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Abstract

This introduction to the expectation—maximization (EM) algorithm
provides an intuitive and mathematically rigorous understanding of
EM. Two of the most popular applications of EM are described in
detail: estimating Gaussian mixture models (GMMs), and estimat-
ing hidden Markov models (HMMs). EM solutions are also derived
for learning an optimal mixture of fixed models, for estimating the
parameters of a compound Dirichlet distribution, and for dis-entangling
superimposed signals. Practical issues that arise in the use of EM are
discussed, as well as variants of the algorithm that help deal with these
challenges.
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The Expectation-Maximization Method

Expectation—maximization (EM) is an iterative method that attempts
to find the maximum likelihood estimator of a parameter 6 of a para-
metric probability distribution. Let us begin with an example. Consider
the temperature outside your window for each of the 24 hours of a
day, represented by = € R?*, and say that this temperature depends on
the season # € {summer, fall, winter, spring}, and that you know the
seasonal temperature distribution p(x|6). But what if you could only
measure the average temperature y = Z for some day, and you would
like to estimate what season € it is (for example, is spring here yet?). In
particular, you might seek the maximum likelihood estimate of 6, that
is, the value  that maximizes p(y|0). If this is not a trivial maximum
likelihood problem, you might call upon EM. EM iteratively alternates
between making guesses about the complete data x, and finding the 6
that maximizes p(z|6) over 6. In this way, EM tries to find the maxi-
mum likelihood estimate of 6 given y. We will see in later sections that
EM does not actually promise to find the 6 that maximizes p(y|0),
but there are some theoretical guarantees, and it often does a good job
in practice, though it may need a little help in the form of multiple
random starts.
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This exposition is designed to be useful to both the EM novice and
the experienced EM user looking to better understand the method and
its use. To this end, we err on the side of providing too many explicit
details rather than too few.

First, we go over the steps of EM, breaking down the usual two-step
description into a five-step description. Table 1.1 summarizes the key
notation. We recommend reading this document linearly up through
Section 1.4, after which sections can generally be read out-of-order.
Section 1 ends with a detailed version of a historical toy example for
EM. In Section 2 we show that EM never gets worse as it iterates in
terms of the likelihood of the estimate it produces, and we explain the
maximization—mazimization interpretation of EM. We also explain the
general advantages and disadvantages of EM compared to other options
for maximizing the likelihood, like the Newton—Raphson method. The

Table 1.1. Notation summary.

R Set of real numbers

R4 Set of positive real numbers

N Set of natural numbers

y € R? Given measurement or observation

Y € R? Random measurement; y is a realization of Y

z e R% Complete data you wish you had

X e RN Random complete data; z is a realization of X

z € Ré2 Missing data; in some problems z = (y, 2)

Z e Ré2 Random missing data; z is a realization of Z

0 Parameter(s) to estimate, € is the parameter space

0(m) e Q mth estimate of 6

p(y|6) Density of y given 6; also written as p(Y = y|0)

X Support of X (closure of the set of  where
p(z10) > 0)

X(y) Support of X conditioned on y (closure of the

set of  where p(z|y,0) > 0)

£ “Is defined to be”

L(6) Likelihood of € given y, that is, p(y|6)

£(0) Log-likelihood of 6 given y, that is, logp(y|0)

EX|y,9[X] Expectation of X conditioned on y and 6, that is,
fX(y) zp(x|y,0)dx

ey Indicator function: equals 1 if the expression {-} is

true, and O otherwise

1 Vector of ones

Dk1,(P||Q) Kullback—Leibler divergence (a.k.a. relative entropy)
between distributions P and Q
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advantages of EM are made clearer in Sections 3 and 4, in which we
derive a number of popular applications of EM and use these applica-
tions to illustrate practical issues that can arise with EM. Section 3
covers learning the optimal combination of fixed models to explain the
observed data, and fitting a Gaussian mixture model (GMM) to the
data. Section 4 covers learning hidden Markov models (HMMs), sep-
arating superimposed signals, and estimating the parameter for the
compound Dirichlet distribution. In Section 5, we categorize and dis-
cuss some of the variants of EM and related methods, and we conclude
this manuscript in Section 6 with some historical notes.

1.1 The EM Algorithm

To use EM, you must be given some observed data y, a parametric
density p(y|0), a description of some complete data x that you wish
you had, and the parametric density p(z|#).! In Sections 3 and 4 we
will explain how to define the complete data = for some standard EM
applications.

We assume that the complete data can be modeled as a continuous
random vector X with density p(x|6),® where 6 € Q for some set 2. You
do not observe X directly; instead, you observe a realization y of the
random vector Y that depends* on X. For example, X might be a
random vector and Y the mean of its components, or if X is a complex
number then Y might be only its magnitude, or Y might be the first

2

component of the vector X.

LA different standard choice of notation for a parametric density would be p(y;6), but
we prefer p(y|6) because this notation is clearer when one wants to find the maximum
a posteriort estimate rather than the maximum likelihood estimate—we will talk more
about the maximum a posteriori estimate of 6 in Section 1.3.

2 The treatment of discrete random vectors is a straightforward special case of the continuous
treatment: one only needs to replace the probability density function with probability mass
function and integral with summation.

3We assume that the support of X, denoted by X, which is the closure of the set
{z ! p(x|0) > 0}, does not depend on 6. An example where the support does depend on
0 is if X is uniformly distributed on the interval [0,6]. If the support does depend on 6,
then the monotonicity of the EM algorithm might not hold. See Section 2.1 for details.

4 A rigorous description of this dependency is deferred to Section 1.4.
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Given that you only have y, the goal here is to find the maximum
likelihood estimate (MLE) of 6:

OviLE = 0). 1.1
MLE = arg max p(y|0) (1.1)

It is often easier to calculate the 6 that maximizes the log-likelihood
of y:

OMLE = 1 0). 1.2
MLE argr;leaé ogp(y]) ( )

Because log is a monotonically increasing function, the solution to (1.1)
will be the same as the solution to (1.2). However, for some problems it
is difficult to solve either (1.1) or (1.2). Then we can try EM: we make
a guess about the complete data X and solve for the # that maximizes
the (expected) log-likelihood of X. And once we have an estimate for
0, we can make a better guess about the complete data X, and iterate.

EM is usually described as two steps (the E-step and the M-step),
but let us first break it down into five steps:

Step 1: Let m = 0 and make an initial estimate ("™ for 6.

Step 2: Given the observed data y and pretending for the moment
that your current guess (™) is correct, formulate the condi-
tional probability distribution p(z|y,0(™) for the complete
data x.

Step 3: Using the conditional probability distribution p(z|y,6™)) cal-
culated in Step 2, form the conditional expected log-likelihood,
which is called the Q-function®:

QO]6m) = / logp(x|0)p(x |y, 6™ dz
X(y)

= Ex), gom [logp(X [0)], (1.3)

5Note this Q-function has nothing to do with the sum of the tail of a Gaussian, which is
also called the @Q-function. People call (1.3) the Q-function because the original paper [11]
used a @ to notate it. We like to say that the @ stands for quizotic because it is a bit
crazy and hopeful and beautiful to think you can find the maximum likelihood estimate
of 0 in this way that iterates round-and-round like a windmill, and if Don Quixote had
been a statistician, it is just the sort of thing he might have done.
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where the integral is over the set X(y), which is the closure
of the set {z ‘ p(z]y,0) > 0}, and we assume that X' (y) does
not depend on 6.

Note that 6 is a free variable in (1.3), so the Q-function is
a function of 6, but also depends on your current guess (™
implicitly through the p(z|y,8™) calculated in Step 2.

Step 4: Find the 6 that maximizes the Q-function (1.3); the result is
your new estimate (" +1),

Step 5: Let m :=m + 1 and go back to Step 2. (The EM algorithm
does not specify a stopping criterion; standard criteria are to
iterate until the estimate stops changing: ||§(™+1) — (™| < ¢
for some € > 0, or to iterate until the log-likelihood ¢(0) =
logp(y|#) stops changing: [£(A(™+1)) — £(8(™))] < e for some
€>0.)

The EM estimate is only guaranteed to never get worse (see Section 2.1
for details). Usually, it will find a peak in the likelihood p(y|6), but
if the likelihood function p(y|#) has multiple peaks, EM will not nec-
essarily find the global maximum of the likelihood. In practice, it is
common to start EM from multiple random initial guesses, and choose
the one with the largest likelihood as the final guess for 6.

The traditional description of the EM algorithm consists of only
two steps. The above Steps 2 and 3 combined are called the E-step for
expectation, and Step 4 is called the M-step for mazrimization:
E-step: Given the estimate from the previous iteration ("), compute
the conditional expectation Q(#]6(™)) given in (1.3).

M-step: The (m + 1)th guess of 6 is:

(m+1) _ (m)
6 argmax Q016'™). (1.4)

Since the E-step is just to compute the Q-function which is used
in the M-step, EM can be summarized as just iteratively solving the
M-step given by (1.4). When applying EM to a particular problem, this
is usually the best way to think about EM because then one does not
waste time computing parts of the @Q-function that do not depend on 6.
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1.2 Contrasting EM with a Simple Variant

As a comparison that may help illuminate EM, we next consider a
simple variant of EM. In Step 2 above, one computes the conditional
distribution p(z|y,0(™)) over all possible values of z, and this entire
conditional distribution is taken into account in the M-step. A simple
variant is to instead use only the mth maximum likelihood estimate

2™ of the complete data z:
E-like-step: 2™ = arg max p(z|y,0™),
zeX(y)
M-like-step: 9"+ — argmax p(z(™ |6).
0e2

We call this variant the point-estimate variant of EM; it has also been

called classification EM. More on this variant can be found in [7, 9].
Perhaps the most famous example of this variant is k-means clus-

tering® [21, 35]. In k-means clustering, we have n observed data points

Y= [yl Yo ... yn]T, where each y; € R?, and it is believed that the
data points belong to k clusters. Let the complete data be the observed
data points and the missing information that specifies which of the k
clusters each observed data point belongs to. The goal is to estimate
the k cluster centers 6. First, one makes an initial guess 6° of the k clus-
ter centers. Then in the E-like step, one assigns each of the n points
to the closest cluster based on the estimated cluster centers (™. Then
in the M-like step, one takes all the points assigned to each cluster,
and computes the mean of those points to form a new estimate of the
cluster’s centroid. Underlying k-means is a model that the clusters are
defined by Gaussian distributions with unknown means (the 6 to be
estimated) and identity covariance matrices.

EM clustering differs from k-means clustering in that at each iter-
ation you do not choose a single z(™), that is, one does not force each
observed point y; to belong to only one cluster. Instead, each observed
point y; is probabilistically assigned to the k clusters by estimating
p(z|y,0™). We treat EM clustering in more depth in Section 3.2.

6The k-means clustering algorithm dates to 1967 [35] and is a special case of wvector
quantization, which was first proposed as Lloyd’s algorithm in 1957 [32]. See [17] for
details.
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1.3 Using a Prior with EM (MAP EM)

The EM algorithm can fail due to singularities of the log-likelihood
function — for example, for learning a GMM with 10 components, it
may decide that the most likely solution is for one of the Gaussians to
only have one data point assigned to it, with the bad result that the
Gaussian is estimated as having zero covariance (see Section 3.2.5 for
details).

A straightforward solution to such degeneracies is to take into
account or impose some prior information on the solution for . One
approach would be to restrict the set of possible . Such a restriction
is equivalent to putting a uniform prior probability over the restricted
set. More generally, one can impose any prior p(f), and then modify
EM to maximize the posterior rather than the likelihood:

Oniap = argmax logp(6|y) = argmax (logp(y |0) + logp(0)).
0e) 0ec0)

The EM algorithm is easily extended to maximum a posteriori (MAP)
estimation by modifying the M-step:

E-step: Given the estimate from the previous iteration ("), compute
as a function of 6 € Q2 the conditional expectation

QO10"™) = Exy g [logp(X |6)).
M-step: Maximize Q(#]0(™) + logp(#) over 6 € Q to find

plm+1) _ argmax(Q(0| ™) + logp(6)).

