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Problem 1 [20 points]

Background : Recall the LinSearchPeak1D() and BinSearchPeak1D() functions you wrote in
Assignment 0 for 1D-Peak search. We will hereby try to estimate the runtime of the algorithms.

Task : Assume that the input list L contains random integers between −999 to 999 (both in-
clusive) in all the following cases. Vary n, the size of the list L, as [1, 10, 100, 1000, 10000,
100000, 1000000], and for each such n, perform 1000 experimental runs of LinSearchPeak1D()
and BinSearchPeak1D(), with randomly generated list L, and store (in a txt/csv file) the total
number of integer-to-integer comparisons made in each such experiment against the chosen n.

Problem 2 [20 points]

Background : Recall the SearchPeak2D() function you wrote in Assignment 0 for 2D-Peak
search. We will hereby try to estimate the runtime of the algorithm you implemented.

Task : Assume that the input matrix M contains random integers between −999 to 999 (both
inclusive) in all the following cases. Vary n, the dimension of the matrix M , as [1, 10, 100,
1000, 10000], and for each such n, perform 1000 experimental runs of SearchPeak2D(), with
randomly generated n × n matrix M , and store (in a txt/csv file) the total number of integer-
to-integer comparisons made in each such experiment against the chosen dimension n.

Problem 3 [20 points]

Background : Recall the Binary Search approach and the Newton-Raphson approach to com-
pute the square root of an integer, as discussed in class. We will study the errors and convergence.

Task : Write two Python functions, BinarySquareRoot() and NewtonSquareRoot(), each of
which takes as input a positive integer n, an initial guess x0, a fixed number of iterations s,
and outputs – (a) the approximate value of the square root xi+1 ≈

√
n after each iteration of

the algorithm, and (b) the relative error εi+1 = |(xi+1 − xi)/xi+1| after each iteration of the
algorithm, where i = 0, 1, 2 . . . , s− 1. Try to notice which of the two methods converges faster.

Bonus : You may want to input a tolerance parameter t in the functions, and stop iterating
when relative error εi+1 = |(xi+1−xi)/xi+1| is less than t. This eliminates the requirement of s.



Problem 4 [20 points]

Background : Recall the generic Newton-Raphson approach to find a solution (also called a
root) of an equation f(x) = 0, as discussed in class. We will study the errors and convergence.

Iteration for Newton-Raphson : xi+1 = xi −
f(xi)

f ′(xi)
for i = 0, 1, 2, . . .

Task : Write a Python function, NewtonFindRoot(), which takes as input a function f(x), the
derivative of the function f ′(x), an initial guess for the root x0, a fixed number of iterations s,
and outputs – (a) the approximate value of the root xi+1 after each iteration of the algorithm,
such that f(xi+1) ≈ 0, and (b) the relative error εi+1 = |(xi+1 − xi)/xi+1| after each iteration
of the algorithm, where i = 0, 1, 2 . . . , s− 1. Try to notice the converge rate of the algorithm.

Bonus : You may want to input a tolerance parameter t in the functions, and stop iterating
when relative error εi+1 = |(xi+1−xi)/xi+1| is less than t. This eliminates the requirement of s.

Problem 5 [20 points]

Background : Recall the Secant Method, a variant of the Newton-Raphson Method, to find a
root of an equation f(x) = 0, as discussed in class. We will study the errors and convergence.

Iteration for Secant Method : xi+1 = xi − f(xi) ·
xi − xi−1

f(xi)− f(xi−1)
for i = 1, 2, 3, . . .

Task : Write a Python function, SecantFindRoot(), which takes as input a function f(x),
two initial guesses for the root x0 and x1, preferably with f(x0) and f(x1) of opposite signs so
that the guesses are guaranteed to contain a root within, a fixed number of iterations s, and
outputs – (a) the approximate value of the root xi+1 after each iteration of the algorithm, such
that f(xi+1) ≈ 0, and (b) the relative error εi+1 = |(xi+1 − xi)/xi+1| after each iteration of the
algorithm, where i = 1, 2 . . . , s− 1. Try to notice the converge rate of the algorithm.

Bonus : You may want to input a tolerance parameter t in the functions, and stop iterating
when relative error εi+1 = |(xi+1−xi)/xi+1| is less than t. This eliminates the requirement of s.

Submission : This is an individual assignment, and everyone must submit their own code.
You should submit a single Python file – rollXXassignment1.py – containing all the functions
mentioned above (and any other associated code), where XX is your roll number, as in 17BM6JPXX.

Your submission should be emailed to sg.sourav@gmail.com by midnight of 15 August 2017.

Properly acknowledge every source of information that you referred to, including discussions
with your friends. Verbatim copy from any source is strongly discouraged, and plagiarism will be
heavily penalized. It is strongly recommended that you write the codes completely on your own.


