achieved plugging different numbers.This method is useful when tokenization hasn’t been used.

• Porter’s stemming algorithm:

This is a process for removing the commoner morphological and inflexional endings from words in English.

Example: tomatoes, tomato – will be considered same.

FEATURE ENGINEERING

• As the number of ingredients for dishes varies from 1(minimum) to

135 (maximum), we decided to take number of ingredients per

dish as a feature.

• Our assumption of this being a important feature can be verified

from importance plot.

‘LET’S

COOK’

SO?

DOCUMENT TERM MATRIX

• From the text data (set of ingredients), we have created document term matrix

(DTM).

• ‘tm’ package in R creates DTM

• From the corpus of ingredients, the method sets ‘1’ when that particular

ingredient appears for a dish and ‘0’ otherwise.

• Sparse terms from DTM has been removed where frequency of those terms

for all dishes are less than 3

• Number of ingredients per dish has been added as an extra feature in DTM.

ALGORITHMS CONSIDERED

• Decision Tree (CART)

• Random Forest

• Naïve Bayes Classifier

• Modifications of Naïve Bayes

• Extreme Gradient Boosting – XGBoost

NAÏVE BAYES BASIC PROBABILITY THEOREM

• Bayesian classifiers use Bayes theorem, which says

𝑃 𝐶𝑗 𝑑 = 𝑃 𝑑 𝐶𝑗 ∗
𝑃 𝐶𝑗

𝑃 𝑑

• P(d) = Probability of occurrence of particular dish.

• P(Cj) = Probability of occurrence of particular Cuisine.

• P(Cj| d) = Probability of particular dish being in cuisine Cj. (we want to find out this)

• P(d| Cj) = Probability of occurrence of particular dish given a Cuisine. (we can find

this using Training data)

ASSUMPTIONS FOR APPLYING NAÏVE BAYES

• Assumption 1: The occurrence of ingredients is not correlated. This means that

the probability of occurring of ingredient is independent of other ingredient

present in the dish.

𝑃 𝐼𝑖 𝐼𝑗 = 𝑃 𝐼𝑖 ∀ 𝑖 ∈ 1,𝑚 , 𝑗 ∈ 1,𝑚

• Assumption 2: The probability of occurring of a dish in a cuisine is product of

the probabilities of all the ingredients in a dish, i.e. dishes are independent.

𝑃 𝑑 𝐶𝑗 = 𝑃 𝐼1 𝐶𝑗 ∗ 𝑃 𝐼2 𝐶𝑗 *𝑃 𝐼3 𝐶𝑗 *𝑃 𝐼4 𝐶𝑗 … . .∗ 𝑃 𝐼𝑚 𝐶𝑗

• The main task left is calculating P(Ij |Ci)

NAÏVE BAYES CLASSIFIER

As the DTM is concerned:

Id Milk Olive_oil Salt Corn Sugar Bread …… Meat

10259 0 0 1 1 0 1 0

25693 0 1 1 1 0 0 1

76420 1 0 0 1 1 0 0

79310 0 0 0 0 0 1 0

..... 1 1 1 0 0 0 0

12831 0 1 1 0 0 0 0

All the ingredients appearing in the Training data

All the

Dishes

in the

training

data

All the matrices appearing in following slides is just for representation,

any resemblance to real life data is purely coincidental

THE PROBABILITY MATRIX

Id Milk Olive_oil Salt Corn Sugar Bread …… Meat

Greek 121 213 1242 231 720 121 98

Indian 723 98 1702 432 931 34 123

Italian 123 213 2753 1231 1231 131 312

Mexcian 312 534 764 67 76 42 98

..... … … …. … … … ..

French 234 321 1632 232 324 756 123

All the ingredients appearing in the Training data

All 20

Cuisine

in the

training

data

Take the column sum and divide each column by its column sum to obtain

column stochastic matrix.

• We took the number of appearance of each ingredient for each cuisine.

