
Classification Challenge



“Core” Mission

 Progress through understanding and serving the customer.

 Source of current classification

• Using customer insights a.k.a. “ART”

• History data a.k.a. “SCIENCE”

 Problem Statement

• To classify customer trips using transactional dataset of items purchased.

• Segmenting store visits into different trip types.



Why………?

 ……….? (Obvious Opinion) 

• To refine segmentation Process

• The “Core” Mission!!

 ……….? (Oblivious POV)

• To gauge any possible change in shopping motivations.

• Effective promo display.

• Product placement and assortment.

• Effect of store’s layout on type of customers.



Data fields

• TripType - The ground truth that we are predicting, a categorical id 

representing the type of shopping trip the customer made. 

• VisitNumber - an id corresponding to a single trip by a single customer

• Weekday - the weekday of the trip

• Upc - the UPC number of the product purchased

• ScanCount - the number of the given item that was purchased. 

• DepartmentDescription - a high-level description of the item's department

• FinelineNumber - a more refined category for each of the products, 

created by Walmart



Deliverables

 Treatment of data: missing values and outliers

 Exploratory analysis of data

 Feature engineering

 Application of supervised learning algorithm

1. XGBoost

2. Randomforest

3. Gradient boosting machine

 Submission in Kaggle.



Data Transformation

► Handling NULL values

• Out of a total of 647054 rows, 4129 rows have NULL values (less than 

1%)

• Assuming data is missing at random, ignore rows with NULL values



 ‘Weekday’ field converted to binary (whether the day of visit is a 

weekend or not)

• If the day is Friday, Saturday or Sunday – it is considered as weekend (i.e. 

value of the field is 1)

• Else it is weekday

 Negative values in ‘Scancount’

• Indicates a return of the item.

• Return of an item does not affect buying pattern

• ‘Scancount’ is made 0 for negative values



Reshaping Data
► Raw Data: Each item bought by a customer at every visit



Using ‘dcast’ function aggregate data such that a row represents the 

number of each item purchased by a customer in a particular visit.

Normalise the rows so that row sum of all products is 1.



Feature Correlation Graph

► Compute correlation matrix of reshaped training data

► Compute adjacency matrix from the correlation graphs as follows:-

• If absolute value of correlation is less than a threshold (0.05 in this 

case), assume there is no correlation between the purchase of 

items and value in adjacency matrix is 0 i.e. there is no edge 

between these 2 products in the correlation graph.

• Otherwise value in adjacency matrix is 1 i.e. there is an edge 

between the products in the graph.

• All diagonal elements in the adjacency matrix are made 0 to 

avoid self loops.  



Correlation Matrix

Adjacency Matrix



Feature Correlation Graph



Feature Importance Graph



XGBoost

XGBoost is short for extreme Gradient Boosting. It is

• An open-sourced tool – Computation in C++, R interface provided

• A variant of the gradient boosting machine – Tree based model

• The winning model for several Kaggle competitions



Basic Walkthrough

 The algorithm works only on numeric matrices, hence we need to 

preprocess the data.



Cross-validation and model 

building

• Once the data has been reshaped into the required format, we can 

choose cross validation to find to choose the parameters.

• numberOfClasses: is equal to 38, since there are 38 classes in total

• param: parameters of the model with “objective” indicating the 

task, “eval_metric” indicating the error measurement of the model

• cv.nround: number of the trees to build. This is the parameter we 

want to tune

• cv.nfold: how many parts you want to divide the train data into for 
the cross-validation

• bst.cv: run the cross-validation







Performance evaluation Metric

• Logloss function−
1

𝑁
∗  𝑖=1

𝑁  𝑗=1
𝑀 𝑦𝑖𝑗log(𝑝𝑖𝑗)

• N is  the number of visit in the test set.

• M  is the number of trip types.

• 𝑦𝑖𝑗 is 1 if observation ‘i’ belongs to class ‘j’ and 0 

otherwise.

• 𝑝𝑖𝑗 is the predicted probability.



Bagging : Random Forest

• Ensemble of decision trees.

• Unlike single decision trees, Random Forests use averaging to find a 

natural balance between the two extremes.

• Random forest uses bootstrapping and averaging.

• Out of bag error estimate by using department description as 

features is 44.5%

• This implies department Description alone is not a good classifier.



Boosting: Gradient Boosting 

Machine

• Fit complex models by iteratively fitting sub-models (decision tree) to 

residuals.

• Gradient boosting uses a “pseudo gradient”

• Pseudo-gradient used is the derivative of a general loss function L().

• In this case: logloss-function.

• It shows the deviation of predicted probability of class from original 

training example.

• A sub-learner is picked as close as possible to the pseudo gradient 

and added to model.





Challenges and Bottlenecks

• Memory issues: With limited RAM, handling big numeric matrix was 

not feasible.

• dcast() function is not useful in reshaping features ~5K

• Different number features in test data and train data when features 

are made using   FineLinenumber and departmentDescription.

• Department description is not enough for classification.

• No improvement even after trying different classification algorithms



Results



THANK YOU!