An example of MAP EM is given in Section 3.3.

1.4 Specifying the Complete Data

Practically, the complete data should be defined so that given z it is
relatively easy to maximize p(x|f) with respect to 6. Theoretically,
the complete data X must satisfy the Markov relationship § - X — Y
with respect to the parameter 6 and the observed data Y, that is, it
must be that

p(y|z,0) =p(y|z).
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A special case is when Y is a function of X, that is, Y =T(X); in
this case, X — Y is a deterministic function, and thus the Markov
relationship always holds.

1.4.1 EM for Missing Data Problems

For many applications of EM, including GMM and HMM, the com-
plete data X is the observed data Y plus some missing (sometimes
called latent or hidden) data Z, such that X = (Y, Z). This is a spe-
cial case of Y = T'(X), where the function T simply removes Z from
X to produce Y. In general when using EM with missing data, one
can write the Q-function as an integral over the domain of Z, denoted
by Z, rather than over the domain of X, because the only random part
of the complete data X is the missing data Z. Then, for missing data
problems where z = (y, z),

Q(016™) = / log p(z | 0)p(x | 3, 00™)dx
X
—/Xlogp(y,z!9)p(y,Z|y,9(m))d9€

- /zlogp(%z 10)p(z|y,0™)d=
= Ey)y 90m[logp(y, Z|6)). (1.5)

1.4.2 EM for Independently, Identically
Distributed Samples

For many common applications such as learning a GMM or HMM, the
complete data X is a set of n independent and identically distributed
(i.i.d.) random vectors, X = [X; Xo ... Xn]T and the ith observed
sample y; is only a function of z;. Then the following proposition is
useful for decomposing the Q-function into a sum:

Proposition 1.1. Suppose p(z|0) =[], p(z;|0) for all z € X™ and
all 4 € Q, and the Markov relationship 8 — X; — Y; holds for all i =
1,...,n, that is,

P(Yi | T, Y1y Yie 15 Vit 1y s Yny 0) = p(yi | 75), (1.6)
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then
Q0]6™) ZQz 0]6m

where

Qu(810™) = Ex. |, gonllogp(Xi|0)], i=1,....n.

Proof. First, we show that given 6, the elements of the set {(X;,Y;)},
1=1,...,n, are mutually independent that is,

p(z,y|0) = Hp i,9i|0). (1.7)

This mutual independence holds because

p(@,y]0) =p(yilyz, - yn, 2, 0) - p(yn |, 0)p(2]0)
(by the chain rule)

=p(y1l1,0) - p(yn|zn,0)p(z]0)
(by (1.6), but keep 0 in the condition)

= p(y1|1,60) -+ p(yn| 20, 0) [ [ p(2:]6)
=1

(by the independence assumption on X)

—Hp yZIxz, $1|0)

= Hp(:vi,yﬂ@).
i=1
Then we show that for all ¢ =1,...,n, we have

p(xily,0) = p(wi|y:,0). (1.8)
This is because

v _ plzi,y|0)

(by Bayes’ rule)

_ fxn_lp(x,y|0)d1:1 cdxi_1dxigy ... dxy,
Soonp(,y|0)d
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B Jan1 [ljmi p(2),y5|0)ds .. dxi—ydwigy .. dzy
N Jon 1= p(zj,y;10)da ... day,

(by (1.7))
(@i yi |12 e [ p(25,y510)dx;
a [T [y p(z),y;|0)dz;
- p(wi,yi|0) H;L:I,j;éip(yj 10)
a 1= p(y;|0)
_ p(zi,yi|0)

p(yi0)

= p(wi|vi,0).

Then,

Q010" = Ex), gom [logp(X |6)]

= Exjyotm |log ] [p(X:] 9)]
=1

(by the independence assumption on X)

[ n
= Ex|y79(m> ZIOgP(Xi | 6)]
Li=1

= ZEXi|y,9(m) [logp(X;|0)]
i—1

n
= " Ex,py, o0m logp(Xi] 0)],
=1

where the last line holds because of (1.8).

1.5 A Toy Example

233

We next present a fully worked-out version of a “toy example” of EM

that was used in the seminal EM paper [11]. Here, we give more details,

and we have changed it to literally be a toy example.

Imagine y(T)u ask n kids to choose a toy out of four choices. Let Y =
[Yl Y4] denote the histogram of their n choices, where Y; is the
number of the kids that chose toy i, for i = 1,...,4. We can model this
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random histogram Y as being distributed according to a multinomial
distribution. The multinomial has two parameters: the number of kids
asked, denoted by n € N, and the probability that a kid will choose each
of the four toys, denoted by p € [0,1]*, where p; + p2 + p3 + ps = 1.
Then the probability of seeing some particular histogram v is:

n!
i Y1,,Y2,.Y3 Y4 (1‘9)

pP1 Py P3Py -
!y4!1234

Ply|p) = ————
wlp) y1'y2'ys

Next, say that we have reason to believe that the unknown proba-
bility p of choosing each of the toys is parameterized by some hidden
value 6 € (0,1) such that

T
1 1, 1 1 1

==+ ~(1-60) -(1-0) -6 , 6€(0,1). 1.10

=|3+10 j0-0 j0-0 0| seon. 0o

The estimation problem is to guess the § that maximizes the probability
of the observed histogram y of toy choices.

Combining (1.9) and (1.10), we can write the probability of seeing
the histogram y = [yl Y2 Y3 y4]T as

! 1 O\ [1—-0\"[/1-0\"[/0\"
P (o0 1) (57) () (6)
yilyolyslygd \ 2 4 4 4 4

For this simple example, one could directly maximize the log-likelihood
log P(y|0), but here we will instead illustrate how to use the EM algo-
rithm to find the maximum likelihood estimate of 6.

To use EM, we need to specify what the complete data X is. We
will choose the complete data to enable us to specify the probability
mass function (pmf) in terms of only ¢ and 1 — #. To that end, we
define the complete data to be X = [Xl X5]T
multinomial distribution with number of trials n and the probability

, where X has a

of each event is:

T

1 1
L(1=0) 16| . 6€(0.1).

1 1 1
w=|3 70 ;0-9) 5

2

By defining X this way, we can then write the observed data Y as:
T
Y=T(X)=[X1+Xo X3 X4 X5
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The likelihood of a realization x of the complete data is

| 1 T2+2T5 _ T3+Tq
P(x]6) = —— <1> (9> <19> . (1.11)
[Tt \2/ \4 4

For EM, we need to maximize the Q-function:

9(m+1) — arg max Q(A|0") = arg max E m [logp(X | 0)].
g max Q010") 8 e Exy.o ) [log p(X [ 6)]
To solve the above equation, we actually only need the terms of
logp(x|0) that depend on 6, because the other terms are irrelevant
as far as maximizing over 6 is concerned. Take the log of (1.11) and
ignore those terms that do not depend on 6, then

gm+1) _ arger&%% Exiy.00m (X2 + X5)logh + (X3 + X4)log(1 — 6)]

= arg el'el}%y}i) (EX‘yﬂ(m) [XQ] + EX|y,9(m) [X5]) 10g6

+ (EX|y,9(m) [X?,] + EX|y,9(m> [X4])10g(1 — 0)

To solve the above maximization problem, we need the expectation
of the complete data X conditioned on the already known incomplete
data y, which only leaves the uncertainty about X; and Xs. Since we
know that X + X9 =y1, we can use the indicator function 1¢y to
write that given yj, the pair (X1, X2) is binomially distributed with X
“successes” in y; events:

P(z|y,0m™)
Y 1 1 00m) 2 5
= = 2 4 | Ly
129! (; ot 9<4m>> (; N g(;n)) {z1+ z—yl}il_!3 {zi=yi-1}
T 2 5
. yl! 2 ! H(m)
xlas! <2 + 9(m)> (2 + g(m) 1{$1+$291}H)1{50iyi—1}'

Then the conditional expectation of X given y and (™) is

(m) T
EX|y,0(m)[X]:|:2+92(m)y1 2_?_9(m)y1 Y2 Y3 y4} )
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and the M-step becomes

p(m)
(m+1) _ _
0 arg max, ((2 gt y4> logf + (y2 + y3)log(1 9))
72%&) Y1 + Ya

= To0m) :
a1+ Y2 + U3 + ya

Given an initial estimate 6(©) = 0.5, the above algorithm reaches éMLE
to MATLAB’s numerical precision on the 18th iteration.



2

Analysis of EM

How good are the estimates produced by EM? How exactly is the
Q-function related to the true log-likelihood? In this section we discuss
EM convergence, show that the Q-function provides a lower bound to
the true log-likelihood, and describe the maximization—maximization
interpretation of EM.

2.1 Convergence

Here is what can be proved without extra conditions: as the EM algo-
rithm iterates, the (m + 1)th guess 8™+ will never be less likely than
the mth guess #(™). This property is called the monotonicity of the EM
algorithm, and results from the following theorem, which states that
improving the Q-function will at least not make the log-likelihood ¢(6)
worse:

Theorem 2.1. Let random variables X and Y have parametric den-
sities with parameter 6 € €). Suppose the support of X does not depend
on A, and the Markov relationship § — X — Y, that is,

p(ylz,0) =p(y|z) (2.1)

237
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holds for all 6 € Q, x € X and y € Y. Then for 0 € Q and any y € Y
with X(y) # 0, £(0) > £(0™) if Q(6167™) > Q6™ [60™).

We first discuss the theorem, then prove it later in Section 2.1.1.
For the EM algorithm, the M-step ensures that

(m+1) _ (m)
0 argmax Q(616™™),

and hence it must be that QA+ 6(™) > Q(6™ |§(™)). Therefore
we can apply Theorem 2.1 and conclude that £((+1)) > ¢(90™).

The monotonicity of the EM algorithm guarantees that as EM iter-
ates, its guesses won’t get worse in terms of their likelihood, but the
monotonicity alone cannot guarantee the convergence of the sequence
{9(’”)}.1 Indeed, there is mo general convergence theorem for the EM
algorithm?: the convergence of the sequence {#(™} depends on the
characteristics of £(f) and Q(0|8’), and also the starting point §(%).

Under certain regularity conditions, one can prove that {#(™} con-
verges to a stationary point (for example, a local maximum or saddle
point) of /(). However, this convergence is only linear.? Instead of
using the EM algorithm one could (locally) maximize the likelihood
using Newton—Raphson updates, which requires calculating the inverse
of the Hessian matrix, but has quadratic convergence.* Superlinear
convergence® could instead be achieved using conjugate gradient meth-
ods or quasi-Newton updates such as the Broyden—Fletcher—Goldfarb—
Shanno (BFGS) update, which only require computing the gradient
of the log-likelihood [27, 45]. The Newton-Raphson method can be
expected to hone in on #* fast once 6™ is close, but EM may be
more effective given a poor initial guess, in part because the Hessian
matrix for the Newton—Raphson method may not be positive definite
and hence makes the inversion unstable.

LIf £(0) is bounded above on Q, then the monotonicity implies the convergence of the
sequence {£(6(™))}, but not of the sequence {0("™)}.

2Theorem 2 in [11] appears to be a general convergence theorem for EM; however, its proof
is flawed as pointed out in [6, 62].

3 Linear convergence means that there exist M >0 and 0 < C < 1 such that [|g(m+1) —
6% < C||0¢™) — 6*|| for all m > M, where 6* is the optimal value of 6.

4 Quadratic convergence means that there exist M >0 and 0 < C' < 1 such that ||§(™m+1) —
6% < C|16¢™) — 6*||2 for all m > M.

