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Algorithm 

An algorithm is a sequence of computational steps performed on a data input to generate a 

required result or solve a problem. It is an abstraction of program to be executed on a physical 

machine. There can be more than one solution (more than one algorithm) to solve a given 

problem. An algorithm can be implemented using different programming languages on 

different platforms. Analysis of algorithm is an important part of the broader computational 

complexity theory that provides theoretical estimates for the resources needed by an algorithm, 

solving a given computational problem. 

 

Algorithm Efficiency 

In theoretical analysis of algorithm, the efficiency is generally measured in the asymptotic 

sense, i.e. to estimate the complexity for an arbitrary large input. The asymptotic measures are 

helpful because different implementation of the same algorithm may differ in efficiency by a 

hidden factor. The performance of an algorithm are analysed from three aspects –  

1. Time – It is the time taken by an algorithm to complete an operation. Time Complexity 

analysis typically expresses the runtime of an algorithm in terms of the size of the input 

using the Big O notation. 

2. Space – This section is concerned with the amount of main memory (RAM) utilised 

while executing the algorithm on a specific data set, using the space-complexity 

analysis. The four aspects to consider are –  

a. The amount of memory needed to hold the program. 

b. The amount of memory needed for the input data 

c. The amount of memory needed for the output data. 

d. The amount of memory needed while executing the code of any underlying 

algorithm. 

3. Cost – It computes the physical resources used by an algorithm and the cost of 

establishment and maintenance. It is used to compute the cost of ownership of hardware 

and equipment dedicated for an algorithm. 

 

Cost Models 

Time efficiency estimates depend on what we define to be a step. For the analysis to correspond 

usefully to the actual execution time, the time required to perform a step must be guaranteed to 

be bounded above by a constant. Two cost models are generally used: 

1. Uniform Cost Model, also called uniform-cost measurement (and similar variations), 

assigns a constant cost to every machine operation, regardless of the size of the numbers 

involved 

2. Logarithmic Cost Model, also called logarithmic cost measurement (and variations 

thereof), assigns a cost to every machine operation proportional to the number of bits 

involved 

The latter is more cumbersome to use, so it’s only employed when necessary, for example in 

the analysis of arbitrary-precision arithmetic algorithms, like those used in cryptography.  



Algorithm Performance (Growth Rates) 

Informally, an algorithm can be said to exhibit a growth rate on the order of a mathematical 

function if beyond a certain input size n, the function f(n) times a positive constant provides an 

upper bound or limit for the run-time of that algorithm. In other words, for a given input size n 

greater than some n 0 and a constant c, the running time of that algorithm will never be larger 

than c × f(n). This concept is frequently expressed using Big O notation. For example, since 

the run-time of insertion sort grows quadratically as its input size increases, insertion sort can 

be said to be of order O(n2). Two other notational constructs used by computer scientists in the 

analysis of algorithms are Θ (Big Theta) notation and Ω (Big Omega) notation. 

1. Θ-Notation (Same order) 

This notation bounds a function to within constant factors. We say f(n) = Θ(g(n)) if 

there exist positive constants n0, c1 and c2 such that to the right of n0 the value of f(n) 

always lies between c1 g(n) and c2 g(n) inclusive. 

In the set notation, we write as follows: 

Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0 such that 0 ≤ c1 g(n) 

≤ f(n) ≤ c2 g(n) for all n ≥ n0} 

We say that is g(n) an asymptotically tight bound for f(n). 

 

Graphically, for all values of n to the right of n0, the value of f(n) lies at or above c1 

g(n) and at or below c2 g(n). In other words, for all n ≥ n0, the function f(n) is equal to 

g(n) to within a constant factor. We say that g(n) is an asymptotically tight bound for 

f(n). In the set terminology, f(n) is said to be a member of the set Θ(g(n)) of functions. 

