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A strange ludo

1.
Xnew = 0.8Xold + 0.1
Ynew = 0.8Yold + 0.04

2.
Xnew = 0.5Xold + 0.25
Ynew = 0.5Yold + 0.4

3.
Xnew = 0.355Xold − 0.355Yold +0.266
Ynew = 0.355Xold +0.355Yold +0.078

4.
Xnew = 0.355Xold + 0.355Yold + 0.378
Ynew = −0.355Xold + 0.355Yold + 0.434
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A strange thing!
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A strange thing!
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Try it out yourself!

https://arnab-chakraborty.shinyapps.io/shny/



Another strange thing!
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Statistical regularity

Regularity in randomness!

I Not always

I Only when we have “lots of randomness”

Natural phenomena:

I Leaves: very similar but not same

I Finger prints
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Why care?

1. Understanding: Probability

2. Using: Statistics
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Probability density function
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Probability density function
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Probability density function



Probability density function

All continuous random
variable pairs have joint
PDFs.
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Isotropy

x , y , z are continuous random variables and so have
PDFs.

In case of ”no flow”

I They have the same density (call it f (·))
I They are independent.

I So joint density of x , y , z is f (x)f (y)f (z).

I f (x)f (y)f (z) does not depends only on the length of
(x , y , z) and not on the direction.
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Mathematically...

f (x)f (y)f (z) = g(x2 + y 2 + z2)

f ′(x)f (y)f (z) = 2xg ′(x2 + y 2 + z2)

f (x)f ′(y)f (z) = 2yg ′(x2 + y 2 + z2)

f (x)f (y)f ′(z) = 2zg ′(x2 + y 2 + z2)

g ′(x2+y 2+z2) =
f ′(x)f (y)f (z)

2x
=

f (x)f ′(y)f (z)

2y
=

f (x)f (y)f ′(z)

2z
.

f ′(x)

xf (x)
=

f ′(y)

yf (y)
=

f ′(z)

zf (z)

= k , say

.



Mathematically...

f (x)f (y)f (z) = g(x2 + y 2 + z2)

f ′(x)f (y)f (z) = 2xg ′(x2 + y 2 + z2)

f (x)f ′(y)f (z) = 2yg ′(x2 + y 2 + z2)

f (x)f (y)f ′(z) = 2zg ′(x2 + y 2 + z2)

g ′(x2+y 2+z2) =
f ′(x)f (y)f (z)

2x
=

f (x)f ′(y)f (z)

2y
=

f (x)f (y)f ′(z)

2z
.

f ′(x)

xf (x)
=

f ′(y)

yf (y)
=

f ′(z)

zf (z)

= k , say

.



Mathematically...

f (x)f (y)f (z) = g(x2 + y 2 + z2)

f ′(x)f (y)f (z) = 2xg ′(x2 + y 2 + z2)

f (x)f ′(y)f (z) = 2yg ′(x2 + y 2 + z2)

f (x)f (y)f ′(z) = 2zg ′(x2 + y 2 + z2)

g ′(x2+y 2+z2) =
f ′(x)f (y)f (z)

2x
=

f (x)f ′(y)f (z)

2y
=

f (x)f (y)f ′(z)

2z
.

f ′(x)

xf (x)
=

f ′(y)

yf (y)
=

f ′(z)

zf (z)

= k , say

.



Mathematically...

f (x)f (y)f (z) = g(x2 + y 2 + z2)

f ′(x)f (y)f (z) = 2xg ′(x2 + y 2 + z2)

f (x)f ′(y)f (z) = 2yg ′(x2 + y 2 + z2)

f (x)f (y)f ′(z) = 2zg ′(x2 + y 2 + z2)

g ′(x2+y 2+z2) =
f ′(x)f (y)f (z)

2x
=

f (x)f ′(y)f (z)

2y
=

f (x)f (y)f ′(z)

2z
.

f ′(x)

xf (x)
=

f ′(y)

yf (y)
=

f ′(z)

zf (z)

= k , say

.



Mathematically...

f (x)f (y)f (z) = g(x2 + y 2 + z2)

f ′(x)f (y)f (z) = 2xg ′(x2 + y 2 + z2)

f (x)f ′(y)f (z) = 2yg ′(x2 + y 2 + z2)

f (x)f (y)f ′(z) = 2zg ′(x2 + y 2 + z2)

g ′(x2+y 2+z2) =
f ′(x)f (y)f (z)

2x
=

f (x)f ′(y)f (z)

2y
=

f (x)f (y)f ′(z)

2z
.

f ′(x)

xf (x)
=

f ′(y)

yf (y)
=

f ′(z)

zf (z)
= k , say.



Solving

df

dx
= kxf .

df

f
= kxdx .∫

df

f
= k

∫
xdx .

log f =
kx2

2
+ const.

f = const × e
kx2

2 .

Maxwell / Gaussian distribution.
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