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The Fundamental Theorem of Linear 

Algebra 


Gilbert Strang 

This paper is about a theorem and the pictures that go with it. The theorem 
describes the action of an m by n matrix. The matrix A produces a linear 
transformation from R" to Rm-but this picture by itself is too large. The "truth" 
about Ax = b is expressed in terms of four subspaces (two of R" and two of Rm). 
The pictures aim to illustrate the action of A on those subspaces, in a way that 
students won't forget. 

The first step is to see Ax as a combination of the columns ofA. Until then the 
multiplication Ax is just numbers. This step raises the viewpoint to subspaces. We 
see Ax in the column space. Solving Ax = b means finding all combinations of the 
columns that produce b in the column space: 

1 1 1" '  ~ ~ ~ ~ ] = x l ~ c o ~ u m n ~ ~ + ~ ~ ~ + x n ~ ~ o ~ u m n n ~ = ~ .  

Columns of A xn 

The column space is the range R(A), a subspace of Rm. This abstraction, from 
entries in A or x or b to the picture based on subspaces, is absolutely essential. 
Note how subspaces enter for a purpose. We could invent vector spaces and 
construct bases at random. That misses the purpose. Virtually all algorithms and 
all applications of linear algebra are understood by moving to subspaces. 

The key algorithm is elimination. Multiples of rows are subtracted from other 
rows (and rows are exchanged). There is no change in the row space. This subspace 
contains all combinations of the rows of A, which are the columns of AT. The row 
space of A is the column space R(AT). 

The other subspace of R" is the nullspace N(A). It contains all solutions to 
Ax = 0. Those solutions are not changed by elimination, whose purpose is to 
compute them. A by-product of elimination is to display the dimensions of these 
subspaces, which is the first part of the theorem. 

The Fundamental Theorem of Linear Algebra has as many as four parts. Its 
presentation often stops with Part 1, but the reader is urged to include Part 2. 
(That is the only part we will prove-it is too valuable to miss. This is also as far as 
we go in teaching.) The last two parts, at the end of this paper, sharpen the first 
two. The complete picture shows the action of A on the four subspaces with the 
right bases. Those bases come from the singular value decomposition. 

The Fundamental Theorem begins with 

Part 1. The dimensions of the subspaces. 

Part 2. The orthogonality of the subspaces. 
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The dimensions obey the most important laws of linear algebra: 

dim R( A )  = dim R( AT) and dim R( A )  + dim N( A)  = n.  

When the row space has dimension r, the nullspace has dimension n - r. 
Elimination identifies r pivot variables and n - r free variables. Those variables 
correspond, in the echelon form, to columns with pivots and columns without 
pivots. They give the dimension count r and n - r. Students see this for the 
echelon matrix and believe it for A. 

The orthogonality of those spaces is also essential, and very easy. Every x in the 
nullspace is perpendicular to every row of the matrix, exactly because Ax = 0: 

The first zero is the dot product of x with row 1. The last zero is the dot product 
with row m. One at a time, the rows are perpendicular to any x in the nullspace. 
So x is perpendicular to all combinations of the rows. 

m e  nullspace N( A )  is orthogonal to the row space R( AT).  

What is the fourth subspace? If the matrix A leads to R(A) and N(A), then its 
transpose must lead to R(AT) and N(AT). The fourth subspace is N(AT), the 
nullspace of AT. We need it! The theory of linear algebra is bound up in the 
connections between row spaces and column spaces. If R(AT) is orthogonal to 
N(A), then-just by transposing-the column space R(A) is orthogonal to the 
"left nullspace" N ( A ~ ) .  Look at ~~y = 0: 

column 1of A 
A T  = [

column n of A I y  = [:I.
Since y is orthogonal to each column (producing each zero), y is orthogonal to the 
whole column space. The point is that AT is just as good a matrix as A. Nothing is 
new, except AT is n by m. Therefore the left nullspace has dimension m - r. 

ATY= 0 means the same as y% = OT. With the vector on the left, y% is a 
combination of the rows of A. Contrast that with Ax = combination of the 
columns. 

The First Picture: Linear Equations 

Figure 1shows how A takes x into the column space. The nullspace goes to the 
zero vector. Nothing goes elsewhere in the left nullspace-which is waiting its 
turn. 

With b in the column space, Ax = b can be solved. There is a particular 
solution x, in the row space. The homogeneous solutions x, form the nullspace. 
The general solution is x, + x,. The particularity of x, is that it is orthogonal to 
every x,. 

May I add a personal note about this figure? Many readers of Linear Algebra 
and Its Applications [4] have seen it as fundamental. It captures so much about 
Ax = b. Some letters suggested other ways to draw the orthogonal subspaces- 
artistically this is the hardest part. The four subspaces (and very possibly the figure 
itself) are of course not original. But as a key to the teaching of linear algebra, this 
illustration is a gold mine. 
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Figure 1. The action of A: Row space to column space, nullspace to zero. 