5 SQuperlinear convergence means [|§(™+1) — g*||/||6(™) — 6*|| = 0 as m — oo.
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See [62] for a detailed discussion on EM convergence; other discus-
sions on EM convergence can be found in [6, 11, 50], and [39] specifically
addresses the rate of convergence of the EM algorithm. For an analysis
of the convergence of the EM algorithm for fitting GMMs, see [63].
Note that some authors (such as [50]) use the term global convergence
to refer to convergence to a local marimum from almost any starting
point, and not to imply that one will actually converge to the global
maximum.

2.1.1 Proof of the Monotonicity Theorem

Next, we prove Theorem 2.1.

Proof. We first derive a lower bound on the log-likelihood function ¢(6):

£(0) = logp(y|0)
(by definition)

= log/ p(z,y|0)dz
X(y)
(by the law of total probability)

= log /X(y) mp(w ly,00™)dx (2.2)
(multiply the top and bottom by the same factor)

= 1B By {pggﬁ(fX;jﬁ))_

(rewrite the integral as an expectation)
p(X,y|0)

p(X [y,00m) |

(by Jensen’s inequality)

Z EX‘y70(m) log

p(X|0)p(y| X) ]
p(X0)p(y | X)/p(y|60m)
(by Bayes’ rule and the assumed Markov relationship)

_ p(X |0)p(y|60™)
= Expyoom | log p(X [6(m)

= Exypom |10g

—
@)
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= Ex|y.gom [l0gp(X [0)] = Ex, gom logp(X|67™)]
+logp(y|6™)
=Q(010"™)) — Q0™ |0"™)) + £(6™), (2.3)

where the @-function in the last line is defined in (1.3). Note that
because of the assumption that the support of X does not depend
on #, combined with the assumed Markov relationship, we can easily
conclude that X (y) does not depend on 6, either, and thus perform the
trick in (2.2); otherwise, if X (y) does depend on 6, (2.2) can lead to 3
and the rest of the proof won’t follow.

We can conclude the first part of the proof by restating (2.3) as a
lower bound on the log-likelihood function:

0(60) = £(0™) + Q016" — Qo™ |61™). (2:4)

Notice that in the above lower bound, Q(#]6(™) is the only term that
depends on 6.

Next, since we assume that Q(6|0(™) > Q(8(™)|9(™), we can sim-
ply conclude that:

00) > 000" + (Q(0]0™) — QO™ |9(™))) > £(p(™),

which completes the proof. a

2.1.2 Monotonicity of MAP EM

The EM algorithm for the MAP estimation given in Section 1.3 also
has the monotonicity property:

Theorem 2.2. Let random variables X and Y have parametric den-
sities with parameter 6 € €2, where 0 is distributed according to the
density p(f) on Q. Suppose the support of X does not depend on 6,
and the Markov relationship § —+ X — Y, that is,

p(ylz,0) =p(y|z)

holds for all 8 € Q, x € X and y € Y. Then for 8 € Q) and any y € )
with X (y) # 0,

0(8) + logp(8) > £(6™) + logp(0™),
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if
Q(016™) + logp(6) = QO™ [0™) + logp(9™).  (2.5)

Proof. Add logp(f) to both sides of (2.4), and we have
£(0) + logp(8) = £(0"™) + Q(010"™) — QO™ [6"™) + logp(6)
= £(0™) + logp(60"™) + Q(0]0™) + logp(0)
= Q6" 10 — logp(6™)
> 0(0"™) + logp(6'™),

where the last line follows from (2.5). O

2.2 Maximization—Maximization

Another way to view the EM algorithm is as a joint maximization
procedure that iteratively maximizes a better and better lower bound
F to the log-likelihood function ¢(0) [41]. Specifically, we will guess
that X has distribution P with support X(y) and density p(z). Let
Py denote the conditional distribution with density p(z|y,#). Then
consider maximizing the following objective function alternately with
respect to P and 6:

F(P,0) = £(6) — DxL(P|| Py),

where Dy, (P||Py) is the KullbackLeibler divergence (a.k.a. relative
entropy) between the current guess P of the distribution over the com-
plete data, and the likelihood Py of the complete data given the param-
eter #. Maximizing F (15,9) with respect to 8 maximizes a lower bound
on the log-likelihood function ¢(#) since the KL divergence is always
nonnegative. Then maximizing F(ﬁ’,@) with respect to P attempts to
tighten the lower bound for your current estimate of 6. Since both
steps perform maximization, this view of the EM algorithm is called
mazimization—mazimization. This joint maximization view of EM is
useful as it has led to variants of the EM algorithm that use alterna-
tive strategies to maximize F(P,H), for example by performing par-
tial maximization in the first maximization step (see [41] for details).
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Further, this interpretation establishes EM as belonging to the class
of methods called alternating optimization or alternating minimization
methods. This class of methods also includes projection onto convex
sets (POCS) and the Blahut-Arimoto algorithms; for more details on
this class of algorithms, we recommend Stark and Yang’s book [55] and
Yeung’s book [64].

Next we show that this maximization—-maximization view truly is
the same as the EM algorithm. Formally, the alternating maximization
steps are:

Max Step 1: Given the estimate from the previous iteration #(m—1),
maximize F(P,0™=1) over P to find

P — argmax F(P,0™Y). (2.6)
P

Max Step 2: Maximize F(P™), ) over  to find
(m) = F(P™.9). 2.
argmax (P, 0) (2.7)
First, note that (2.6) can be simplified:
P = argmax(¢(6"" V) — Dgp(P || Pyon-))
p

= arg mﬁi}n DKL(I5 | Pyem—1))

= BPym-1),

that is, P(™ has density p(z|y,00™ ). Second, (2.7) can be rewritten
using the Q-function:

(m) — _ p(m)
6 argmax 0(0) — D, (P || Py)

= argmax logp(y|6) — D (P™ || Py)

= argmax logp(yle)/ p(z|y,0" DYdz — Dgr,(P™ || Py)
0e0) X (y)

= argmax / p(z]y,0" ) logp(y|0)dx — Dky,(P"™ || Py)
0e0) X(y)

- p(y|z)p(z|0)
= argmax p(z]y, 00" D)o dx
8 e /X(y) (zly Jlog p(x|y,0)

— Dkp(P™ || Py)



2.2 Maximization-Maximization 243

(by Bayes’ rule and the assumed Markov relationship)

_ 0) .
= argmax 2|y, 00" ) 1o Mdm—D PM | p
s [ plelyn 0 low B sde — D (P )

(by removing the term that does not depend on 6)

_ 0)
= argmax 2|y, 00" )1 ﬂdw
8 e /X(y)p( ly ) gp(f\yﬁ)
(m—1)
(m—1) p(x!y,@ )
- p(x|y,0 log—=———7—
/X(y) (@ ) p(z|y,0)

= argmax / p(z|y, 0™ ) logp(z|0)dx
0 S x(y)

- / p(@]y,0™ D) log p(z|y,00" V) da
X(y)

= argmax / p(z|y,0" ) logp(z|0)dx
0 S x(y)

(by removing the term that does not depend on )
= argmax Exy.00m—1[logp(X[6)]

_ (m—1)
argmax Q(067),

which is just the standard M-step given in (1.4).



3

Learning Mixtures

This section details the use of EM for two popular problems of learn-
ing a mixture. First, we consider one of the simplest and nicest EM
applications: learning the maximum likelihood mixture of a finite set
of fixed models to explain some observed data y. Then in Section 3.2 we
consider the harder problem of learning a GMM (also called EM cluster-
ing), where both the mixture weights of the Gaussians and the param-
eters for each component Gaussian must be learned. In Section 3.3 we
illustrate using EM to learn a GMM when there are additional con-
straints on the GMM parameters. More examples of EM for mixture
models can be found in McLachlan and Peel’s book [37].

3.1 Learning an Optimal Mixture of Fixed Models

Consider the problem of learning an optimal convex combination of
arbitrary models. Suppose you have n observations yi,yo,...,y, and
k Models that could have generated these observations p1,p2,...,Dk.
For example, p; could be a Gaussian with some fixed parameters y = 3,
02 =1, and py could be a Laplacian distribution with fixed parameter
A =1/5, etc. This setup would apply to learning a GMM (treated later

244
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in Section 3.2) if one fixed the component Gaussian models a priori
such that you only needed to learn the relative weights.

Suppose further that you model the observed n samples as being
drawn i.i.d. from a convex combination of the k models such that

k
p(Yi=yi) = _0;p;(i),
=1

where }_,6; =1 and 6; € [0,1] for all j. Your goal is to learn the most
likely combination 6 of models to explain the observed data.

To use EM, let the hidden data z = [zl 29 ... zn] T denote which
of the k models generated each corresponding observation, that is z; €
{1,2,...,k},i=1,...,n. Then for any 6,

p(Yi =i, Zi = j10) = 0;p;(vi), (3.1)
and given an estimate (™) it follows from (3.1) and Bayes’ rule that

p(Yi =y Zi =j10) _ 05"p(w)
PYe=wl0) S 0 )

P(Zi=j|Yi=y;,0™) =

That is, if we know that the relative frequencies of the k¥ models are
6("™) then the probability that the ith observed sample y; was generated
by the jth model is proportional to both the probability Hj(-m) of that
model a priori and the likelihood p;(y;) of the jth model producing
the observed y;.

Let  be the set of 6 such that Zjej =land#; €[0,1],j=1,...,k.
Then the M-step is:

glm+1) _ arg%leag}zcEZwﬁ(m) [logp(y, Z|0)]
(by (1.5))
n
= arg Ienea% ZIEZilyiﬁ(m) [logp(yi, Zi |0)]
1=

(by Proposition 1.1)

n
= argmax ;Ezi|yi,9(m) log 0z, + logpz, (y:)]
1=
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n
= argimax z;Ez”yi,e(m log 2]
1=
(by removing the terms that do not depend on 0)

n k
_ 7. = ilu:.. 0N 1og 6.
R & P et

where in (3.2), we let

o =3 oplZi =l 0 = 30—
i=1 i=1 2.1=1 91 pl(yz‘)

(3.3)

The constrained optimization in (3.2) can be solved in a straight-
forward manner with the method of Lagrange multipliers,! but a more
elegant solution uses Gibbs’ inequality,? which states that:

Gibbs’ Inequality: Given two probability mass functions p and ¢ for
the same k events,

k k
> pilogg; <> pilogp;, (3.4)
=1 i=1

with equality if and only if p; = ¢; for all j.

I Here is the solution to (3.2) using the method of Lagrange multipliers. Ignoring for the
moment the constraint that 6; € [0,1], we use the method of Lagrange multipliers to
enforce the constraint that 3, 0; = 1, and solve (3.2) analytically:

o™

k k
0:8<Za§m>1ogel—,\ S -1))=-2— -
99; \i =1 0;

which leads to 9; = agm)//\. By choosing the A that satisfies the sum-to-one constraint, we

have 9]*- = a§m)/2§c:1 al(m). In this particular case, our gamble of ignoring the constraint
0; € [0,1] was okay since the solution happens to satisfy the constraint. Note that the
problem in (3.2) is actually a convex optimization problem [5], and here we skip the
details of verifying the optimality of the solution.

2 Gibbs’ inequality is also known as the log-sum divergence inequality, or by its equivalent
result that relative entropy is always nonnegative.
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To solve (3.2), let p; = ag.m)/Zle al(m) and ¢; = 6;. Then from
Gibbs’ inequality, the maximum of > y agm) logf; occurs when ¢; = p;,
that is, 07 = ozg-m)/Zf:l ozl(m).

To summarize, EM for learning an optimal mixture of fixed models
reduces to iteratively solving for the k estimated weights:

(m+1) oy
7 k' ? 9 ? )
211 O‘l( "
where a§m) is given in (3.3). Here ag-m) is your best estimate at the mth
iteration of the total relative probability of the jth model given your n
observations. Then the updated estimate given in (3.5) normalizes the

relative probability oz;.m) to make it the absolute probability of the j*

model.
This is EM at its best: it provides a simple closed-form solution at

each iteration. One is not always so lucky! But even in this case, one is
k

j=1
and your random draw of data y, the likelihood surface may have mul-

not really so lucky: depending on your choice of fixed models {p;}

tiple maxima, and EM may not converge to the global maximum.