THE PROBABILITY MATRIX

Id Milk Olive_oil Salt Corn Sugar Bread …… Meat

Greek 0.121 0.0213 0.1242 0.231 0.0720 0.0121 0.098

Indian 0.072 0.098 0.1702 0.432 0.0931 0.034 0.0123

Italian 0.123 0.0213 0.0275 0.1231 0.1231 0.0131 0.0312

Mexican 0.031 0.0534 0.0764 0.067 0.076 0.042 0.098

..... … … …. … … … ..

French 0.234 0.0321 0.01632 0.0232 0.0324 0.0756 0.0123

All the ingredients appearing in the Training data

All the columns sum to one.

All 20

Cuisine

in the

training

data

Matrix P: Probability Matrix

NAÏVE BAYES CLASSIFICATION

• The i, jth element of P matrix is P(Ij |Ci).

• Using the above equation and Probability matrix calculated we can find the probability of a

given cuisine for a particular dish.

𝑃 𝐶𝑗 𝑑 = 𝑃 𝑑 𝐶𝑗 ∗ 𝑃 𝐶𝑗

• A given dish is classified to a cuisine which gives maximum probability of belonging to a

particular cuisine.

• Note: Though the probability of each cuisine can be calculated from data, i.e. the sample

proportion of each cuisine, but we need to be careful since that may not reflect the

population proportion.

𝑃 𝑑 𝐶𝑗 = 𝑃 𝐼1 𝐶𝑗 ∗ 𝑃 𝐼2 𝐶𝑗 *𝑃 𝐼3 𝐶𝑗 *𝑃 𝐼4 𝐶𝑗 … . .∗ 𝐼𝑚 𝐶𝑗

MODIFICATION IN NAÏVE BAYES

• When we are classifying through Naïve Bayes probability matrix, if in training

data probability of a ingredient appearing in the cuisine is zero then the whole

probability will be zero regardless of other probabilities.

• Solution can be taking the geometric mean of the entries in a row which are non

zero.

• In a situation, if there are only few non zero entries in a row which will make

geometric mean higher than above and in these situations, we can get wrong

classifications.

• To avoid previous situation, we maintained a threshold which is defined as the

total number of non zero ingredients should be greater than particular value.

RESULT FOR NAÏVE BAYES CLASSIFIERS

Methods Kaggle score (Accuracy)

Probability multiplication 0.58558

Probability addition 0.44571

Population proportion of cuisines

(assuming uniform) 0.59584

Modified Naïve Bayes with geometric

mean
0.56074

Modified Naïve Bayes allowing minimum

number of non-zero terms as 4
0.56114

Modified Naïve Bayes allowing minimum

number of non-zero terms as 10
0.56647

RESULT FOR RANDOM FOREST AND CART MODEL

• For classification, CART model and Random forest are well known methods.

Specially on categorical variable, trees work well.

• Our attempt for Random forest shoot up the accuracy of predicting test data to

0.76348

• Decision tree over-fits the data hence gives bad accuracy, as applied on test data and

generated an accuracy of 0.417

RESULT FOR RANDOM FOREST AND CART MODEL

• Possible structure of single decision tree would be:

‘XGBOOST!’

MOTIVATION

• The motivation for boosting was a procedure that combines the outputs of many

“weak” classifiers to produce a powerful “committee.”

• The purpose of boosting is to sequentially apply the weak classification algorithm

to repeatedly modified versions of the data, thereby producing a sequence of

weak classifiers

• Boosting is a way of fitting an additive expansion in a set of elementary “basis”

functions. Here the basis functions are the individual classifiers

REDEFINING TREES

• To start the supervised learning, consider tree as our weak learner.

• Perspective:

Regression tree is a function that maps the attributes to the score.

Let’s refine the definition of tree:

• We define tree by a vector of scores in leafs, and a leaf index mapping function

that maps an instance to a leaf

Leaf weight on the leaves

(scores)

Structure of the tree

TREE ENSEMBLE

If Feature

i is “X”

If Feature

j is “Y”

One Two Three Four
FourThreeTwoOne

Sample

observation

Lands up here
Lands up here

𝑤 𝜖ℝ𝑇1: 𝑤 𝜖ℝ𝑇2:

Tree 1 Tree 2

• The structure of individual tree (𝑞(𝑥)) guides a sample to a leaf and the

associated score 𝑤𝑖 is assigned as the prediction for that sample for

that tree

MATHEMATICAL MODELLING

• The prediction model (𝑦) can be written as the aggregation of all the prediction

score for each tree for a sample (x). Particularly for i-th sample,

where K is the number of trees, f is the function in the functional space 𝓕 and ℱ

is the all possible set of trees having prediction score in each leaf, slightly different

from decision tree which only contains decision values.