Other writers made a further suggestion. They proposed a lower level textbook, 
recognizing that the range of students who need linear algebra (and the variety of 
preparation) is enormous. That new book contains Figures 1 and 2-also Figure 0, 
to show the dimensions first. The explanation is much more gradual than in this 
paper-but every course has to study subspaces! We should teach the important 
ones. 

The Second Figure: Least Squares Equations 

If b is not in the column space, Ax = b cannot be solved. In practice we still 
have to come up with a "solution." It is extremely common to have more equations 
than unknowns-more output data than input controls, more measurements than 
parameters to describe them. The data may lie close to a straight line b = C + Dt. 
A parabola C + Dt + ~ t 'would come closer. Whether we use polynomials or 
sines and cosines or exponentials, the problem is still linear in the coefficients 
C, D, E :  

C + Dt, = b, C + Dt, + Et t  = bl 

or 
C + Dt, = b, C + Dt, + ~ t ;= b, 

There are n = 2 or n = 3 unknowns, and m is larger. There is no x = (C, D) or 
x = (C, D, E )  that satisfies all m equations. Ax = b has a solution only when the 
points lie exactly on a line or a parabola-then b is in the column space of the m 
by 2 or m by 3 matrix A. 

The solution is to make the error b -Ax as small as possible. Since Ax can 
never leave the column space, choose the closest point to b in that subspace. This 
point is the projection p. Then the error vector e = b -p has minimal length. 

To repeat: The best combination g =A.Z is the projection of b onto the column 
space. The error e is perpendicular to that subspace. Therefore e = b -Af is in 
the left nullspace: 

Calculus reaches the same linear equations by minimizing the quadratic Ilb -Ax1l2. 
The chain rule just multiplies both sides of Ax = b by AT. 
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The "normal equations" are AT& = ATb.  They illustrate what is almost invari- 
ably true-applications that start with a rectangular A end up computing with the 
square symmetric matrix A%. This matrix is invertible provided A has indepen-
dent columns. We make that assumption: The nullspace of A contains only x = 0. 
(Then A T h  = 0 implies xQTAx = 0 which implies Ax = 0 which forces x = 0, so 
A% is invertible.) The picture for least squares shows the action over on the right 
side-the splitting of b into p + e.  

Figure 2. Least squares: R minimizes Ilb -A.111~by solving A T k  = ATb. 

The Third Figure: Orthogonal Bases 

Up to this point, nothing was said about bases for the four subspaces. Those 
bases can be constructed from an echelon form-the output from elimination. 
This construction is simple, but the bases are not perfect. A really good choice, in 
fact a "canonical choice" that is close to unique, would achieve much more. To 
complete the Fundamental Theorem, we make two requirements: 

Part 3. m e  basis vectors are orthonormal. 
Part 4 .  m e  matrix with respect to these bases is diagonal. 

If v , ,  . . . , v,  is the basis for the row space and u, ,  . . . , u ,  is the basis for the 
column space, then Avi = uiui.  That gives a diagonal matrix 2. We can further 
ensure that ui > 0. 

Orthonormal bases are no problem-the Gram-Schmidt process is available. 
But a diagonal form involves eigenvalues. In this case they are the eigenvalues of 
A% and AAT. Those matrices are symmetric and positive semidefinite, so they 
have nonnegative eigenvalues and orthonormal eigenvectors (which are the bases!). 
Starting from A%vi = u:vi, here are the key steps: 

oiTA%vi = u:v:vi so that llAvill = ui 

AA%vi = U;AV~ SO that ui = Avi/ui  is a unit eigenvector of AAT. 

All these matrices have rank r. The r positive eigenvalues u: give the diagonal 
entries ui of 2. 
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The whole construction is called the singular value decomposition (SKI). It 
amounts to a factorization of the original matrix A into UCVT, where 

1. 	 U is an m by m orthogonal matrix. Its columns u,, . . . ,u,, . . .,u ,  are basis 
vectors for the column space and left nullspace. 

2. 	 C is an m by n diagonal matrix. Its nonzero entries are a, > 0, . . . ,a, > 0. 
3. 	 V is an n by n orthogonal matrix. Its columns v,, . . .,v,, ...,v, are basis 

vectors for the row space and nullspace. 

The equations Av, = aiui mean that AV = UC. Then multiplication by vT 
gives A = U 2 V T .  

When A itself is symmetric, its eigenvectors ui make it diagonal: A = u A u ~ .  
The singular value decomposition extends this spectral theorem to matrices that 
are not symmetric and not square. The eigenvalues are in A, the singular values 
are in 2.The factorization A = U 2 V T  joins A = LU (elimination) and A = QR 
(orthogonalization) as a beautifully direct statement of a central theorem in linear 
algebra. 