3.2 Learning a GMM

In this section, we explain how to fit a GMM using EM. This is also
called EM clustering. Figure 3.1 shows the probability density function
of a one-dimensional GMM with three components. Fitting a GMM is a
special case of the general problem of estimating a mixture of densities
(for more on the general case, see [50]).

3.2.1 GMM Setup and Short Story

Suppose you are given n vectors yi,...,y, that you believe were gener-
ated i.i.d. by a mixture of k Gaussians,? and you want to find the means

3How did you know that your points came from a mixture of exactly k& Gaussians? Some-
times one knows from side information. But if not, choosing the number of clusters k to
assume is a difficult problem; see [56] for further discussion.
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04r 1

035 1

0.3 1

0.25F J

0.2F J

0.15f 1

0.05r 1

0 1 ! ! ! !
-6 —4 -2 0 2 4 6

Fig. 3.1 Probability density of a one-dimensional GMM with three Gaussian components
with means p1 = —2, pug =1, pug = 3, variances Jf =0.8, 0% =0.1, 032, = 0.4, and relative
weights w1 = w2 = w3 =1/3.

and covariances of the k Gaussians, but you do not know which of the
observed points came from which Gaussian. Your goal is to estimate
the k£ means and k covariance matrices, and k weights that specify how
likely each Gaussian is to be chosen; this entire set of parameters is 6.
To find the maximum likelihood estimate of 8 using EM, you define as
the missing information z which of the & Gaussians each of the samples
came from.

Spoiler alert! Before deriving the E-step and M-step, we summarize
the outcome. The mth iteration of the E-step produces a guess of the
n X k membership-weights {'yi(;n)}, where 71(;”) is the current guess of
the probability that sample y; came from the jth Gaussian, that is,
'71'(;'71) = P(Z; = j|yi,60"). The M-step gives a closed-form solution for
the new estimates of the mean and covariance for each Gaussian, and
you complete your estimate of 8 by setting the weight for the jth Gaus-
sian to be proportional to the corresponding total membership-weight
of the samples: wj o< Y 1" | vij.
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3.2.2 Derivation of EM for the GMM

Given n ii.d. samples yi1,ys,...,yn € R? drawn from a GMM with k
components, the goal is to estimate the parameter set § = {(wj, u;,
Ej)}g‘?:l. For any y; and any pj, ¥;, denote the Gaussian

1 1 _
o(yi | g 25) 2 WGXP <—2(?J - Mj)TEj 1(9 - Mj))-

The GMM has density

k
p(Yi =il 0) = > wid(yilp, %)),
j=1

where w; > 0, Z§:1 w; =1, and 0 = {(wj,uj,Ej)}é?:l.

Let ’y-(m) be the estimate at the mth iteration of the probability that

1
the ith sample was generated by the jth Gaussian component, that is,

(m) (m) 2(m)
m . - wio(yilpy )
7 & P(Zi = ]y, 00) = — o

S ™y | ™, 5™

1,
Because the samples are i.i.d., we can apply Proposition 1.1,

which satisfies Zle fy(m) =1.

Qi(0]16™)
= Ey, 1y 00m logp(yi, Zi | 0)]

k
=" P(Zi|yi,0"™)logp(yi, Zi|0)
7j=1

k
=57 log(wié(yi | 1y, 55))
j=1

K
m 1 1 _
=D :71'(]‘ : (Ingj — 5 logl¥;] — 5 (vi — ) 5 (i — Mj)) +C,
j=1
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where C is a constant that does not depend on 6 and can thus be

dropped without affecting the M-step. Then from Proposition 1.1,

Q(o10™))

n k
m 1 1 _
=3 (10gwj — 5 loglB;| — 5 (v — 1) "S5 (wi - uj)> 7

i=1 j=1

which completes the E-step. For notational simplicity, denote the total

membership weight of the jth Gaussian as

(m) & N~ (m)
DL
i=1

Then we can rewrite Q(6|0(™) as

k
m 1
Q610™) = Y- n" (1ogu; - 2logrzj\)

j=1

- 72271] = 1) TE (yi — 1j)-

i=1j=1

The M-step is to solve
max}}mize QO6)
k
subject to ij =1, w; >0, j=1,...k,

j=1
ZjFO, i=1,...,k,

where X; = 0 means that X; is positive definite.

(3.7)

From (3.6), one sees that we can independently maximize the

Q-function with respect to the weights, and this requires maximizing
the term Zj n&m) logw;. This is the same problem we faced in Sec-

tion 3.1, given in (3.2), and the solution is the same:

(m)
n. N
T - =1,k

7 - )
Ell n
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The optimal j; and ¥; can be found by setting the corresponding
derivatives to zero.? To solve for the means, we let

oQ(0]6tm = m m
0= Q(a‘ : ) =X ! (Z’Yi(j )yi - ng )Mj> )
H] i=1

which yields
+1)

To solve for covariance matrices, we let®
2Q(010™)
0%;

_ L mQlogl%y| 12":7@8((3/1- — 1) TS (s — )
277 9y 9 L i %,

0=

=1
n
m)271+12 (m)zfl( o )( L ')Tzfl
j 9 Yij 5 \Yi — Hg)\Yi — Hy I
=1
and thus

2 (m+1) Z%J yi — m+1))(yi B M§m+1))T7

for j=1,... k.
We summarize the whole procedure in Table 3.1.

3.2.3 Initialization

It is not uncommon to initialize EM clustering by randomly choosing
k of the n samples and making these the first estimates of the clus-
ter means, setting the first estimate of the covariances to be identity
matrices, and the first guess at the weights w; = --- = wy, = 1/k.

4Note that the problem in (3.7) is a convex optimization problem, so setting the derivatives
to zero corresponds to the optimal means and covariances. For details on how to analyze
convexity and optimality conditions, see for example [5].

5See [47] for matrix derivatives.
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Table 3.1. EM algorithm for estimating GMM parameters.

© O 5O 51k, and com-

1. Initialization: Choose initial estimates w;
pute the initial 10g—likelihood

(0 0 0
(@ = 137 tog (s w (w1, =),
2. E-step: For j =1,... k, compute
my _ wS™ ey | pi™ 26™) 1
L Ay S € BV O B ) N L L
iy wy ey ley BT
and
(m)
J =2 1%
3. M-step: For j =1,...,k, compute the new estimates
(m+1) (M)
(m+1) Vi
K (m) Zz 171] yn

+1 +1 +1
E(m ) = (m) Zz 171] g( ﬂ§m ))(y (m )) s
4. Convergence check: Compute the new log-likelihood
+1 +1 +1
(D) = 1570 og (g wi™ ey | ufm T, 2ImEY))).
Return to Step 2 if [¢(™+1) — ¢(™)| > § for a preset threshold §; otherwise
end the algorithm.

Common wisdom is that initializing by first doing a cheaper
clustering will generally produce more desirable results. In particular,
the k-means algorithm (see Section 1.2) is often used to find a good
initialization for EM clustering. A common approach is to use the k-
means clustering to provide a first estimate of 71(]) = P( =j|Yi=w),

where for the ith sample, 'yi(j) =1 for only the one Gaussian that k-
means assigns sample y; to and 7;; = 0 for all the other components
for that y;; then start EM at the M-step based on this %.(]Q). In the
example presented in Section 3.2.4, however, we simply initialize EM
by using the cluster means from k-means as the estimated EM means
and setting the covariance estimates to be identity matrices and the

weights wy = -+ = wg, = 1/k; then start EM at the E-step.

3.2.4 An Example of GMM Fitting
Consider a two-component GMM in R? with the following parameters

0 —2 3 0 1 0
M1 |:4:| ) U2 |: 0 :| ) 1 |:0 %:| ) 2 |:0 2:| )

and relative weights w; = 0.6 and wy = 0.4. Its density is shown in
Figure 3.2, which also shows 1000 samples randomly drawn from this



True GMM density
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Initial Guess
m=0, L(0O=-3.9756
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2nd EM estimate
m=2, L(2)= —3.6446
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Fig. 3.2 GMM fitting example.
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1000 i.i.d. samples

-10 -5 0 5 10
1st EM estimate
m=1, L= —3.6492

-10 5 0 5 10
3rd EM estimate
m=3, L3)=—-3.6438

-10 -5 0 5 10
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distribution; samples from the first and second components are marked
red and blue, respectively.

We ran the k-means algorithm on the 1000 samples and used the
centroids of the two k-means clusters as the initial estimates of the
means:

(0) _ 10.0823 ) _ |—2.0706
L 713.9189]" 2 — |—0.2327|"

Also, we let wgo) = w;o) = 0.5 and Ego) = Ego) = I, where I denotes
the 2 x 2 identity matrix. The density corresponding to these initial
estimates is shown in Figure 3.2. We set § = 1073, and in this example,
the EM algorithm only needs three iterations to converge. Figure 3.2
shows the estimated density at each iteration. The final estimates are

w§3) — 0.5966, Mgg) _ [0.0806} 7 $(3) _ [2.7452 0.0568] ’

3.9445 L 710.0568 0.4821

—2.0181] 3) [ 0.8750 —0.0153}

®) _ 04034, u = =
wy : ) _0.1740 2 —0.0153 1.7935

3.2.5 Singularity Problem in Using EM for GMM Fitting

The EM algorithm does well in the previous example, but sometimes
it fails by approaching singularities of the log-likelihood function, espe-
cially when the number of observations n is not large relative to the
number of Gaussian components k. This is an inherent problem with
applying maximum likelihood estimation to GMMs due to the fact that
the log-likelihood function ¢(f) is not bounded above, as we illustrate
in the following example. First, let u3 =31, 1 = 02y and 0 < wy < 1.
Then the log-likelihood is

n k
£(0) :Zlog ij¢(yi\ﬂj,2j)
=1 =1

k n k
=log [ > wio(yi|p;,S;) | + > log [ > wig(yi|p;,5;)
=2 j=1

=1



3.3 Estimating a Constrained GMM 255

k

> log(wid(y1 |11, %1)) + D log [ D wid(yil s, 25)
=2 Jj=2
n k
= log(w1¢(y1 |y1,071a)) + D log [ D w;d(yil s, ;)
i—2 =2
d d n k
= logwn — 7 log(2m) — §1Og0% +> log [ > wie(yil s, %))
i—2 =2

So far, everything seems fine. But if we let 0? — 0 and keep everything
else fixed, then the above lower bound of ¢(6) diverges to infinity, and
thus £(f) — oco. So for a GMM, maximizing the likelihood is actually
an ill-posed problem.

This problem most often arises in practice with EM when the num-
ber of components k is too large compared to the number of obser-
vations n, but it can also occur if one sample is relatively far from
the bulk of the other samples. In both cases, a single Gaussian model
becomes predominantly associated with one observation, and as the
iterations progress, that Gaussian model shrinks its variance around
that one single observation. More generally, this problem can arise if
the samples predominantly assigned to a component Gaussian do not
span the space, so that the estimated covariance of that Gaussian is
not of full rank.

In order to avoid such singularities when applying the EM algo-
rithm, one can resort to ad hoc techniques such as re-initializing the
algorithm after detecting that one component is “collapsing” onto a
data sample; one can also adopt the Bayesian approach (discussed in
Section 1.3, and illustrated in the next subsection) as a more principled
way to deal with this problem.

3.3 Estimating a Constrained GMM

In practice, one may wish to constrain the parameters of the GMM,
either to incorporte prior information about what is being modeled, or
to regularize the GMM to avoid the degenerate solutions as discussed
in Section 3.2.5. In this subsection, we illustrate learning a restricted
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GMM with a recent example by Chen and Krumm [10], where the set
of restrictions was designed to model the GPS traces of cars driving
along city streets. In addition to hard constraints, this example also
uses the MAP variant of EM (see Section 1.3) to incorporate other
prior information about the parameters through a prior distribution,
and to ensure robust estimation.