OBJECTIVE FUNCTION

• Objective to minimize:

• Optimizing training loss encourages predictive models

• Optimizing regularization encourages simple models to have smaller variance in

future predictions, making prediction stable

Training loss Regularization

OBJECTIVE (CONTD.)

• In tree ensemble model, the obvious choice of loss function is the square loss function. Hence,

So far so good..

But how this model is different from Random Forest model?

• The fact is Random Forest and Boosted Trees are not different in terms of model, the difference is

how we train them.

• The major reason is in terms of training objective, Boosted Trees tries to add new trees (additive

training) that compliments the already built ones. This normally gives you better accuracy

with less trees.

ADDITIVE TRAINING

• Consider the task as a regression over a set of function which is much harder than the

traditional optimization techniques (Stochastic Gradient Descent)

• An additive strategy has been taken to add a new tree at each iteration. Starting from

constant prediction, the task is to add a new function each time (iteration).

ADDITIVE TRAINING

Optimization goal

MODEL COMPLEXITY

• Model complexity comprises number of leaves in a tree and L2 norm of the

scores on leaves which ensures normalization of leaf scores.

To derive an expression for structure score, the re-written objective function in terms of

scores would be:

OPTIMAL SCORE AND OBJECTIVE REDUCTION

• In each iteration, we are able to choose an optimized tree which optimizes the

objective function which has been already optimized partly up to previous

iteration, which ensures better accuracy.

• The optimal score would look like:

where ,

• The optimal score is the best score function for a given structure of tree and

optimal objective reduction measures how good a tree structure is.

Measures goodness of a tree

PRACTICAL GREEDY APPROACH

• Due to impossibility of enumerating all the tree from the function space, a greedy approach is

of practical use which ensure an optimal split.

• Gain for a split can be formulated by:

• If gain is smaller than 𝛾, we would better not to add that branch, which is nothing but prunning!

the score on the

new left leaf

the score on the

new right leaf

the score on the

original leaf

regularization on

the additional leaf

RESULT FOR XGBOOST

XGBoost with different parameters Kaggle score

Eta (learning rate) = 0.25, maximum depth= 10,

L2 regularization
0.77826

Eta (learning rate) = 0.10, maximum depth= 25,

L2 regularization
0.78962

Eta (learning rate) = 0.10, maximum depth= 25,

L1 regularization 0.79133

Leaderboard rank 175 among 978 participants

Highest accuracy achieved 0.82271

PARAMETER TUNING AND COMPARISON

• The present data is not in accordance of the basic assumption of Naïve

Bayes, i.e. independence of ingredients (or cannot be guaranteed).

• Like milk and sour things can not occur together, similarly various relationship holds

between various ingredients which can not be explained by Naïve Bayes.

• A single decision tree tends to over-fit the model and having features over two thousands, the

expected accuracy for a single decision tree would be low.

• Random Forest nearly gives accuracy like XGBoost since the ensemble of weak learner predict far

better than a single decision tree. But the assumption of randomness is not always desired. There is

no control for the complexity of the weak learners hence no control on over-fitting. To achieve

higher accuracy than random forest each tree needs to be optimally chosen such that the loss

function is minimized at its best.

• Thus XGBoost comes into play. XGBoost is an optimized random forest. Advantage of boosted

tree is the algorithm works very fast on a distributed system (XGBoost package does)

PARAMETER TUNING AND COMPARISON

• The idea of reinforcement learning is somewhat analogical here in case of XGBoost

which is not present in Random forest classifiers

• We tuned parameter eta which is used to prevent over-fitting by making the boosting

process more conservative. Low eta value means model more robust to over-fitting but

slower to compute. In our case, we are over cautious to over-fitting hence eta 0.1 gave

the best result

• Optimizing function XGBoost used to do multiclass classification is the softmax

objective. Softmax objective (cost function) is minimised through XGBoost.

