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Introduction:  

The Singular value decomposition (SVD) is a factorization of a real or complex matrix. It has 

many useful applications in signal processing and statistics. Formally, the singular value 

decomposition of an m × n real or complex matrix M is a factorization of the form 𝑀   =   𝑈𝛴𝑉!, 

where U is an m × m real or complex unitary matrix, Σ is an m × n rectangular diagonal 

matrix with non-negative real numbers on the diagonal, and 𝑉! (the conjugate transpose of V, or 

simply the transpose of V if V is real) is an n × n real or complex unitary matrix. The diagonal 

entries 𝛴!,! of Σ are known as the singular values of M. The m columns of U and the n columns 

of V are called the left-singular vectors and right-singular vectors of M, respectively. 

SVD is primarily used for dimension reduction which is converting data of very high 

dimensionality into data of much lower dimensionality such that each of the lower dimensions 

convey much more information. 

Consider an example:  

Suppose you have a list of 100 movies and 1000 people and for each person, you know whether 

they like or dislike each of the 100 movies. So for each instance (which in this case means each 

person) you have a binary vector of length 100 (position i is 0 if that person dislikes the i'th 

movie, otherwise 1. 

You can perform your machine learning task on these vectors directly.. but instead you could 

decide upon 5 genres of movies and using the data you already have, figure out whether the 

person likes or dislikes the entire genre and, in this way reduce your data from a vector of size 

100 into a vector of size 5 [position i is 1 if the person likes genre i] 

The vector of length 5 can be thought of as a good representative of the vector of length 100 

because most people might be liking movies only in their preferred genres. Though this may not 

be an exact representation since there will be people who might hate all the 5 genres but the rest 

of them more or less can be confined using this method. 

This is mainly done because the reduced vector conveys most of the information in the larger one 

while consuming a lot less space and being faster to compute with. 



 

 

 

 
Figure 1. Fundamental picture of Linear Algebra 

Fig.1 is used to explain the equation Ax = b. The first step sees Ax (matrix times vector) as a 

combination of the columns of A. Those vectors Ax fill the column space C (A). When we move 

from one combination to all combinations (by allowing every x), a subspace appears. Ax = b has 

a solution exactly when b is in the column space of A 

NOTE: We choose a matrix of rank one,   =   𝑥𝑦! . When 𝑚   =   𝑛   =   2, all four fundamental 

subspaces are lines in ℝ! 

The dimensions obey the most important laws of linear algebra: 𝑑𝑖𝑚  𝑅(𝐴)   =   𝑑𝑖𝑚  𝑅(𝐴!) and 

𝑑𝑖𝑚  𝑅(𝐴)   +   𝑑𝑖𝑚  𝑁(𝐴)   =   𝑛. 

The row space has dimension 𝑟, the nullspace has dimension 𝑛  − 𝑟. Elimination identifies r 

pivot variables and 𝑛 − 𝑟 free variables. Those variables correspond, in the echelon form, to 

columns with pivots and columns without pivots. They give the dimension count 𝑟 and 𝑛  – 𝑟. 

Every 𝑥 in the nullspace is perpendicular to every row of the matrix, exactly because 𝐴𝑥   =   0 

 



 
      Fig.2 

From Fig.2 we can see that 𝐴 takes 𝑥 into the column space, nullspace goes to the zero vector. 

Nothing goes elsewhere in the left nullspace. With 𝑏 in the column space, 𝐴𝑥   =   𝑏 can be 

solved. There is a particular solution 𝑥, in the row space. The homogeneous solutions 𝑥, forms 

the nullspace. The general solution is 𝑥!   +   𝑥!. The particularity of 𝑥! is that it is orthogonal to 

every 𝑥!. 

Visualizing the Fundamental Picture of Linear Algebra in terms of different types of Matrices.        

• Matrices which behave as Injective function (1 to 1). 

 



In the above figure it can be seen that all the elements of Row space of A map to Column space 

of A. There is only one element in C(AT)  which maps to zero. There is no null space of A, only 

there is zero in Row space of A that maps to zero.  

• Matrices which behave as Surjective function (Onto). 

 
In the above picture it can be seen that the null space of AT does not exists. This ensures that the 

range of matrix we are considering does not have any element that can be mapped from  

 

• Matrices which behave as Bijective function (Onto). 

