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Introduction to Regression Analysis 

Suppose, a bunch of data points are given about pricing of houses (Classic Boston training 

dataset1) and the cost of house is required to be predicted.  
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Table 1: Training dataset 

 

Here, 𝑋! is location, 𝑋! is size of house, Y is cost of the house (output or target variable) and n is 

the number of data points (also referred to as number of training examples). 𝑋!and 𝑋! are known 

as input variables or features and together with corresponding output variable, they are called 

training example.  

Now, the general approach to solve the problem would be to try and find out a function, Y = 

f(𝑋!,𝑋!) keeping in mind, that the data is prone to error. We can fit a model, maybe a straight 

line passing through this data such that for every 𝑋!and 𝑋!, we have a unique Y. This process is 

an example of a regression analysis, a type of supervised learning algorithm. Regression refers to 

the fact that we are predicting a real-valued output namely the price. We are taking location and 

size as input variables and trying to map the price (output) such as to get a continuous result 

function. 
                                                
1 The dataset of housing prices is called training dataset which can be used to predict prices of 
the houses. 



 

Curve fitting vs ability to model 

The high degree of fit of a curve on the points does not always imply a higher utility for 

understanding the underlying trend. Care should be taken while extrapolating the curve obtained 

from regression. 

 
Fig 1: Fitting v/s Ability to Model 

 

Idea of finding f & Hypothesis function 

The function f maps the size and location of the house to the prediction about price of house.  

𝑓   → ℎ!(𝑋!,𝑋!) = 𝑠𝑜𝑚𝑒  𝑙𝑖𝑛𝑒𝑎𝑟  𝑐𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛  𝑜𝑓  𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟  𝜃   =   𝜃!   + 𝜃!𝑋!     +   𝜃!𝑋! 

Here, h is known as hypothesis which maps x’s to y’s. 𝜃! balances the y-intercept as we are not 

sure if data passes through 0 or not (mean of data may not be 0). 

General Representation of Hypothesis function is ℎ!(𝑥) = 𝜃!   + 𝜃!(𝑥), where 𝜃! is the y-

intercept and 𝜃! is slope of line fitted. 



 
Figure 2: Best-fitted line 

 

Hypothesis function tells that y is a function of x. In the above picture, we are predicting y (on 

vertical axis) which is some linear function of x (on horizontal axis). This is called fitting and is 

an example of linear regression with one variable. The idea is to choose parameters such that we 

get “right” y for the training example.  

 

Least Square Errors 

With different choices of parameters, we get different hypotheses functions. So, how do we 

determine the best fit line through our data?  

We have to choose the values for the parameters such that, given the x's in the training set, we 

make reasonably accurate predictions for the y values, i.e., we have to minimize the difference 

between predicted value and actual value of house i.e. h(x) and y.  

Least Squared Error function or Cost Function, J(𝜃!  ,𝜃!)= !
!
∗      (𝜃! + 𝜃!𝑥! − 𝑦!)!!

!!!  

Where, (𝑥! , 𝑦!) represents the ith training example.  

 

For Classic Boston Training Dataset,  

J(𝜃!  ,𝜃!)= !
!
∗      (ℎ!(𝑥!

! , 𝑥!
! )− 𝑦!)!!

!!!  

 

Hypothesis function ℎ!(x) is a function of x for fixed 𝜃!  ,𝜃!, whereas J(𝜃!  ,𝜃!) is a function of 

parameters 𝜃!  ,𝜃!. 

 

 



Gradient Descent: 

For minimizing the cost function J(𝜃), gradient descent provides an iterative method to find out 

the minimum point in J(𝜃) curve. On successive iterations, the algorithm converges to the 

minimum (which is not necessarily the global minimum of the J(𝜃)). It has been observed that 

gradient descent works quite well even for large number of features. 

 

The algorithm can be stated as follows:  

 

while (convergence criterion is not met) { 

 

 
 

} 

 

where  

 = Feature value, 

= Learning rate,  > 0 (it determines the step size of change in value on each iteration) 

 

Irrespective of the value of initial starting point (guess) chosen, the algorithm will certainly 

converge to minimum. 

 

Eg. if  J(𝜃) is expressed in two-Dimension : 

 



Figure 3: J(𝜃) V/S 𝜃 for single parameter 

If initial guess is towards right of the minimum point, then the slope (partial derivative term of 

the algorithm) will be positive and since learning rate is always positive, so value of J(𝜃) will 

decrease (downward along the curve in this case). 

If initial guess is towards left of the minimum point, then the slope (partial derivative term of the 

algorithm) will be negative and since learning rate is always positive, so value of J(𝜃) will go 

towards minimum (downward along the curve in this case). 