In other words, because O(g(n)) is a set, we could write the following to indicate that 

f(n) is a member of Θ(g(n)). 

f(n) ∈ Θ(g(n)) 

Instead, we write the following to express the same notation. 

f(n) = Θ(g(n)) 

 



2. Ο-Notation (Upper Bound) 

 

This notation gives an upper bound for a function to within a constant factor. We write 

f(n) = O(g(n)) if there are positive constants n0 and c such that to the right of n0, the 

value of f(n) always lies on or below c g(n). In the set notation, we write as follows: 

For a given function g(n), the set of functions, 

 

  Ο(g(n)) = {f(n): there exist positive constants c and n0 such that 0 ≤ f(n) ≤ c 

g(n) for all n ≥ n0} 

We say that the function g(n) is an asymptotic upper bound for the function f(n). We 

use Ο-notation to give an upper bound on a function, to within a constant factor. 

 

 

Graphically, for all values of n to the right of n0, the value of the function f(n) is on or 

below g(n). We write f(n) = O(g(n)) to indicate that a function f(n) is a member of the 

set Ο(g(n)) i.e. 

f(n) ∈ Ο(g(n)) 

Note that f(n) = Θ(g(n)) implies f(n) = Ο(g(n)), since Θ-notation is a stronger notation 

than Ο-notation. 

  



3. Ω-Notation (Lower Bound) 

 

This notation gives a lower bound for a function to within a constant factor. We write 

f(n) = Ω(g(n)) if there are positive constants n0 and c such that to the right of n0, the 

value of f(n) always lies on or above c g(n).In the set notation, we write as follows:  

For a given function g(n), the set of function, 

 

  Ω(g(n)) = {f(n) : there exist positive constants c and n0 such that 0 ≤ c g(n) ≤ 

 f(n) for all n ≥ n0} 

 

We say that the function g(n) is an asymptotic lower bound for the function f(n). The 

intuition behind Ω-notation is shown below. 

 

  

 

  



Common Growth Rate Function:  

 

There are some common categories of growth rate function like -  

 

 

Figure 1: Growth rate functions with respect to input size (n) 

Properties of Growth-Rate Functions 

1. We can ignore low-order terms in an algorithm’s growth-rate function.  

a. If an algorithm is O(n3+4n2+3n), it is also O(n3). 

b. We only use the higher-order term as algorithm’s growth-rate function. 

2. We can ignore a multiplicative constant in the higher-order term of an algorithm’s 

growth-rate function. 

a. If an algorithm is O(5n3), it is also O(n3). 

3. O(f(n)) + O(g(n)) = O(f(n)+g(n)) 

a. We can combine growth-rate functions. 

b. If an algorithm is O(n3) + O(4n), it is also O(n3 +4n2). So, it is O(n3). 

c. Similar rules hold for multiplication. 



 

Algorithm Analysis 

The complexity of an algorithm is a function g(n) that gives the upper bound of the number of 

operation (or running time) performed by an algorithm when the input size is n. 

There are two interpretations of upper bound- 

1. Worst-case Complexity: The running time for any given size input will be lower than 

the upper bound except possibly for some values of the input where the maximum is 

reached. 

2. Average-case Complexity: The running time for any given size input will be the average 

number of operations over all problem instances for a given size. 

Because, it is quite difficult to estimate the statistical behaviour of the input, most of the time 

we content ourselves to a worst case behaviour. Most of the time, the complexity of g(n) is 

approximated by its family O(f(n)) where f(n) is one of the following functions- n (linear 

complexity), log n (logarithmic complexity), na where a ≥ 2 (polynomial complexity), an 

(exponential complexity). 