• L1 regularization on leaf weights performs better than L2 regularization because it

encourages the lower weighted features to be dropped while modelling, making model

simpler

‘SOMETHING

REFRESHING!’

DATABASE ON INDIAN DISHES

• Above experiment encouraged us to dig out our own database for Indian

cuisines

• We have scraped our data from a cooking website www.vahrehvahchef.com

founded by Sanjay Thumma.

• This website is extremely popular among Indian expatriates in Europe, Australia,

and North America.

• It presents recipes of different dishes from 28 states of India.

http://www.vahrehvahchef.com/

HOW TO GET DATA? SCRAPY IS HERE!

• What is a web crawler (web spider)?

A web crawler can systematically extract data from multiple webpages by

crawling, or accessing, webpages and returns the data you need for each one of

them.

• In order to pull data Scrapy has been used in our project.

• What is Scrapy?

Scrapy is an application framework for crawling

SCRAPY : DIGGING DEEP

• Components of Scrapy –

• Scrapy Engine

• Scheduler

• Downloader

• Spiders

• Item Pipeline

• Downloader middlewares

INSIDE SCRAPY: SPIDERS ARE NOT ALWAYS NASTY!

• Scrapy engine is responsible for controlling the data flow between all components of the system

• The Scheduler receives requests from the engine and enqueues them for feeding them later

• The Downloader is responsible for fetching web pages and feeding them to the engine which, in

turn, feeds them to the spiders.

• Spiders are custom classes written by Scrapy users to parse responses and extract items (aka

scraped items) from them or additional URLs (requests) to follow. Each spider is able to handle a

specific domain (or group of domains).

• The Item Pipeline is responsible for processing the items once they have been extracted (or

scraped) by the spiders. Typical tasks include cleansing, validation and persistence (like storing the

item in a database).

• Downloader middlewares are specific hooks that sit between the Engine and the Downloader

and process requests when they pass from the Engine to the Downloader, and responses that pass

from Downloader to the Engine.

EXAMPLE

• First off, create a project – scrapy startproject tutorial which will create a directory with following

contents

• We then create an Item (containers that will be loaded with the scraped data). We create a class

scrapy.item and define attributes as scrapy.field objects. As we want to capture ingredients from

www.vahrehvahchef.com , we define field for this attribute. To do this we edit items.py file in the

tutorial directory.

• Spiders are classes that you define and Scrapy uses to scrape information from a domain/website. To

create a spider you must create subclass basespider and define some attributes.

Name – Identifies the spider and must be unique.

start_urls – a list of URLs where the Spider will begin to crawl from.

Parse() - a method of the spider, which will be called with the downloaded response object of each start

URL. The response is passed to the method as the first and only argument. This method is in charge of

processing the response and returning scraped data .

http://www.vahrehvahchef.com/

EXAMPLE

• A method parse_fixtures is written which actually does the scraping of the data from

the site and then saves these values in item fields under item[‘ingredients’]. In order

to fetch the data we use xpath selectors. Xpath is a language to select nodes in

XML and HTML.(similar to what SQL is in DBMS). Then the crawl command is used

to crawl and pull the data from the website.

EXAMPLE

• The data is stored in the form of data table under <table> tags in HTML.

item[‘ingredient’]=tr.xpath(‘td[@class=“name”]/text()’).extract() will extract all the values present

under the tag td and after extracting will store in the item [’ingredients’].

‘NOW HANDS ON!’

DATA PREPARATION

• Snippet from our database of 1809 dishes:

DATA PREPARATION

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

HISTOGRAM FOR 26 CUISINES

DATA PREPARATION

• The primal problem in the scraped data was inconsistency

• Use of Hindi versions of different ingredients made the data inconsistent

• Spelling mistakes was a hindrance for correct feature extraction

• Use of plural form of proper nouns, similar meaning words, adjectives (different POS) were

additional noise in the data

• To deal with the problem, we replaced all Hindi words by their English counter parts

• Spelling mistakes have been corrected

• Porter’s stemming algorithm gave data with uniform consistent set of words

• Removing sparse terms after creating DTM removed most of the adjectives those are less

frequent. Otherwise, all other adjectives were deliberately removed from the data.