The goal is to model the probability density of cars within the road
based on observed GPS signals recorded in the cars. Then the proba-
bility model can be used to analyze multi-lane structure, especially at
intersections, for automated mapping algorithms. For a given perpen-
dicular cross-section of the road, the observed GPS traces were modeled
as being generated i.i.d. from a one-dimensional GMM, where k, the
number of Gaussian components, corresponds to the number of lanes,
the weights w1, ..., wy correspond to the relative traffic volume in each
lane, and the Gaussian means p1,...,u; are used to model the center
of each lane.

Restrictions to the GMM were added based on prior knowledge of
roads. First, the widths of the lanes were expected to be approximately
the same. This observation can be translated into the constraint that
;'s are equally spaced, that is,

pi=p+ (G —1DAp, j=1,...k, (3.8)
where Ay is the change between two adjacent p;’s, and p is the mean
of either the leftmost or rightmost component along the sampling line,
depending on the sign of Apu. Second, assume that the causes of the
spread of the GPS traces are approximately the same for all the lanes,
such that all the Gaussian components are restricted to have the same
variance:

ol =0, j=1,... .k (3.9)

In fact, forcing all the variances to be the same is a common restriction
in learning a GMM even when there is no application-specific reason
to assume it is true, but if the dimensionality of the observed data y;
is high compared to the number of samples n, restricting the Gaus-
sian components to have the same covariance reduces the number of
free variables to estimate, and this can reduce training time and lower
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estimation error by reducing the estimation variance (see Chapter 2
of Hastie et al. [21] for a good discussion of estimation variance and
bias). Combining (3.8) and (3.9) produces the following density for this
one-dimensional restricted GMM:

b 1 i — = (5 — DAp)?
p(@/z’):;wjmexp<—(y s 2(;2 )M))

For robust estimation and to incorporate additional prior informa-

tion, we use the MAP variant of the EM algorithm (see Section 1.3).
2

For the shared variance o

2
2 v
~ Inv-G a9’ o |
g nv amma(2 2>

, We use an inverse gamma prior:

which is a mathematically convenient choice because it serves as a con-
jugate prior of the variance of a Gaussian distribution. For the weights
wi,...,w; and for the parameter ;, we use uniform priors.> However,

for Ap we use a normal prior conditioned on o?:

o2
AM|UQNN<77,H>.

Then the prior distribution of the parameters has density:

v+3 2 K a2
p(f) < (0%) % exp (g * (Qig n) >

(3.10)

Now we show how to derive the MAP EM steps for learning the set
of parameters 6 = (w1,...,wx, 1, Ap,02) for this restricted GMM. For
the E-step, let

oy WiVl ™ 0m)

Yk ™ ™ o)

fori=1,....,nand j=1,...,k, where

P = ) 4 (G = DA, G =1,k

6 The uniform prior on p is an improper prior since pu € R.



258  Learning Mixtures

Let
— (m)
=2
=1

for j =1,...,k. The Q-function is
n k
Q(0]6™) ZZ% log(w;p(xi |+ (j — 1)Ap,0))

ntm
&

Il
M?v I

logw; — log 27 — glog o?
1

20_2 ZZW@] i (] - 1)A:U‘)
=1 j=1

With (3.10) and the above Q-function, the MAP EM M-step is:

.
Il

9(m+1)

= argmax(Q(0)| 0™ + logp(0)),

k
3 2 A — n)2
= argmgmx (anm) logw; — M10g02 st K(Ap —n)

2 202

20-2 ZZ’%] - M (] - 1)A:U')2 + C>7

=1 j=1
where C' is a constant that does not depend on 6. The weights that
solve the above M-step are the same as the standard GMM:
(m)
(mt1) _ "
w =

J

To solve the M-step for p and Au, we let

;L(Qw,g(m)) + logp(6)) =0, (3.11)
and

52 (QUO167) +logp(6) 0. (312)
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Combining (3.11) and (3.12) produces the linear system of equations

A [ A“M] =, (3.13)

for the matrix A = [aij]QXQ with

a1 =1,

m+1)

aj2 =ag = E le Js
(m+1)

ZwJH *’

and b= [b, by]  with

=1 5=2
To confirm that (3.13) has a unique solution, consider

2 2

k—
(m+1) . . (m+1) (m+1)
ZwJH Z \/wj+1 \/wj+1
‘7:

k— k—1

(m+1) (m+1) .2
< Zwa‘ﬂ dwih]
=1 =1
(follows from the Cauchy—Schwarz inequality)

k—
(follows from 0 < Z (m+1)
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m+1
< E w]+1 *,

(follows from & > 0).

Hence
2

(m+1 2 4 K (m+1
det A = arraz — a1za21 = E w3+1 'j § :w9+1 i | >0,
7=1

which confirms that (3.13) has a unique solution. Thus the new esti-

mates are:
m+ D) aeby — a12bo
detA
and
ba — agb
Ay (mt1) — 1102 2101
a det A
Lastly, to solve for o2, we let
0
~5(Q(8]01™) + logp(9)) =0,

which yields

oY = \/§2 + (Ao — )2+ 3 S (- )

n+v+3

To illustrate the difference between the standard GMM and the
restricted GMM, consider the following example. A standard GMM
and the above restricted GMM were fit to 137 GPS traces with k& = 2
Gaussian components. The standard GMM estimated relative weights
of Wy = 0.7, wy = 0.3, traffic lanes centered at i1 = 4.7 and jio = 8.2,
and variances within each lane of 62 = 4.5, and 63 = 0.6. The restricted
GMM estimated more balanced relative weights of w; = 0.4, wy = 0.6,
greater separation between the lane centers with (7 = 3.5, fio = 7.5,
and (by constraint) the same in-lane variance 67 = 63 = 2.1. Because
of the restrictions it was faster to train the restricted GMM: its EM
algorithm converged after 17 iterations, while the EM algorithm for the
standard GMM parameter estimation required 136 iterations to reach
the same stopping condition.
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More EM Examples

We derive three more examples of EM. First, we learn a standard HMM.
Second, we consider an example problem from the general class of signal
superposition problems. Third, we show how to estimate the parameter
for a compound Dirichlet distribution.

4.1 Learning a Hidden Markov Model

An HMM is used to model random sequences. Baum et al. and Welch
derived the EM algorithm for this problem in the 1960s [4, 61] before
EM was formalized as a general technique by Dempster et al. [11], and
thus EM applied to learning an HMM is also called the Baum—Welch
algorithm.

4.1.1 HMM Setup

Suppose you observe one sequence y of length T' that is a realization
of a random sequence Y such that

y=1[y v .. w .. yr). (4.1)

261
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For example, 3 might be the cell strength of your cell phone at the
beginning of the tth hour of the day, or y might be the tth word in a
movie, or y; could be the tth base (A, T, G, C) in a DNA sequence.

Note we have been using ¢ or j to index our samples in the other EM
examples, but in (4.1) we change the index to ¢ to emphasize that in this
case the situation is a little different. We usually have n i.i.d. samples,
and for an HMM one could have n observed sequences that are inde-
pendent realizations of a random sequence. However, you only need one
observed sequence to learn an HMM (if you have multiple independent
sequences, use Proposition 1.1 to sum the @Q-function derived below).
For simplicity, we assume only one observed sequence. We notate its
components with the index t as in (4.1).

The HMM assumes there exists some other corresponding hidden
sequence called the state sequence z:

Z:[zl 29 ... 2t ... ZT]v

and that given the sequence z, the elements of Y are conditionally inde-
pendent. For the cell phone strength example, the hidden state might
be the distance to the nearest cell tower. For the word example, the z;
might specify which actor in the movie spoke the utterance ;. For
phoneme recognition, which is usually the first step of speech recogni-
tion, it is common to process the original acoustic time signal into a
time-indexed sequence of MFCC (Mel-frequency cepstral coefficients)
feature vectors Y; € R?, and then model the sequence of MFCC feature
vectors for each phoneme as a realization of an HMM, where the hid-
den states are the more detailed sub-phone units. For simplicity of the
derivations, we restrict ourselves to the case where the hidden states
can take on one of G fixed values such that Z; € {1,2,...,G}, though
this is not a restriction of HMMs.

An HMM makes two assumptions. First, that the conditional prob-
ability distribution of each hidden state Z; given all its previous states
is equal to its conditional probability distribution given only its imme-
diately previous state z;—1 (the Markov property):

P(Zy =gl zi—1,2—2,---,21) = D(Zt = g| 2-1)- (4.2)
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Second, the observation Y; at time ¢ does not depend on other obser-

vations nor other states given the hidden state z; at time ¢:

p(Yt = yt|z7y17y27’"7yt—17yt+17"‘7yT) :p(yt‘zt)‘

(4.3)

The HMM has the following parameters:

(1)
(2)

3)

An initial probability distribution over the G possible hidden
states': 7 = [7r1 Wg]T, where 7, = p(Z1 = g).
A hidden-state transition probability? matrix P € R*¢ that
specifies the probability of transitioning from state g to state
h: Pgp=p(Z="h|Zi—1 = g).

The probability distribution of observations ¥ € R% given
hidden state g; we parameterize this with parameter set b,
such that p(Y; =y|Z; = g) = p(y|by). For example, in mod-
eling a DNA sequence, the parameter b, is the pmf that
specifies the probabilities of A, T, G and C being observed
if the hidden state is Z; = g. In modeling speech sequences,
it is common to assume that given a particular hidden state,
an observed MFCC feature vector Y; € R? is drawn from a
GMM whose parameters depend on the hidden state. In this
case the parameter set b, for the gth hidden state includes
all the parameters for the corresponding GMM, so b, =
{(wgj, 1145, Egj)}fgzl, where kg4 is the number of Gaussian com-
ponents in the GMM corresponding to the gth hidden state.

Thus for an HMM the complete set of parameters to estimate is 6 =
{m,P,b}, where b= {bg}ngl. Next, we describe EM for the HMM; for

more introductory material about HMMs, see [49].

4.1.2 Estimating the Transition Probability Matrix P

The M-steps for m, P and b are each independent of the other

parameters to be estimated, though each M-step depends on the

LHMMs with continuous state spaces analogously have a corresponding initial probability

density 7.