Basic Data Structures

In computer science, a data structure is a way to represent data that can be
used efficiently for the future purposes. Mostly, data structures are of abstract
data types which can be implemented in various ways. Different kinds of data
structures are suited to different kinds of applications, and some are highly
specialized to specific tasks. For example, databases use B-tree indexes for
small percentages of data retrieval, and compilers and databases use dynamic
hash tables as look-up tables.
Some useful data structures in our purpose are -

Array

An array (also called list) is a number of elements in a specific order, typically all
of the same type. Elements are accessed using an integer index to specify which
element is required (although the elements may be of almost any type). Typical
implementations allocate contiguous memory words for the elements of arrays
(but this is not always a necessity). Arrays may be fixed-length or resizable.
Similar in built data structure defined in Python library is List. Advantage of
using lists over arrays is that it can contain data of various data types like -
integer, string, character etc. For example,

Figure 1: Python lists

Stack

In computer science, a stack or LIFO (last in, first out) is an abstract data type
that serves as a collection of elements, with two principal operations: push,
which adds an element to the collection, and pop, which removes the last element
that was added. Initially, we index the top of the stack as -1. As, we push
elements we increment the index and decrement the top index when we pop.





Figure 3: Python lists as queue



Recursive Algorithm 

A recursive algorithm is an algorithm which calls itself with "smaller (or simpler)" input values, 

and which obtains the result for the current input by applying simple operations to the returned 

value for the smaller (or simpler) input. More generally if a problem can be solved utilizing 

solutions to smaller versions of the same problem, and the smaller versions reduce to easily 

solvable cases, then one can use a recursive algorithm to solve that problem. For example, the 

elements of a recursively defined set, or the value of a recursively defined function can be 

obtained by a recursive algorithm. 

Example:- 

void hanoi(int n, char source, char dest, char spare) { 

  if (n > 0) { 

   hanoi(n-1, source, spare, dest); 

   cout << "Move top disk from pole " << source 

    << " to pole " << dest << endl; 

   hanoi(n-1, spare, dest, source); 

  }  

} 

The time-complexity function T(n) of a recursive algorithm is defined in terms of itself, and this 

is known as recurrence equation for T(n). To find the growth-rate function for a recursive 

algorithm, we have to solve its recurrence relation. 

 

Searching Algorithms 

Searching algorithms are important in all sorts of applications that we meet every day. In text 

editors we might want to search through a very large document. Let’s assume a text file with a 

million characters for the occurrence of a given string (maybe dozen of characters).In text 

retrieval tools, we might want to search through thousands of such documents (though normally 

these files would be indexed, making this unnecessary).other applications might require matching 

algorithms as part of a more complex algorithm. 

Searching algorithms are closely related to the concept of dictionaries. Dictionaries are data 

structures that support search, insert and delete operations. Typically a simple function is applied 

to the key to determine its place in the directory. Another efficient search algorithms on sorted 

tables is binary search. 

The search algorithm that are primarily used are: 

1. Linear Search 

2. Binary Search 

 

Linear Search  

 

We can think this as two different ways of finding our way in phonebook. A linear search is 

starting at the beginning, reading every name until we find what we are looking for. A binary 

search on the other hand is when we open the book (usually in the middle), look at the name on 



top of the page and decide if the name we are looking for is bigger or smaller than the one we 

are looking for. If the same we are looking for is bigger than we continue searching the upper 

part of the book in this very fashion. 

 

 
 

Pseudocode: 

# Input: Array D, integer key 

# Output: first index of key in D, or -1 if not found 

For i = 0 to last index of D: 

   if D[i] equals key: 

     return  

 return -1 

 

 

Asymptotic Analysis 

Since this algorithm compares every element to find the required one its complexity in all the 

cases remains order of n i.e. O(n) (where n is number of elements in the list) and its expected 

cost is also proportional to n provided that searching and comparing cost of all the elements is 

same. 

 

Worst case time complexity -- O (n) 

Average case time complexity – O (n) 

 

So the idea is- 

1. Start with the first element in the array or list. 

2. Compare it with the given key, if key and value at current index are same, return the 

current index. 

3. Else increase the index value and repeat step 2 until end of list is reached. 

 

 

 

 



Binary Search: 

 

The Binary search algorithm depends on the array being already sorted. 

