Probability distributions: Who cares \& why?

Arnab Chakraborty

Indian Statistical Institute
Nov 12, 2017

"Snakes and Ladders" ludo

"Snakes and Ladders" ludo

"Snakes and Ladders" ludo

A strange ludo

1. $X_{\text {new }}=0.8 X_{\text {old }}+0.1$

$$
Y_{\text {new }}=0.8 Y_{\text {old }}+0.04
$$

2. $X_{\text {new }}=0.5 X_{\text {old }}+0.25$
3.

$$
\begin{equation*}
Y_{\text {new }}=0.5 Y_{\text {old }}+0.4 \tag{0,0}
\end{equation*}
$$

3. $\begin{aligned} X_{\text {new }} & =0.355 X_{\text {old }}-0.355 Y_{\text {old }}+0.266 \\ Y_{\text {new }} & =0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.078\end{aligned}$
4. $\begin{aligned} & X_{\text {new }}=0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.378 \\ & Y_{\text {new }}=-0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.434\end{aligned}$

A strange ludo

A strange ludo

1. $\begin{aligned} & X_{\text {new }}=0.8 X_{\text {old }}+0.1 \\ & Y_{\text {new }}=0.8 Y_{\text {old }}+0.04\end{aligned}$
2.

$$
\text { 2. } \begin{aligned}
& X_{\text {new }}=0.5 X_{\text {old }}+0.25 \\
& Y_{\text {new }}=0.5 Y_{\text {old }}+0.4
\end{aligned}
$$

3. $\begin{aligned} & X_{\text {new }}=0.355 X_{\text {old }}-0.355 Y_{\text {old }}+0.266 \\ & Y_{\text {new }}=0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.078\end{aligned}$
4. $\begin{aligned} & X_{\text {new }}=0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.378 \\ & Y_{\text {new }}=-0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.434\end{aligned}$

A strange ludo

1. $\begin{aligned} & X_{\text {new }}=0.8 X_{\text {old }}+0.1 \\ & Y_{\text {new }}=0.8 Y_{\text {old }}+0.04\end{aligned}$
2. $X_{\text {new }}=0.5 X_{\text {old }}+0.25$
3.

$$
Y_{\text {new }}=0.5 Y_{\text {old }}+0.4
$$

3. $\begin{aligned} & X_{\text {new }}=0.355 X_{\text {old }}-0.355 Y_{\text {old }}+0.266 \\ & Y_{\text {new }}=0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.078\end{aligned}$
4. $\begin{aligned} & X_{\text {new }}=0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.378 \\ & Y_{\text {new }}=-0.355 X_{\text {old }}+0.355 Y_{\text {old }}+0.434\end{aligned}$

A strange thing!

100

A strange thing!

A strange thing!

1000

A strange thing!

10000

A strange thing!

100000

Try it out yourself!

https://arnab-chakraborty.shinyapps.io/shny/

Another strange thing!

Statistical regularity

Regularity in randomness!

- Not always
- Only when we have "lots of randomness"

Statistical regularity

Regularity in randomness!

- Not always
- Only when we have "lots of randomness"

Natural phenomena:

- Leaves: very similar but not same
- Finger prints

Why care?

Why care?

$\xrightarrow[\text { death }]{\text { life } \& \xrightarrow[\text { prefit }]{\text { regular }}}$

Why care?

$\xrightarrow[\text { death }]{\text { life \& }} \xrightarrow[\text { profit }]{\text { regular }}$

1. Understanding: Probability
2. Using: Statistics

Histogram

TIT1TTTTT1T1T 5

Histogram

Histogram

Histogram

Probability density function

Probability density function

Probability density function

Probability density function

Probability density function

Probability
density function

Probability density function

Probability
density function

Probability density function

> Probability
> density function

Probability density function

香贵

Probability density function

Probability density function

Probability density function

Probability density function

Probability density function

Probability density function

All continuous random variable pairs have joint PDFs.

Molecules

Molecules

A single molecule

Isotropy

x, y, z are continuous random variables and so have PDFs.

Isotropy

x, y, z are continuous random variables and so have PDFs.

In case of "no flow"

- They have the same density (call it $f(\cdot)$)

Isotropy

x, y, z are continuous random variables and so have PDFs.

In case of "no flow"

- They have the same density (call it $f(\cdot)$)
- They are independent.

Isotropy

x, y, z are continuous random variables and so have PDFs.

In case of "no flow"

- They have the same density (call it $f(\cdot)$)
- They are independent.
- So joint density of x, y, z is $f(x) f(y) f(z)$.

Isotropy

x, y, z are continuous random variables and so have PDFs.