2We assume a time-homogenous HMM such that the transition probability matrix does not
depend on t. HMMs with continuous state spaces analogously have a conditional transition

density P.
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complete set of last-iteration parameter estimates #(™. We will show
that the M-step for P has a closed-form solution, though it will take a
few steps:

p(m+1) — argmax Eyy.00m [logp(y, Z [ 6)]

= argmaxzp 14,00 logp(y, z| 7, P,b)
— 1 P
argmax Z:p 2]y,00™) log(p(y | 2,b)p(z | T, P))

= (M1 P
argmgxzsz(ﬂyﬁ )logp(z|m,P)

(drop p(y|z,b) since it does not depend on P)

—argmaXZp ly,6¢ 108;((1—[10 2|21, P )P(zl|7r)>

(apply the chain rule and the Markov property)

—argmapr (z]y,0™)log (Hp 2| ze—1, ))

t=2
(drop p(z1 | ) since it does not depend on P)

—argmapr |5,67)log <HPzt )

t=2

—argmaxzp |y,60™)log HHPC"h ,

g=1h=1

where (4n(2) is the number of transitions from state g to state h in z.
With the notation (4n(2), the above equation can be continued as
follows,

G G
PO = argmax Z p(z1y,0"™) > " (on(2)logPy

g=1h=1

= argmax ZZ (Zp |y, Cgh( )) logPg p.

g=1h=1 z
Given that P must be a right stochastic matrix, that is, for g = 1,...,G,
Zgzl P,,=1and P,; >0, h=1,...,G, we can solve the last line of
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the above equation for each row of P independently:

Pg?.q’+ = argmaxz <Zp |y, 6 Cgh( )) logPy 1, (4.4)
91

where P, . denotes the gth row of P. To solve (4.4), apply Gibbs’
inequality as given in (3.4) with
dh = Pg,h7
3. (2 1y,0"™) e (2)
G Y
Do 22 (2 ]y, 00 Ca(2)

and conclude that the maximum of (4.4) must occur when Gibbs’

Ph =

inequality holds with equality, that is, when ¢ = pj, for all h, and thus

P(m+1) — Zzp(z | y>0(m))<gh(z) )
o S (2|, 00 i (2)

At first glance, (4.5) looks like an awful state of affairs — it requires
iterating through all possible G7 sequences of z! Luckily, there is
another way to compute (4.5). Let 1;4—4) be a random indicator that
is 1 if the random variable A = a and 0 otherwise; 17 4—g) is a Bernoulli

(4.5)

random variable, and thus its expectation is Ea[l{s—q] =p(A = a).
To simplify (4.5), rewrite its numerator as an expectation:

Zp 19,00 (2) = Egpy g [Cn(2))]
T
- EZ|y79(m) [Z 1{Zt1=97Zt=h}]

T

p(Zi1 = g, % = h|y,00™). (4.6)

I
Mﬂ i

~
[|
N

Voilal We have converted the numerator of (4.5) into merely a sum
over the sequence! But alas, we still have to compute p(Z;_1 = ¢,7Z; =
h|y,6(™)). This will not hurt too much — just a little recursion. Using
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Bayes’ rule:

p(Zi1 =g, % = h|y,00™)
p(Zi1=g,Z = h,y|0™)
p(y |60
_ p(Zi1=9,Zy = h,y|0™)
Y Zszlp(Zt—l =i,Z; = j,y|0(™)’

so really one only needs to be able to compute:

p(Zir=9,Zi=hY =[y1 ... y1 Y ... yT]|9(m))v

which, by the chain rule, can be expanded into the product of the
following four terms:

(1) p(Zi—1=g.y1,- - 1 |00™),

(2) p(Zt =h[Zi— —gvyly-'-7yt—179(m))v

(3) p(yt+17 ayT’Zt = hathl = gayla-"yytfhe(m))a
(4) p(ye| Ze = h, Zi—1 = g, 91, -, Ye—1, Yes1,y7,00™).

Using the Markov property and conditional independence property of
the HMM model, the above four terms can be simplified respectively
into the following terms:

(1) p(Zi—1 = g,y1,-- - yi—1|0™), called the forward probability
and denoted by ay_nl) (9) — we will explain how to compute
it below;

(2) p(Z = h|Zi—y = g,0(™), which is P"});

(3) p(Yts1s---syr | Ze = h,G(m)), called the backward probability
and denoted by 3, (h) — we will explain how to compute
it below;

(4) plye| Zs = h,0™) = p(yq | bgm)), which we assume is com-
putable.

The forward probability ozy_n% (g) can be computed recursively:

o™ (9) = p(ye—r |B§" (Za > (4.7)
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where
M1y = 7™ py 8™, 1=1,...,G.

The backward probability ﬂt(m)(h) can also be computed recursively:

Zﬂt hl p Z/t+1\b ) (4.8)

where
M@y =1, 1=1,...,G.

The recursive computation of the o and [ terms is referred to as the
forward-backward algorithm.

To summarize this subsection: (i) we simplified the M-step for P
to get PSZH) as given by (4.5); (ii) we showed that each sum over z
in (4.5) could be expressed as a sum over t as given by (4.6); (iii) each
term in the sum of (4.6) can be expressed as the product of the four
terms listed above; (iv) two of those four terms are straightforward
to compute from #(™, and the remaining two terms can be computed
recursively as given by (4.7) and (4.8).

4.1.3 Estimating the Initial Distribution =
The M-step for 7 is:
(" = argmax Eyy, oo [logp(y, Z |9)]

= argmax Zp (z]y,0")logp(y, z| 7, P,b)
= argmax Zp (2],6"™)log(p(y| 2, b)p(z| 7, P))

—argmaxzp |y,00™))logp(z |7, P)

(drop p(y|z,b) since it does not depend on )

—argmaxzp (z]y,6"™))log (71'21HP7€ u)

t=2
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=argmax ) _p(z]y,0"")log,

G

= argmax Zp(Zl =g] y,H(m))logﬂg. (4.9)
g=1

Recall that chzl g = 1, s0 to solve (4.9), we can apply Gibbs’ inequal-
ity as given in (3.4) with

g = Tg,
by = p(Zl = g|y’0(m))7

and conclude that the maximum of (4.9) must occur when Gibbs’
inequality holds with equality, that is, when g, = p4 for all g, and thus

a{mth) = =gly,00™) (4.10)

=p(Z
G

=S (2 = 9.2 = h|y,6™), (4.11)
h=1

where we expanded (4.10) into (4.11), because Section 4.1.2 has detailed
how to compute the term p(Z; = g,Z> = h| y,Q(m)).

4.1.4 Estimating the State-Conditional Parameters b

The HMM specifies a probability model for an observation given a par-
ticular hidden state: p(Y; = y;|2:), which we have assumed is param-
eterized by state-conditional parameters b. The model p(Y: = y¢|2t)
could be anything: a Laplace distribution, a GMM, even another
HMM!? Here we illustrate how to use EM to learn an HMM with the
common choice that y; takes on one of a finite set of V values, and
p(Y: = yi|z¢) is simply a pmf over the V' values such that the G x V
parameter set b has components:

bpg=pYi=v|Z;=g), v=1,...V, g=1,...,G.

3In fact, given certain initial conditions for our universe, Jorge Luis Borges writes a short
story where everything is generated by an HMM whose state-conditional models are them-
selves each HMMs, whose state-conditional models are also HMMs, etc., up to the 11th
HMM which has, as one of its state-conditional models, the very first HMM.
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The M-step for b is:

b(m+1) = argm?x Ez‘yﬂ(m) [logp(y,Z | 9)]

— G0N P.b
argml?x Zz:p(z\y, )ogp(y,z|m,P,b)
= argmax Y _p(z[y,0")log(p(y| 2,b)p(z| 7. P))

= argmax Y _p(z|y,0")logp(y| 2,0)

(drop p(z|m,P) since it does not depend on b)

= argmax ZP |y,00™) long Yi = yi| Zy = 2,b)
t=1

—argmaXZp ly, O(m logHHbm"yz
v=1g=1

where 7y4(y,2) is defined as

Mg (), 2 Zl{yt =v,2t=g}"

We continue the above equation and have

vV G
b(m“)—argmaXZp 11.07)> " “nug(y,2)log b g

v=1g=1

= argmax Z (Z (Zp !y, Uvg(ya )) 10gbv,9> :

We can solve the last line of the above equation independently for the
pmf corresponding to the gth state-conditional model. Again, due to
the constraint ) b, 4, =1, we can apply Gibbs’ inequality as given
n (3.4) with

QU:bvg

2. p(z]y,6" )mg(y, )
S S (=Y, 00 i (y, 2)

Dv =
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and conclude that the maximum must occur when Gibbs’ inequality
holds with equality, that is, when ¢, = p, for all v, and thus

b(m+l) _ Zzp(z | 3/79(m))"7vg(y>z) )
o S S, (2] 9, 00y (y, 2)

Next, we simplify the numerator of (4.12) (the terms in the denomina-

(4.12)

tor can be calculated similarly):

D p(2 15,6 ug(y,2) = Egpy gom 109 (4, 2)]

z
T
= Ez\yﬁ(m) [Z 1{yt=v,Zt=g}]

t=1

I
M=

EZ|3/,9(’") [1{yt=v,Zt=g}]

o~
Il
_

I
[M]=

EZt|y,9(m) [1{yt:U,Zt:g}]

“
Il
—

I
M=

p(Ze=gly,0"™ )1y,

{*
I
—

where the term p(Z; = g|y,6™)) can be expressed as either

G
p(Ze = gly,0") = p(Zi1 = h,Z = g|y,0"™),
h=1
or
G
p(Zi = gly,0™) = ZP(Zt =9, %1 = h|y,0"™),
h=1

and the computation of the term p(Z; = g, Zy41 = h|y,00™) is detailed
in Section 4.1.2.

4.1.5 More on HMM and EM

For further details on HMM, we recommend Rabiner’s tutorial [49] and
the review article by Gales and Young [16], which considers the practi-
cal application of HMMs in depth. The HMM described above has at
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Fig. 4.1 An example set-up with 4 transmitters, and 10 receivers. The problem set-up
assumes the locations of the 10 receivers are known, and that one is given a measurement
of the received power at each receiver, and the goal is to estimate the location of each of
the 4 transmitters.

=

its core a Markov chain. The two-dimensional (and higher-dimensional)
analog of a Markov chain is a Markov random field. Applying EM
to a hidden Markov random field model is significantly more trou-
blesome, but is common in image processing; see [48] for details. See
also: [19, 25, 26, 29, 31, 65].

4.2 Estimating Multiple Transmitter Locations

Consider the problem of estimating the most likely locations 6 =
[91 Gy ... HM] of M transmitters with 6; € R?, where we assume
the transmitters are transmitting in the same band, and that we are
given noisy power measurements y = [yl Y2 ... yN] for N receivers
located in the plane at known locations r = [7'1 ro ... T’N]. This
problem arises in cognitive radio [22], and is an illustrative example
of a general class of problems that can be solved by EM where the
goal is to estimate parameters given superimposed signals (see [12]).
This example has been studied by Nelson and Gupta [42]; we present
a simplified version.

The basic idea is that first we make a guess at where the transmitters
are located: 8(°). Then we use that guess and the measured total power y
at each receiver to compute our best guess of the complete data, which
is how much power each of the receivers picked up from each of the
transmitters. Given the complete data estimate of how much power
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each receiver got from each transmitter, we can independently estimate
where each transmitter is located. That gives us a new guess #(™*1 of
where the transmitters are, and then one iterates.

For simplicity, we assume all transmitters are transmitting one unit
of power, and that the Gaussian measurement noise of the ith transmit-
ter at the jth receiver W;; is known to be zero-mean and have variance
02/M (a zero-mean Gaussian is not a good model for power noise;
an issue we will return to in Section 5.2.3). Let X;; denote the power
sent by the ith transmitter and received by the jth receiver; X;; is
inversely proportional to the squared distance between the transmitter
and receiver plus the Gaussian measurement noise:

1
S+ Wi (4.13)

X, —
Y10 = i3

The observed power y; at the jth receiver is the total power coming
from all the transmitters:

M
yJ: E l‘ij.
i=1

Conditioned on the transmitter locations 6 and given the receiver loca-
tions r, the likelihood of the observed measurements y depends only on
the Gaussian noise:

M 2
1 1
p(y|0) = v -7
=1 2o2<f 2 ||ei—rj|r%)

Thus the log-likelihood (ignoring the terms that do not depend on 0) is

ae):i( Zne —rj||2>2

j=1
Like many problems, this log-likelihood ¢(6) has multiple maxima, and
while we can apply EM, we should keep in mind that EM will only find
a local maximum.

To apply EM, we define the complete data to be the M x N powers
between the ith transmitter and jth receiver, which we formulate as
an MN x 1 vector X = [X11 X12 ... Xuw] [42] Next, consider
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logp(X = x|0(™). From (4.13), this probability is Gaussian because
all the randomness comes from the Gaussian noise, and ignoring scale
factors that will not change the M-step maximization over 6:

M N 1 2
logp(X =x|0) = —ZZ (xij - W) . (4.14)

i=1 j=1

Let R(6) be the M N x 1 vector with components —L— ordered cor-

165 =513

responding to the order in X. Then the log-likelihood in (4.14) can be
expressed as

logp(X = z|0) = —|lx — R(0)]3.