 
The span of a finite, non-empty set of vectors {u1, u2, ... , un} is the set of all possible linear 

combinations of those vectors, i.e. the set of all vectors of the form  c1u1 + c2u2 + ... + cnun  for 

some scalars c1, c2, ..., cn.  



The three  vectors E1, E2, E3 present in R2 span the 

whole R2 . This can be represented as  

Span{E1,E2,E3}= R2 

The vectors E1,E2,E3 can be the representation of the 

space R2. We don’t need all the three vectors to represent 

our space. The space R2 can be spanned by 2 vectors 

either E1, E2 or E2, E3 or E1, E3. 

Span{E1,E2}=  R2                                                                    Span{E2,E3}=  R2                                                              Span{E1,E3}=  R2  

This type of representation where only n-linearly independent vectors map the n-dimensional 

vector space is know is Minimal Representation.  The minimum set of vectors that span the 

space are called Basis. ex {E1,E2}  ,{E2,E3}. 

A basis of a vector space  is defined as a subset  of vectors in  that are linearly 

independent and vector space span . Consequently, if  is a list of vectors in , 

then these vectors form a basis if and only if every  can be uniquely written as 

 

where , ...,  are scalars. A vector space  will have many different bases, but there is always 

the same number of basis vectors in each of them. The number of basis vectors in  is called 

the dimension of . Every spanning list in a vector space can be reduced to a basis of the vector 

space. The bases need not be orthogonal to each other they must be linearly independent. 

Greedy Approach of finding bases of Vector 

The greedy approach involves picking n linearly independent vectors such that they are linearly 

independent. These vectors can be the basis of  n dimensional space. There are two types of 

greedy Algorithm for finding bases of  vectors. 

Grow Algorithm 

 



 The algorithm stops when there is no vector to add, at which time S spans all of V. Thus, if the 

algorithm stops, it will have found a generating set. 

Shrink Algorithm 

 
The algorithm stops when there is no vector whose removal would leave a spanning set. At every 

point during the algorithm, S spans V, so it spans V at the end. Thus, if the algorithm stops, the 

algorithm will have found a generating set. 

Choice by Induction Approach of finding bases of Vector 

Method 1: Pick a basis 11 ℜ∈B and then  22 ℜ∈B  Such that )1(2 BSpanB ∉ . Then pick a basis 
33 ℜ∈B  such that )2,1(3 BBSpanB ∉ . Then proceed in similar manner to find the other basis. 

Finally find the  nBn ℜ∈   such that )1,...2,1( −∉ BnBBSpanBn . 

Method 2: Pick a vector Bi such that Bi is orthogonal to all the bases vector selected before it 

(B1,  B2...  Bi-­‐1). This will ensure that all the vectors are linearly independent. Being orthogonal 

means the inner product of two vectors is zero. 01, =BBi   02, =BBi   ........ 01, =−BiBi  

The orthonormal basis vectors means, the basis vectors are orthogonal and their size=1, i.e their 

norm=1. 11 =B , 12 =B  , 13 =B ..... 1=Bn  

 
Representation of  basis vectors produced by the above two methods. 



A standard basis is a orthonormal basis in which each vector in the basis has only one nonzero 

entry, and that entry is equal to 1. The vectors are usually denoted  with , ..., , 

with  representing the dimension of the vector space that is spanned by this basis. For example, 

in the real vector space , the standard basis is the set of vectors . 

Up to this point, we have talked about basis generation but nothing was said about bases for the 

four subspaces. Those bases can be constructed from an echelon form-the output from 

elimination. This construction is simple, but the bases are not perfect. A really good choice, in 

fact a "canonical choice" that is close to unique, would achieve much more. On top of it, we 

make two requirements:  

 

1. The basis vectors are orthonormal.  

2.  The matrix with respect to these bases is diagonal. 

  

If 𝑣!, 𝑣!, . . . , 𝑣! is the basis for the row space and 𝑢!,𝑢!, . . . ,𝑢! is the basis for the column space, 

then 𝐴𝑣!   =   𝜎!𝑢! . That gives a diagonal matrix Σ . We can further ensure that 𝑢!   >   0 . 