FEATURE ENGINEERING

• Number of ingredients – We considered number of ingredients as an

important feature as it varies from 2 to 29, similarly as we considered for Kaggle

data

• Number of spices per dish – We have created an Indian Spice

dictionary which contains all possible (commonly used) spices. We created a

score i.e number of spices per dish. From our subjective knowledge, it seems to

be an importance feature as there are regions in India where use of spices is too

high.

APPLICATION OF XGBOOST

• Application of XGBoost softmax algorithm yielded accuracy of 18.99% for Indian

database.

‘An epic fail!’

Possible reason: Data doesn’t even have 26 distinct clusters!

SEARCH FOR NEW SET OF CLUSTERS

• Based on our subjective knowledge, we redefined the label for each dish. Our

assumption was dividing all the dishes based on their geographic origin

• Five main clusters have been chosen :

• 1. North India

• 2. South India

• 3. West India

• 4. East India

• 5. North Eastern
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

East India North Eastern North India South India West India

HISTOGRAM OF NEW CLUSTERS

RESULT FOR NEW SET OF CLUSTERS

• Basic decision tree (CART) couldn’t give satisfactory result as the prediction was

almost obvious and intuitive.

RESULT FOR NEW SET OF CLUSTERS

• Random Forest almost worked well for Indian data and gave an accuracy of 47.5%

for a test data of size 300 (16% of the data)

• XGBoost also gave nearly similar accuracy of 48.1%

• As it seems, due to the poor data condition the accuracy cannot go beyond 50%

• The interesting output from XGBoost was relative importance of each feature for

classifying a dish

IMPORTANCE MATRIX AND IMPORTANCE PLOT

• XGBoost allows to make an importance matrix which contains sorted

features based on relative importance

• Gain contribution of each feature of each tree is taken into account, then

average gain per feature is calculated for a vision of the entire model

• Highest percentage means important feature to predict the label used for

the training.

IMPORTANCE MATRIX

IMPORTANCE PLOT

MULTICLASS SOFTPROB ~ SHOWING PROBABILITIES

CHALLENGES FACED

• Proper structured data was not available

• Individual knowledge biased data when labeling became crucial for classification

• Inconsistency was a big threat, repetitions of word in ingredient list made our task

really difficult

• A proper Indian Spice Dictionary wasn’t available to map total number of features

• Our subjective clustering might not be correct, presence of local effect on dishes

ignored

• Unsupervised learning could have been a way to detect original clusters present in

data, but an appropriate distance measure between two dishes was unavailable

• It would be good if DTM could be made weighted but proper measures (quantity,

or some other measure which emphasize importance) to calculate respective

weight of ingredients in a dish were absent to classify for cuisine

FUTURE SCOPE

• A proper distance measure can be studied to measure similarity or

distance between two dishes

• An unsupervised learning or clustering can be done to see number of

clusters present in data

• Two-level clustering could be effective

• DTM can be weighted based on importance of the ingredients in a dish

• Classification can be more deep leading specific dish prediction

• Can be used for recommendation system in big chain retailers

• Indian Database could be made more properly to have an organized data

ACKNOWLEDGEMENT AND REFERENCES

• https://cran.r-project.org/web/packages/xgboost/xgboost.pdf

• http://xgboost.readthedocs.org/en/latest/model.html

• https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf

• https://www.kaggle.com/c/whats-cooking/forums

• http://www.isical.ac.in/~debapriyo/teaching/datamining2014/slides/NaiveBay

es.pdf

We acknowledge our instructor Sourav Sen Gupta for his continuous

support and valuable inputs.

https://cran.r-project.org/web/packages/xgboost/xgboost.pdf
http://xgboost.readthedocs.org/en/latest/model.html
https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf
https://www.kaggle.com/c/whats-cooking/forums
http://www.isical.ac.in/~debapriyo/teaching/datamining2014/slides/NaiveBayes.pdf

‘STILL
HUNGRY?’