 

 
 

We need to look at three index low point,high point and mid point to perform a succesful binary 

search.Please note that we need to the integer division to find the midpoint. First, we compare 

the value that mid points to see if it is the value we are looking for (44).  It is not in our case.  So, 

we confirm that the value that mid points to higher or lower than our search value?  In this 

example, it is lower.  Now, since the array is sorted, we know that the value we are searching for 

must be in the UPPER HALF of the array, since it is larger than the midpoint element value! So 

in one comparison, we have discarded the lower half of the array as elements that we need to 

search! This is a powerful tool for searching large arrays! 

 

 
 

 

  



We recalculate the midpoint, and using integer division, (5+8)/2 will give 6 as the midpoint index 

to use.So now we will repeat the process. 

 

 
 

 

For our third pass, we reset the HIGH pointer since our search value was lower than the value 

of the element at the midpoint.  In the figure below, we can see that we reset the high pointer to 

point to one less than the previous mid pointer (since we already knew that the mid pointer did 

not point to our value).  We leave the low pointer alone.  Note that now, low and high both 

point to element 5, and so (5+5)/2  = 5, and now the mid pointer will point to 5 as 

well.  So  now we see if the element in the array that mid is pointing to contains the value that 

we are searching for. And it does!  We have successfully searched for and found our value in 

three comparison steps. 

 

 
 

 

  



Pseudocode: 

# Initially called with low = 0 , high = N – 1 

BinarySearch_Right(A[0,,N-1], value, low, high) { 

  value < A[i] for all i > high 

  If high < low 

   Return low 

  mid = low + ((high – low) / 2 

if (A[mid] > value ) 

   return BninarySearch_Right(A, value, low, mid-1) 

elsehht 

  return BinarySearch_Right(A, value, mid+1, high) 

} 

 

 Asymptotic Analysis 

Since this algorithm halves the no of elements to be checked after every iteration it will take 

logarithmic time to find any element i.e. O(log n) (where n is number of elements in the list) and 

its expected cost is also proportional to log n provided that searching and comparing cost of all 

the elements is same. 

 

Data structure used – Array 

Worst case performance – O (logn) 

Best case performance – O (1) 

Average case performance – O (logn) 

Worst case space complexity – O (1) 

 

So the idea is- 

1. Compare the key (element to be searched) with the mid element. 

2. If key matches with middle element, we return the mid index. 

3. Else If key is greater than the mid element, then key can only lie in right half subarray after 

the mid element. So we recur for right half. 

4. Else (x is smaller) recur for the left half until there are no more elements left in the array. 

 



Sorting

A sorting algorithm is an algorithm that puts elements of a list in a certain
order. The most-used orders are numerical order and lexicographical order.
Some popular sorting algorithms are -

Bubble Sort

The algorithm works by comparing each item in the list with the item next to it,
and swapping them if required. In other words, the largest element has bubbled
to the top of the array. The algorithm repeats this process until it makes a pass
all the way through the list without swapping any items. Example -

If the array is already sorted, then we need 1 iteration with n− 1 comparisons.
In the worst case, we need total n− 1 iterations with total time complexity

n− 1 + n− 2 + · · ·+ 1 = n(n−1)
2



Average-Case Time Complexity : A a pair (A[i], A[j]) (resp. (i, j)) is inverted

if i < j and A[i] > A[j]. Assuming our algorithm performs one swap for each
inversion, the running time of your algorithm will depend on the number of
inversions. Calculating the expected number of inversions in a uniform random
permutation is easy. Let P be a permutation, and let R(P ) be the reverse of
P . For example, if P = 2, 1, 3, 4 then R(P ) = 4, 3, 1, 2. For each pair of indices
(i, j) there is an inversion in exactly one of either P or R(P ). Since the total

number of pairs is n(n−1)
2 , and the total number and each pair is inverted in

exactly half of the permutations, assuming all permutations are equally likely,

the expected number of inversions is n(n−1)
4 .