In case of "no flow"

- They have the same density (call it $f(\cdot)$)
- They are independent.
- So joint density of x, y, z is $f(x) f(y) f(z)$.
- $f(x) f(y) f(z)$ does not depends only on the length of (x, y, z) and not on the direction.

Isotropy

Isotropy

Isotropy

Mathematically...

$$
f(x) f(y) f(z)=g\left(x^{2}+y^{2}+z^{2}\right)
$$

Mathematically...

$$
\begin{gathered}
f(x) f(y) f(z)=g\left(x^{2}+y^{2}+z^{2}\right) \\
f^{\prime}(x) f(y) f(z)=2 x g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
f(x) f^{\prime}(y) f(z)=2 y g^{\prime}\left(x^{2}+y^{2}+z^{2}\right)
\end{gathered}
$$

Mathematically...

$$
\begin{gathered}
f(x) f(y) f(z)=g\left(x^{2}+y^{2}+z^{2}\right) \\
f^{\prime}(x) f(y) f(z)=2 x g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
f(x) f^{\prime}(y) f(z)=2 y g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
f(x) f(y) f^{\prime}(z)=2 z g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
g^{\prime}\left(x^{2}+y^{2}+z^{2}\right)=\frac{f^{\prime}(x) f(y) f(z)}{2 x}=\frac{f(x) f^{\prime}(y) f(z)}{2 y}=\frac{f(x) f(y) f^{\prime}(z)}{2 z} .
\end{gathered}
$$

Mathematically...

$$
\begin{gathered}
f(x) f(y) f(z)=g\left(x^{2}+y^{2}+z^{2}\right) \\
f^{\prime}(x) f(y) f(z)=2 x g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
f(x) f^{\prime}(y) f(z)=2 y g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
f(x) f(y) f^{\prime}(z)=2 z g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
g^{\prime}\left(x^{2}+y^{2}+z^{2}\right)=\frac{f^{\prime}(x) f(y) f(z)}{2 x}=\frac{f(x) f^{\prime}(y) f(z)}{2 y}=\frac{f(x) f(y) f^{\prime}(z)}{2 z} . \\
\frac{f^{\prime}(x)}{x f(x)}=\frac{f^{\prime}(y)}{y f(y)}=\frac{f^{\prime}(z)}{z f(z)}
\end{gathered}
$$

Mathematically...

$$
\begin{gathered}
f(x) f(y) f(z)=g\left(x^{2}+y^{2}+z^{2}\right) \\
f^{\prime}(x) f(y) f(z)=2 x g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
f(x) f^{\prime}(y) f(z)=2 y g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
f(x) f(y) f^{\prime}(z)=2 z g^{\prime}\left(x^{2}+y^{2}+z^{2}\right) \\
g^{\prime}\left(x^{2}+y^{2}+z^{2}\right)=\frac{f^{\prime}(x) f(y) f(z)}{2 x}=\frac{f(x) f^{\prime}(y) f(z)}{2 y}=\frac{f(x) f(y) f^{\prime}(z)}{2 z} . \\
\frac{f^{\prime}(x)}{x f(x)}=\frac{f^{\prime}(y)}{y f(y)}=\frac{f^{\prime}(z)}{z f(z)}=k, \text { say. }
\end{gathered}
$$

Solving

$$
\frac{d f}{d x}=k x f
$$

Solving

$$
\begin{aligned}
& \frac{d f}{d x}=k x f \\
& \frac{d f}{f}=k x d x
\end{aligned}
$$

Solving

$$
\begin{aligned}
\frac{d f}{d x} & =k x f \\
\frac{d f}{f} & =k x d x \\
\int \frac{d f}{f} & =k \int x d x
\end{aligned}
$$

Solving

$$
\begin{gathered}
\frac{d f}{d x}=k x f \\
\frac{d f}{f}=k x d x \\
\int \frac{d f}{f}=k \int x d x \\
\log f=\frac{k x^{2}}{2}+\text { const. }
\end{gathered}
$$

Solving

$$
\begin{gathered}
\frac{d f}{d x}=k x f \\
\frac{d f}{f}=k x d x \\
\int \frac{d f}{f}=k \int x d x \\
\log f=\frac{k x^{2}}{2}+\text { const. } \\
f=\text { const } \times e^{\frac{k x^{2}}{2}}
\end{gathered}
$$

Solving

$$
\begin{gathered}
\frac{d f}{d x}=k x f \\
\frac{d f}{f}=k x d x \\
\int \frac{d f}{f}=k \int x d x \\
\log f=\frac{k x^{2}}{2}+\text { const. } \\
f=\text { const } \times e^{\frac{k x^{2}}{2}}
\end{gathered}
$$

Maxwell / Gaussian distribution.