Rather than computing the E-step separately, we directly consider the
M-step. We drop and add 6-independent terms to make things easier:

m+1) __
00" = argmax Ex, gom logp(X |0)]

= argmax By, gom [~ X = R(O)3]

= argmin By, gom [| X — R(0)]2]

= argmin By, gom [(X — R(0))" (X — R())]

= argmin Ex|, yon) (XTX —2R(0)TX + R(O)TR(0)]

6 b

= argrgléiél _2R(9)TEx‘y’0(m) [X] + R(O)TR(Y)

= argmin Ex,, o) (X" Expy gom [X] = 2R(0)" Ex, gom [X]
+ R(O)TR(9)

— argmin|| By, gon [X] ~ RO, (4.15)

Note that above we have massaged the need to compute the
expected log-likelihood Ey|, gom) [logp(X |0)] (that is, the E-step) to
simply computing our current best guess of X, that is, E X[y,00m) [X]. In
order to compute Ey, gom) [X], recall that it is the expectation of the
MN received powers at each of the N receivers from each of the M
transmitters, conditioned on knowing the total power at each receiver y
and a guess of the transmitter locations (™). If we only conditioned on
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6™ then because the noise W;; on each component of the vector X is
independent and zero-mean, Ey,gm) [X] would be R(6™) from (4.13).
However, because of the additional conditioning on y, each component
must be adjusted equally (since W;; is additive and i.i.d.) so that the
sum of our new guesses for the M individual powers for the jth receiver
totals the observed power y; for the jth receiver:

M
m 1 m
Ex, oo [Xij] = Rig (07) + 7 (yj — > Ri(8" ))>- (4.16)
=1

After calculating Ex, gom[X] using (4.16), each iteration’s M-step
given by (4.15) can be decomposed into estimating the ith transmitter’s
location independently for ¢ =1,..., M:

N

(m+1) _ : 1P (a2
02- - argé‘?élk{g . (EXij|y,9(m) [XU] R’U (61)) . (417)

j=1

Note that solving (4.17) is not trivial as the objective function is
not a convex function of 6;. However, by using EM we have reduced
the original non-convex likelihood maximization over 2M variables 6
to iteratively solving M easier two-dimensional optimization problems
specified by (4.17).

4.3 Estimating a Compound Dirichlet Distribution

In this section, we detail another popular example of applying EM with
missing data: using EM to find the maximum likelihood estimate of the
parameter of a compound Dirichlet distribution, which is also referred
to as the Polya distribution. First, we give a brief introduction to the
compound Dirichlet distribution; for a more comprehensive introduc-
tion to the Dirichlet distribution, see [14].

The Dirichlet distribution is commonly used to model random prob-
ability mass functions (pmfs). For example, if someone hands you a
coin, you would not know the coin’s bias, and you could consider it a
random coin, that is, one that has a random pmf over the sample space
of heads and tails. You might have some idea of how likely the coin is
to have different biases — for example, if you pick a 2010 penny off the
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ground you might be fairly certain the coin will be close to a fair coin,
with equal probability of being a little biased toward heads or tails
depending on its wear. This knowledge could be modeled with a beta
distribution, which specifies the distribution over possible biases of a
given coin. The beta distribution is a model for the distribution of a
random pmf if there are only two events, and the Dirichlet distribution
is a generalization for modeling the distribution of a random pmf over
any finite number of events.* For example, a six-sided die that you pick
up at a casino can be modeled as a random pmf over six events using
the Dirichlet distribution.

The Dirichlet distribution has one vector parameter: o € Ri. If all
the d components of a are greater than 1, the Dirichlet distribution
is unimodal over the probability simplex. If all the components of «
are less than 1, the Dirichlet distribution has peaks at the vertices of
the probability simplex. Given a random pmf V' ~ Dir(«), its expected
pmf E[V] is the normalization of the parameter «, that is, the jth
component of the mean pmf is (E[V]); = oj/ag where og = Zizl Q.

Given sample pmfs known to be drawn i.i.d. from a Dirichlet dis-
tribution, one could estimate a using maximum likelihood estimation
for the underlying Dirichlet. More often in practice, and an interesting
example of EM, is instead the case that the observed data are i.i.d. sam-
ples that have been drawn from pmfs that have been drawn i.i.d. from
a Dirichlet distribution:

i
pmf z; —= samples from z;

iid.
Dir(a) iia. pmfze —= samples from 2o

iid.
pmf z, —— samples from z,

For example, we could model the weather each day in April in Paris
as an event from the sample space {rainy, cloudy, sunny}, and assume
that the daily weather is a realization of a daily weather pmf z;, and

4 Here we only deal with the Dirichlet distribution which assumes the number of events is
finite, but the Dirichlet distribution has a more general form called the Dirichlet process,
which is a measure over measures over infinite sample spaces.
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that each daily weather pmf z; is drawn i.i.d. from some Dirichlet distri-
bution Dir(«) over possible weather pmfs. Then at the end of April we
would have observed 30 samples of the weather, and we could attempt
to find the maximum likelihood estimate of the parameter a for the
Dirichlet that generated the weather pmfs that generated the 30 days
of observed weather. In this example, we only generated one sample
from each pmf, but in general we may have many samples known to be
drawn from the ith pmf, and then the corresponding observed data y;
is taken to be the empirical histogram over the sample space:

Lid. t .
pmf z; —= samples from z; —— histogram v,

ii.d. t .
iid. pmfzo == samples from zo ~— histogram ys

Dir(a) —<

iid. t .
pmf z, —= samples from 2z, ~—— histogram v,

The distribution of ii.d. samples y drawn from pmfs drawn
i.i.d. from a Dirichlet distribution is the compound Dirichlet distri-
bution, also called the multivariate Pélya distribution. Let the given
data y be an n x d matrix of n sample histograms, each over d pos-
sible events, such that the ith row vector y; is the ith histogram for
i=1,...,n, and y;; is the number of times we have observed the jth
event from samples drawn from the 7th pmf z;, where z;; denotes the
probability of observing the jth event given the ith pmf. Namely, y;
has a multinomial distribution with parameter z; such that

d ..)l d
p(yi| z) = (221% szy;j~
[[=yit o
Let z; be a realization of a random pmf Z; € S, where S is the (d — 1)-
dimensional probability simplex such that Z‘j:l Zij =1 and Z;; >0,
j=1,...,d. The random pmf Z; is assumed to have a Dirichlet distri-
bution with parameter « such that

r (Z;l:l O‘j) d

i—1
p(Zi = zila) = —5 Hz% . (4.18)
Hj=1r(04j) j=1 N
Then, if z1,..., 2, were drawn i.i.d. from a Dirichlet with parameter «,

the probability of seeing all the n corresponding histograms yi,...,yy
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is the following compound Dirichlet distribution (also called the multi-
variate Pdlya distribution):

sl =1 /S p(yi | 2)p (21| ) dz

(St (Sn) i,
= (It (T g ) Js5 Z

(2 )'T (0 ) TS Ty + wiy)
(H}Ll yz‘j!) (ngl F(Oéj)) r (Zle (o + yz‘j)) .
Given y, we describe how to use EM to find the maximum likelihood

of the parameter a.. However, neither the likelihood p(y|«) nor its log-
likelihood is concave, and EM is not guaranteed to find the global

)

-1

n
=1

Jj=1

maximum likelihood solution.

To apply the EM method here, consider the missing data to be the
pmfs {z;}7" | that generated the observed data y such that the complete
datais z = (y,2), z = {2z }]~,. We will search for the parameter o that
maximizes that the expected log-likelihood of x. This use of EM fits the
missing data paradigm described in Section 1.4.1, and we can use (1.5)
to express the @Q-function. We also use the assumption that Z; are
independent. Then, the M-step is:

(m+1)

n
= arg max Z EZi\yi,a(W logp(yi, Zi | )]
a€RY i1

o

= arg né%};; ZEZi\yi,a“”) [log(p(yi | Zi,a)p(Zi| )]
ARt =1

= arg max ZEZi\yna(m) log(p(yi| Zi)p(Zi| )]

d
acRL i

n
= arg max ZEZi\yi,a“") [logp(Zi|a)]. (4.19)
acRq T
Note that the @-function given in (4.19) is concave because logp(z; | @)
is concave by a theorem of Ronning [54], and (4.19) is a finite integration
of such concave functions and hence also concave.
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Applying (4.18) to (4.19) and noting that the first two terms can
be pulled out of the expectation, the M-step becomes:

o™t = arg max nlog (1_[5(()[(]))

aER j=1 F(Oéj)
n d
+ZEZi|yi,a(m) Z(O&j —1)log Z;i; | - (4.20)
i=1 j=1

Since expectation is linear, the second term on the right-hand side
of (4.20) can be written as

n d

D> (a5 - 1)/810g(2z‘j)p(2i!yi,a(m))dzi, (4.21)

i=1j=1

where the probability p(z;|yi, ™) is in fact itself a Dirichlet distri-
bution because the Dirichlet distribution is a conjugate prior for the
multinomial distribution. To be explicit,

o o(m)
o myy _ P(iszi|al™)
P\Zi | Yi, =
(ail ) p(yilal™)
p(yi| 2i)p(zi | ™)
(yi|04m)

Y(yiro H lj

.7:

(where v(ys, a( )} is a normalizer independent of z;)

(m)
1J+Oé —1
Y(yi, o | |

which is a Dirichlet distribution with parameter y; + a(™)_ Thus, the
integral in (4.21) is the expected log of the jth component of a pmf
drawn from a Dirichlet with parameter y; + o).

To compute this expected log, we consider the general case where
V' ~ Dir(«), and derive EflogV}], j = 1,...,d. To that end, it is useful to
recall that the general form of a distribution in the exponential family
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with parameter « is

p(v]a) = h(v)exp(n(a) - T(v) — A(a)),

where - denotes the standard inner product, v € R", a € R®, h: R" —
R, n7:R® = R* (called the natural parameter), T:R" — RF (called
the sufficient statistic of the distribution), A:R* — R (called the
normalization factor), and r,s,k € N. The Dirichlet distribution is
a member of the exponential family with r=s=k=4d, h(v) =1,
n(a) =a — 1 (where 1 is a vector of ones), T'(v) =logv, and A(«a) =
22’1:1 logT'(cj) — logI'(av), that is, the Dirichlet density can be written
as

d
I'a ai—1
p(vle) = — O[T

[T5=1T(a;) j=1 ’
d

d
= exp Z(aj — 1)logv; — Zlogf(aj) — logT'(ayp)
j=1 j=1

We will need the following identity for the Dirichlet:
1= /p(v]a)dv _ / e(a—1)~logv—A(o¢)dv _ e—A(a) / e(a—1)~logvdv’
S S S
and therefore,
el — / ela=1)logv gy, (4.22)
S

We can produce ElogVj] by starting with the moment-generating
function M:R? — R for the sufficient statistics T'(v) = logv given a:

M(u) = By[e* V)]
—/e“'T(”)p(v\a)dv
S
_ / eu'logve(a—l)dogv—A(a)dv
S

:eA(a)/e(qual)-logvdU
S

_ eA(u—i—oc)—A(a) 7
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where the last line follows from (4.22). Then the partial derivative of
M (u) with regard to u; is

0 _ 9 peut(v)
M(w) = 5 Byfe V) (4.23)

9 A(wra)-Aa)
Ou;

_ (eA(u+a)—A(a))

0A(u + a)

. 4.24
5 (4.24)

But we can interchange the expectation and the differentiation of (4.23)
(by Theorem 2.27 of [13]), so we also have
0 0
— M = F Y wT(V)
8Uj (u) v |:8’U,J ©
= Ev|[(logV;)e'eV]. (4.25)

Setting u = 0 in the equivalent (4.25) and (4.24) produces the expected
log of V; that we need:

0A(u + a)

J

where v is the digamma function:

0(@) & L logT(a)

Finally, we see that the integral in (4.21), which is the expected log
of the jth component of a pmf drawn from a Dirichlet with parameter
yi +a™ s

d
B, yoatm 108 Zij] = b (yis + ™) = (Z vit ¥ aém)) '
=1

In summary, EM repeatedly solves:

™) = arg max g(a), (4.26)

d
aE]RJr
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where

d
g(a) =nlogl(ag) — nZlogF(aj)
j=1
n d

d
#3531 (vt = o (S o) ).
=1

i=1 j=1

In order to execute the M-step, one can solve (4.26) anyway one
likes, but a standard approach is to apply Newton’s method [5], for
which we need the gradient and Hessian matrix of g(«). By definition
of the digamma function 1, the gradient of g(«) is

Vg(a) = [pi(a) ... pa(@)

where for j =1,...,d,

pj(a) = nY(ag) — n(aj)
" d
+ Z <¢(yij + Oég-m)) - <Zyil + a(()m))) :
i=1 =1

Then using the definition of the trigamma function,

]T

9

d
i (z) = %1#(1‘),
the Hessian matrix of g(a) is

H(a) = ntpy (ap)11T — ndiag(yr (o), .., ¥1(aq)),

where 1 is a vector of ones so that 11T is a d x d matrix of ones,
and diag(-) is a matrix with its argument on the diagonal and zeros
elsewhere.