Orthonormal bases are no problem-the Gram-Schmidt process is available. But a diagonal form 

involves eigenvalues. In this case they are the eigenvalues of 𝐴!𝐴 and 𝐴𝐴!. Those matrices are 

symmetric and positive semidefinite, so they have nonnegative eigenvalues and orthonormal 

eigenvectors (which are the bases). Starting from 𝐴!𝐴𝑣!   =   𝜎!𝑣!, and here are the key steps:  

 

𝑣!!𝐴!𝐴𝑣!   =   𝜎!𝑣!!𝑣!, so that 𝐴𝑣!   =   𝑢!  

𝐴𝐴!𝐴𝑣!   =   𝜎!𝐴𝑣! so that 𝑢!   =   𝐴𝑣!/𝜎!   is a unit eigenvector of 𝐴𝐴!.  

 

All these matrices have rank r. The r positive eigenvalues 𝜎!! give the diagonal entries 𝜎! of Σ. 

The whole construction is called the singular value decomposition (SVD). It amounts to a 

factorization of the original matrix 𝐴 into 𝑈Σ𝑉!, where  

1. 𝑈 is an 𝑚 by 𝑚 orthogonal matrix. Its columns 𝑢!, . . . ,𝑢! , , . . . ,𝑢  ! are basis vectors for the 

column space and left nullspace.  

2. 𝐶 is an 𝑚 by 𝑛 diagonal matrix. Its nonzero entries are   𝜎! >   0, . . . ,𝜎!   >   0.  

3. V is an n by n orthogonal matrix. Its columns 𝑣!, 𝑣!, . . . , 𝑣! are basis vectors for the row space 

and nullspace.  



The equations 𝐴𝑣!   =   𝜎!𝑢! mean that 𝐴𝑉   =   𝑈Σ. Then multiplication by 𝑉! gives 𝐴   =   𝑈Σ𝑉!. 

When 𝐴 itself is symmetric, its eigenvectors ui make it diagonal: 𝐴   =   𝑈Λ𝑈!. The singular value 

decomposition extends this spectral theorem to matrices that are not symmetric and not square. 

The eigenvalues are in Λ, the singular values are in Σ. The factorization 𝐴   =   𝑈Σ𝑉!  joins 

𝐴   =   𝐿𝑈 (elimination) and 𝐴   =   𝑄𝑅 (orthogonalization) as a beautifully direct statement of a 

central theorem in linear algebra.  

Think of the rows of an 𝑛  ×𝑑 matrix 𝐴 as n data points in a 𝑑-dimensional space and consider 

the problem of finding the best 𝑘-dimensional subspace with respect to the set of points. Here 

best means minimize the sum of the squares of the perpendicular distances of the points to the 

subspace. We begin with a special case where the subspace is 1-dimensional, namely a line 

through the origin. The best fitting k-dimensional subspace is found by repeated applications of 

the best fitting line algorithm, each time finding the best fitting line perpendicular to the 

subspace found so far. When k reaches the rank of the matrix, a decomposition of the matrix, 

called the Singular Value Decomposition (SVD), is obtained from the best fitting lines. 

The singular value decomposition of a matrix 𝐴 is the factorization of 𝐴 into the product of three 

matrices, 𝐴   =   𝑈𝐷𝑉!  ; where the columns of 𝑈 and 𝑉 are orthonormal and the matrix 𝐷 is 

diagonal with positive real entries. In many applications, a data matrix 𝐴 is close to a low rank 

matrix and a low rank approximation to 𝐴 is desired. The singular value decomposition of 𝐴 

gives the best rank k approximation to 𝐴, for any k . 

The singular value decomposition is defined for all matrices, whereas the more commonly used 

eigenvector decomposition requires the matrix 𝐴 be square and certain other conditions on the 

matrix to ensure orthogonality of the eigenvectors. In contrast, the columns of 𝑉 in the singular 

value decomposition, called the right-singular vectors of 𝐴, always form an orthonormal set with 

no assumptions on 𝐴. The columns of 𝑈 are called the left-singular vectors and they also form an 

orthonormal set. A simple consequence of the orthonormality is that for a square and invertible 

matrix 𝐴, the inverse of 𝐴 is 𝑉𝐷𝑈!.  

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure: Orthonormal bases that diagonalize 𝐴. 

Factorizations of Matrices: 

By bringing together three important ways to factor the matrix A, we can find solutions to 

various problems. 

1. PLU Factorization 

Here, 

P is a so-called permutation matrix, L is lower triangular, U is upper triangular. 