Selection Sort

The selection sort works as follows: you look through the entire array for the
smallest element, once you find it you swap it (the smallest element) with the
first element of the array. Then you look for the smallest element in the re-
maining array (an array without the first element) and swap it with the second
element. Then you look for the smallest element in the remaining array (an
array without first and second elements) and swap it with the third element,
and so on.

Figure 1: Python code of Selection Sort

Even if the array is sorted, the algorithm finds the minimum element of the
subarrays in i time for i = n, n − 1, · · · , 2. So, the time complexity in the best
case is

n+ n− 1 + · · ·+ 2 = n(n+1)
2 − 1 = O(n2).

Similarly, in the worst case, finding the minimum and placing it in the proper
position will take O(n) time in each step. So, the whole algorithm will take
O(n2) time.





Merge Sort

Merge-sort is based on the divide-and-conquer paradigm. It involves the follow-
ing three steps:

• Divide the array into two subarrays

• Sort each subarray

• Merge them into one

Figure 2: Python code

If the array contains n elements, then to completely break down the array into
subarrays of size 1 will take O(log n) time, as there are exactly ⌊log n⌋ levels of
divisions. In each level, if there are k many sorted subarrays of length j, then
the total time taken in merge is ≈ kj/2 ∈ O(n). So, in each of the log n step,
merge sort algorithm takes O(n) time. Which gives us the time complexity of
merge sort to be O(n log n).
This can also be shown using the recursion T (n) = 2T (n/2) +O(n).





If the array is in decreasing order and we choose our pivot to be the first element,
then we will need total O(n2) time. (The recursion would be T (n) = T (n−1)+
n− 1)
For the best and average case one can prove intuitively, that partitioning require
O(n) time and our recursion becomes

T (n) = 2T (n/2) +O(n) (1)

This gives us the time complexity to be O(n log n).



Comparisons of algorithms

Comparisons of Sorting Algorithms
Algorithm Time (Best) Time (Aver-

age)
Time
(Worst)

Space
(Worst)

In place Stable

Bubble O(n) O(n2) O(n2) O(1) Yes Yes
Selection O(n2) O(n2) O(n2) O(1) Yes Yes
Insertion O(n) O(n2) O(n2) O(1) Yes Yes
Merge O(n log n) O(n log n) O(n log n) O(n) No Yes
Quick O(n log n) O(n log n) O(n2) O(n) No No

Some Notes

• A sorting algorithm is said to be stable if two elements with equal value appear in
the same order in sorted output as they appear in the input unsorted array.

• An algorithm is in place if it uses negligible extra storage.

• Insertion sort is relatively efficient for small lists and mostly sorted lists. Shell sort is
a variation which is more efficient for larger lists.

• Selection sort is noted for its simplicity, and also has performance advantages over
more complicated algorithms in certain situations. It does no more than n swaps, and
thus is useful where swapping is very expensive.

• Merge sort is very efficient for large lists and is used for the standard sort routine
function in Python, Java.

• Typically, merge sort takes extra storage, but there are several in place merge sorting
algorithms. But in this algorithm the worst case time complexity increases to O(n2),
though it is faster than the classical selection sort or, insertion sort.

• The important caveat about quicksort is that its worst-case performance. But good
choice of pivots yields O(n log n) performance, which is asymptotically optimal. For
example, if at each step the median is chosen as the pivot then the algorithm works
in O(n log n). Finding the median, such as by the median of medians selection algo-
rithm is however an O(n) operation on unsorted lists and therefore exacts significant
overhead with sorting. In practice choosing a random pivot almost certainly yields
O(n log n) performance. When implemented well, it can be about two or three times
faster than its main competitors, merge sort and heapsort.

• Another, less common, not-in-place, version of quicksort uses O(n) space for working
storage and can implement a stable sort.
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