The history of the SKI  is cloudy, beginning with Beltrami and Jordan in the 
18703, but its importance is clear. For a very quick history and proof, and much 
more about its uses, please see [I]. "The most recurring theme in the book is the 
practical and theoretical value of this matrix decomposition." The SKI  in linear 
algebra corresponds to the Cartan decomposition in Lie theory [3]. This is one 
more case, if further convincing is necessary, in which mathematics gets the 
properties right-and the applications follow. 

Example 

All four subspaces are 1-dimensional. The columns of A are multiples of [:I in U. 
The rows are multiples of [I 21 in V T .Both A% and AAT have eigenvalues 50 
and 0. So the only singular value is a, = m. 

Figure 3. Orthonormal bases that diagonalize A. 
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The SVD expresses A as a combination of r rank-one matrices: 

The Fourth Figure: The Pseudoinverse 
The S W  leads directly to the "pseudoinverse" of A. This is needed, just as the 

least squares solution X was needed, to invert A and solve Ax = b when those 
steps are strictly speaking impossible. The pseudoinverse A +  agrees with A-' 
when A is invertible. The least squares solution of minimum length (having no 
nullspacc component) is x+= A+b. It coincides with Z when A has full column 
rank r = n-then A% is invertible and Figure 4 becomes Figure 2. 

A +  takes the column space back to the row space [4]. On these spaces of equal 
dimension r, the matrix A is invertible and A +  inverts it. On the left nullspace, 
A +  is zero. I hope you will feel, after looking at Figure 4, that this is the one 
natural best definition of an inverse. Despite those good adjectives, the SVD and 
A +  is too much for an introductory linear algebra course. It belongs in a second 
course. Still the picture with the four subspaces is absolutely intuitive. 

Figure 4. The inverse of A (where possible) is the pseudoinverse A'. 

The SVD gives an easy formula for A+,  because it chooses the right bases. Since 
Aui = upi ,  the inverse has to be A+ui = ui/ui. Thus the pseudoinverse of C 
contains the reciprocals l/ui. The orthogonal matrices U and vTare inverted by 
U and V.All together, the pseudoinverse of A = UZV is A +  = VC+U '. 

Example (continued) 

Always A+A is the identity matrix on the row space, and zero on the nullspace: 
1 

A +A = -[lo 20] = projection onto the line through 
50 20 40 
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Similarly AA' is the identity on the column space, and zero on the left nullspace: 

1 

AA+= -[ 15] = projection onto the line through 

50 15 45 


A Summary of the Key Ideas 

From its r-dimensional row space to its r-dimensional column space, A yields 
an invertible linear transformation. 

Proof: Suppose x and x' are in the row space, and Ax equals Ax' in the column 
space. Then x - x' is in both the row space and nullspace. It is perpendicular to 
itself. Therefore x = x' and the transformation is one-to-one. 

The S W  chooses good bases for those subspaces. Compare with the Jordan form 
for a real square matrix. There we are choosing the same basis for both domain 
and range-our hands are tied. The best we can do is SASP1= J or SA = J S .  In 
general J is not real. If real, then in general it is not diagonal. If diagonal, then in 
general S is not orthogonal. By choosing two bases, not one, every matrix does as 
well as a symmetric matrix. The bases are orthonormal and A is diagonalized. 

Some applications permit two bases and others don't. For powers An we need 
S-' to cancel S .  Only a similarity is allowed (one basis). In a differential equation 
u' =Au, we can make one change of variable u = Su. Then u' = S-'ASu. But for 
Ax = b, the domain and range are philosophically "not the same space." The row 
and column spaces are isomorphic, but their bases can be different. And for least 
squares the SVD is perfect. 

This figure by Tom Hern and Cliff Long [2] shows the diagonalization of A .  
Basis vectors go to .basis vectors (principal axes). A circle goes to an ellipse. The 
matrix is factored into U 2 V T .Behind the scenes are two symmetric matrices A% 
and AAT.So we reach two orthogonal matrices U and V.  

We close by summarizing the action of A and AT and A': 

Au, = uiui ATui = uiui A+ui = vi/ui 1 G i G r .  

The nullspaces go to zero. Linearity does the rest. 
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An Identity of Daubechies 
The generalization of an identity of 

Daubechies using a probabilistic inierpre- 
tation by D. Zeilberger [I00 (1993) 4871, 
has already appeared in SIAM Review 
Problem 85-10 (June, 1985) in a slrghtly 
more general context. In addition to a 
similar probabilistic derivation there is 
also a direct algebraic proof. Incidentally, 
problem 10223 [99 (1992) 4621 is the same 
as the identity of Daubechies and a slight 
generalization of this identity has ap-
peared previously as problem 183, Crux 
Math. 3(1977) 69-70 and came from a list 
of problems considered for the Canadian 
Mathematical Olympiad. There was an 
inductive solution of the latter by Mark 
Kleinman, a high school student at the 
time and one of the top students in the 
U.S.A.M.O. and the I.M.O. 
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