We will start with LU Factorisation: 

LU-Factorization:-  The nonsingular matrix A has an LU-factorization if it can be expressed as 

the product of a lower-triangular matrix L and an upper triangular matrix U:  

𝐴 = 𝐿𝑈 

Condition for factorization: square matrix A 

Permutation Matrix: 

A permutation σ on {1, . . . ,𝑛} has an associated permutation matrix  

 
So if we look at our σ = {2, 4, 1, 3}, we get matrix  

 



PLU Matrix: 

Decomposition of Matix 𝐴   =   𝑃𝐿𝑈 

 
𝑃𝐿𝑈 decomposition of 𝐴 is 

 
 

LU and PLU substitutions are mainly used in solving linear equations of the type: 𝐴𝑥   =   𝑏 

Method for solving; 

• Find the PLU decomposition of A i.e. 𝐴 = 𝑃𝐿𝑈 

• The equation to be solved becomes; 

𝑃𝐿𝑈𝑥   =   𝑏; 

𝐿𝑈𝑥   =   𝑃!𝑏  

• Calculate 𝑃!𝑏 and use forward substitution to solve for y in 𝐿𝑦 =   𝑃!𝑏. Then, having 

found y, use backward substitution to solve for x in 𝑈𝑥   =   𝑦.  

•   

2. Decompositions based on eigenvalues 

This methodis also called spectral decomposition. 

• Condition for decomposition: square matrix A with distinct eigenvectors (not necessarily 

distinct eigenvalues). 

• Decomposition: 

 ,  

where D is a diagonal matrix formed from the eigenvalues of A, and the columns of V are the 

corresponding eigenvectors of A. 

An n-by-n matrix A always has n eigenvalues, which can be ordered (in more than one way) 

to form an n-by-n diagonal matrix D and a corresponding matrix of nonzero columns V that 

satisfies the eigenvalue equation 𝐴𝑉 = 𝑉𝐷 . If the n eigenvectors (not necessarily 



eigenvalues) are distinct (that is, none is equal to any of the others), then V is invertible, 

implying the decomposition 𝐴 = 𝑉𝐷𝑉!!. 

• One can always normalize the eigenvectors to have length one (see definition of the 

eigenvalue equation). If  is real-symmetric,  is always invertible and can be made to 

have normalized columns. Then the equation  holds, because each eigenvector is 

orthogonal to the other. Therefore the decomposition (which always exists if A is real-

symmetric) reads as:  

• The condition of having n distinct eigenvalues is sufficient but not necessary. The necessary 

and sufficient condition is for each eigenvalue to have geometric multiplicity equal to its 

algebraic multiplicity. 

• The eigen decomposition is useful for understanding the solution of a system of linear 

ordinary differential equations or linear difference equations. For example, the difference 

equation  starting from the initial condition  is solved by , 

which is equivalent to , where V and D are the matrices formed from the 

eigenvectors and eigen values of A. Since D is diagonal, raising it to power , just involves 

raising each element on the diagonal to the power t. This is much easier to do and to 

understand than raising A to power t, since A is usually not diagonal. 

 

3. Factorization of the original matrix 𝑨 into 𝑼∑𝑽𝑻 

Where, 

i. 𝑈 is an 𝑚 by 𝑚 orthogonal matrix. Its columns 𝑢!, . . . ,𝑢! , , . . . ,𝑢  ! are basis vectors 

for the column space and left null space. 

ii. ∑ is an m by n diagonal matrix. Its nonzero entries are σ1 > 0, . . . , σr > 0. 

iii. V is an n by n orthogonal matrix. Its columns 𝑣!, . . , 𝑣! , . . . , 𝑣!  are basis vectors for 

the row space and null space. 

 

This factorization gives us good bases for the subspaces and a ∑ matrix that provides 

information about the most significance action of A. 

 

 



Diagonalisation effect of A 

This figure shows the diagonalization of A. Basis vectors go to .basis vectors (principal axes). A 

circle goes to an ellipse. The matrix is factored into 𝑈∑𝑉! 

 

 

 

 

 

 

 

 

 

 

 

 

1. VT  rotates the basis vectors and brings them to the axes. 

2. The ∑- singular value matrix scales the matrix primarily in the direction of principle 

component, making it look like an ellipsoid. The stretching along each axes is independent of the 

other. 

3. 𝑈 matrix is an orthonormal basis matrix. It provides the effect of rotation in its own way. This 

operation does not provide any scaling effect. 

 