 

For 2 parameter case,  

Cost function J(𝜃!  ,𝜃!) = (1/2)*  

 

Plotting the J(𝜃!  ,𝜃!) function in 3 dimensional 

space, we get a surface which is bowl shaped. 

In this figure, the value of cost function is given by 

the height on varying (𝜃0 and 𝜃1). 

 

 

 

 

Figure 4: Contour for 2 parameter case (Reference:  Source ) 

 

Batch Gradient Algorithm: 

On plotting the contour plot of the above surface, we get the concentric ellipse-like view of the 

surface wherein the value of J(𝜃) is decreasing on moving across these ellipses. 

The objective is to reach the centre of the innermost ellipse on varying both  𝜃0 and 𝜃1. 

In gradient descent, we simultaneously update both the parameters 𝜃0 and 𝜃1. 

In the below code, on varying 𝜃0, we store the value of updated value in temporary variable so 

that the update in value of 𝜃0 does not affect the updation of 𝜃1. Finally, the changes in both 

parameters are reflected later using temporary variables. 



 
 

 
 

Figure 5: Batch Gradient (Reference: Source) 

 

 

Converging criteria for Gradient Descent: 

Convergence of Gradient Descent can be done by 

• Plotting a graph between J(𝜃) and number of iterations(k): On increasing the number of 

iterations for which Gradient Descent runs, we expect the  J(𝜃) to decrease with it. If we 

go on increasing number of iterations, then we’ll reach a point where J(𝜃)  does not go 

down much more. Curve will look flattened after certain number of iterations. Then it 

means the algorithm has converged to a minimum.  

Correctness of Gradient Descent: If graph between J(𝜃) and number of iterations(k) is 

observed to be increasing, then the implementation of algorithm is certainly wrong. 

• Automatic Convergence Test: Decide a threshold value of permissible error. E.g., 

Gradient Descent can be stopped when difference between value of J(𝜃) in previous and 

current iteration is < 0.0001. 

 



 

Effect of Learning Rate: 

● If learning rate is too high, it may overshoot the minimum and the algorithm will not 

converge to minimum. 

 

In the figure alongside, the larger value of learning 

rate results in divergence of algorithm from the 

minimum. 

Solution: Decrease the value of learning rate. 

 

 

 

Figure 6: (Reference:  Source ) 

 

 

● If learning rate is too low, then convergence of algorithm will be slow. 

 

In the figure alongside, too small value of learning rate is 

resulting in very slow convergence towards the 

minimum. 

 

 

 

Figure 7: (Reference:  Source ) 

 

Note: problem of optimum value of learning rate will not occur in successive iterations of 

Gradient Descent since the algorithm takes care of smaller step size. 

 

Concerns with the use of Gradient Descent Algorithm 

• The algorithm may not always converge 

• The minima obtained may be a local minima and not the global minima  



• The final solution (final point which we get from gradient descent algorithm) depends on 

the choice of the initial point and step size 

 
Fig 8: Different initial points leading to different solutions (Reference:  Source )  

 

Linear Algebra point of view:  

Unlike gradient descent (which is an iterative approach), the normal equation method of linear 

regression is analytical approach, i.e., we can find the solution in single step. 

 

ℎ(𝜃)   =   𝜃!𝑋 

𝐽(𝜃)   =
1
𝐾 ∗ (𝜃!𝑋! − 𝑦!)!

!

!!!

 

For example the 𝜃 and X matrices for a 2 dimension are: 

 

      

 
𝐽(𝜃)   =    ||(𝑒𝑟𝑟𝑜𝑟)||! 



X  =  ≈ Y 

  

 

= 
 

 

≈ 
 

Advantage of the analytical approach over the iterative approach: Using the analytical approach 

we can hope to get to the best result as against iterative solution where depending on the initial 

value and step size, the algorithm can converge to a local minima and not the global minima. 

 
Figure 9: Projection of vector Y into Column Space of X and Null Space of XT 

 Y may or may not fall in the column space. If Y falls inside the column space, then exact Y has 

been found and RMS error is zero. If Y falls outside the column space, then there is some error 

which lie in the null space of 𝑋!. 

𝑒𝑟𝑟𝑜𝑟   =   𝜀   =   𝑋!   −   𝑌 

Since the error lies in the null space of 𝑋! 

𝑋!(𝑋𝜃  −   𝑌)   =   0 

𝑋!𝑋𝜃  −   𝑋!𝑌   =   0 

𝜃   =    (𝑋!𝑋)!!𝑋!𝑌     ……….Normal Equations 

To avoid the calculation of inverse the below equation can be fed in matrix solver 

(𝑋!𝑋)𝜃   =    (𝑋!𝑌) 