Newton’s method is an iterative algorithm, and here for solv-
ing (4.26), each iteration takes the following update step:

o+ a—tH a)Vg(a),

where t > 0 is the step size. The geometric interpretation of the above
update step can be found in [5]. Note that here inverting H(«) is not
as problematic as it might appear because this Hessian matrix has a
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very nice structure that simplifies the inversion using the Woodbury
identity [47]. Let £ € R? have jth component:

1
= P1(ay)’
for j=1,...,d, and let
1

then
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EM Variants

EM produces convenient solutions for many simple problems, but,

(1) EM only finds stationary points of the likelihood function;

(2) the computations required may not be computationally
tractable;

(3) the convergence may be too slow;

(4) the maximum likelihood estimate may not be the desired
output.

Many variants of EM exist to address subsets of these issues. We have
already touched on two variants of EM: MAP EM in Section 1.3, and
the point-estimate EM described in Section 1.2. In this section we
describe other variants that may be useful, categorized by which of
the four above problems the variant best addresses.

5.1 EM May Not Find the Global Optimum

EM is a handy tool, but if the log-likelihood is not concave, one run
of EM cannot be trusted to find the optimal solution. Non-concavity
is very common in practical problems; for example, the log-likelihoods
for the GMM and HMM are usually not concave.

283
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The simplest approach to dealing with non-concavity is to run
EM with multiple initializations. For non-concave likelihood functions,
it might be helpful to use EM in conjunction with a global opti-
mizer designed to explore the space more efficiently: the global opti-
mizer provides the exploration strategy while EM does the actual local
searches. For more on state-of-the-art global optimization, see for exam-
ple [1, 23, 24, 28, 38, 46].

5.2 EM May Not Simplify the Computation

We have seen that instead of solving the potentially difficult problem
of directly maximizing ¢(6), the EM algorithm chooses to repeatedly
maximize Q(A]6™), but sometimes this maximization problem is still
difficult. When EM does not provide simple solutions, the variants in
this section may be useful.

5.2.1 Generalized EM (GEM)

GEM is a popular variant of EM in which the @Q-function is only
improved at each iteration but not necessarily maximized [30]. That
is, at the (m -+ 1)th iteration, one finds a §(™+1) € Q that satisfies

QO™ (™) > (o™ |6™).
By Theorem 2.1, the GEM algorithm retains the monotonicity
property.

5.2.2 Monte Carlo Alternatives to EM

EM is best when the distributions are nice and give rise to a simple
form for the @-function. However, when that is not the case, Monte
Carlo sampling methods may be needed to approximate the E-step, or
it might be better to toss aside the EM algorithm and use Monte Carlo
sampling to approximate the posterior mode (or posterior mean) of
directly. For further reading on Monte Carlo sampling and particularly
Markov Chain Monte Carlo (MCMC), we recommend the introductory
material in [34], which is available online, and the more comprehen-
sive book on MCMC (which specifically discusses EM) by Robert and
Casella [52].
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5.2.3 Quasi-EM

Quasi-EM is a variant of EM that simplifies the problem, finds the
EM solution for the simpler problem, and applies the same idea to
the original complicated problem [43]. For example, as derived in Sec-
tion 3, fitting a GMM alternates between two tasks: (i) estimating the
parameters of the component models, and (ii) estimating the relative
likelihood that each sample was generated by each model. If the com-
ponent models are not Gaussian, then alternating between these two
tasks may not actually be the EM solution, but may still be a practical
approach to finding a useful solution.

As a second example, consider the transmitter-localization example
given in Section 4.2, a more realistic noise model than the additive
white Gaussian noise model given in (4.13) is a lognormal shadowing
model [18], a simplified illustrative version of which is:

R 1 Wi
S e i
where W;; ~ N(0,0%) models the random shadowing. Then the like-
lihood function of Z is a product of lognormal densities of the form
in (4.13), and the log-likelihood needed for EM is a sum of lognormal
densities. However, there is no analytic form for a sum of lognormal
densities. One could use a Monte Carlo approach to generate random
samples to compute an approximation of the log-likelihood, but gen-
erating random samples is computationally intensive (and removes the
guarantee that EM will converge).

However, consider the intuition behind the simpler Gaussian noise
model for the transmitter-localization problem as covered in Sec-
tion 4.2. The EM algorithm alternated between (i) estimating the
transmitter locations based on the current guess of how much of the
received power came from each transmitter, and (ii) using the current
estimate of the transmitter locations to guess how much of the received
power came from each transmitter. Nelson et al. [43] showed that using
the same alternation with the more complicated lognormal shadowing
model was 10 times more accurate at estimating the transmitter loca-
tions than making the same number of guesses with a state-of-the-art
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global optimizer (particle swarm optimization [38]), and 50 times more
accurate for the same number of guesses than random guessing.

5.3 Speed

As we touched on in Section 2.1, the EM algorithm has relatively
slow convergence compared to numerical optimization approaches
like Newton—Raphson updates. Many variants have been proposed to
attempt to speed up EM convergence, though these tend to lose the
simplicity of EM without achieving the theoretical convergence speed-
up of Newton—Raphson. Further, as noted in Section 2.1, it is often
difficult before you run an algorithm for a specific problem to know
whether the convergence speed-up gain iteration-by-iteration of a vari-
ant is worth the increased computation for each iteration.

Surveys of variants for speeding up convergence can be found in the
book by McLachlan and Krishnan [36] and in the tutorial by Roche [53].

5.4 When Maximizing the Likelihood Is Not the Goal

EM is designed to find an estimate of 6 that maximizes the likelihood
p(y|0). However, the maximum likelihood estimate may not be the best
estimate. For example, another popular estimate for 8 is the posterior
mean Fg,[0]. The posterior mean is the best estimate in the sense
that it minimizes the expected posterior squared-error loss, and in fact
minimizes the expectation of any of the Bregman divergences [3, 15].

In this section, we describe some stochastic variants of EM, leading
up to the data augmentation method, which provides an estimate of
the full posterior distribution, which can be used to find the posterior
mean.

5.4.1 Randomizing the E-step

In Section 1.2, we discussed the point-estimate variant of EM where
in an E-like step the hidden data is estimated, for example taking the
maximum likelihood estimate of z. A stochastic variant [8] is that in
the E-like step a random sample (™ is drawn from p(z |y,8™)), which
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is then used in the M-step:

Stochastic E-step: XM p(x!y,H(m))

Deterministic M-step: g(m+1)

= argmax p(z™|6).
The sequence of estimates {Q(m)} will generally not converge to

a specific value, but rather to a stationary pdf [8]. One can use this
method to generate candidate 6’s and choose the most likely.

5.4.2 Monte Carlo EM

In Monte Carlo EM [60], one maximizes in the M-step an estimated
Q-function @, created with random draws:

J
. . 1 .y
Q006" ))Zngogp(w( D19),

where z(™7) is the jth random ii.d. draw of X with distribution
p(x|y,00™). For J = 1, this degenerates to the stochastic EM method
described in Section 5.4.1. As J — oo, this converges almost surely to
the M-step of the standard EM. By increasing J as the iteration index
m increases, the greater randomness in the early iterations means that
this method does not necessarily lock into the initial guess’s local max-
ima, but as long as J — 0o, eventually local convergence will hold.

After reading the next subsection on data augmentation, the reader
may understand why the original Monte Carlo EM paper [60] was sub-
titled “poor man’s data augmentation.”

5.4.3 Data Augmentation

In the stochastic EM method described in Section 5.4.1 and the above
Monte Carlo EM, one only randomly draws the complete data x. What
happens if one also makes a random draw of 8 in the M-step? That is,
one alternates between (i) drawing J i.i.d. random samples {z(™J )}3]:1
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of the complete data, and (ii) drawing one random sample of 6:

Stochastic Imputation step: X (™) ~ p(z] y,ﬁ(m)), ji=1,...,J

J
1 .
i ior step: (m+1)N7§ (m.j)
Stochastic Posterior step: © 7 j:1p(9|x .

The above was proposed as the data augmentation algorithm [57].!

Iterating the stochastic imputation and posterior steps does not
explicitly produce the maximum likelihood estimate of 8, but instead
produces an estimate of the entire distribution of 8 given y:

J
~(m 1 m,j
PO1y) = < p(0]0 ),

J=1

As any Bayesian might tell you, it is much better to have a good guess
for the whole distribution than just a good guess at a local peak. In
particular, having a guess for the whole distribution makes it easy to
estimate the posterior mean.

Data augmentation is useful for problems where it is not easier to
work with p(@|z) and p(z|6,y) than p(f|y). Data augmentation was
designed to be a random approximation to carrying out successive itera-
tions of a Markov chain that has the true p(6|y) as its stationary distri-
bution [57] (this is rather beautifully explained by the originators [57],
and we recommend reading this source to enjoy the full details). This
clever design makes p(™(#|y) converge linearly under rather broad
conditions to the true p(#|y) [57]. For more on data augmentation, see
also [58].

I The term data augmentation is also used to mean any estimation method that specifies
augmented data z [58], including the EM algorithm.
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Conclusions and Some Historical Notes

We have focused this work on the aspects and applications of EM that
we think best illustrate its power, usefulness, and weaknesses. A treat-
ment this short is necessarily incomplete, but we hope this text gives
readers a solid foundation from which to further explore the theory,
applications, and practical implementation of EM.

EM was formalized as an approach to solving arbitrary maxi-
mum likelihood problems and named EM in a seminal 1977 paper
by Dempster et al. [11]. However, the history of EM is much messier
than this. Part of the confusion is that for various specific problems,
researchers independently arrived at the same solution that one obtains
using EM before 1977. For example, in 1958 Hartley presented the
main ideas of EM, rooted in the special case of count data [20]. Simi-
larly, Baum et al. and Welch developed an algorithm for fitting hid-
den Markov models (HMMs) that is often called the Baum-Welch
algorithm, which is equivalent to applying the EM algorithm, and in
this context the ideas of EM date back to the 1970 paper by Baum
et al. [4, 61]. Another notable instance of a special case of the EM
algorithm is the Richardson—Lucy image deconvolution of the early

1970s [51, 33]. Meng and Van Dyk [40] have traced back the ideas of

289
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EM to 1886 [44], and we refer the reader to their paper and MacLach-
lan’s book [36] for more complete historical discussions.

Today, EM and its variants are regularly used to solve a broad range
of today’s estimation problems, from the multiple EM for motif elicita-
tion (MEME) algorithm for motif-finding in DNA squences [2], to fit-
ting mixture models to disambiguate targets from clutter in radar [59].
We hope that you, too, will find EM useful.
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