Time Series

« Look at the datal

« Common Models

« Multivariate Data

« Cycles/Seasonality
o« Filters
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Atmospheric CO,

Jan Apr Jul Oct Jan

Years: 1958 to now; vertical scale 300 to 400ish
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400 Years of Sunspot Observations
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Ancient sunspot data
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Our Basic Procedure

Look at the data

Quantify any pattern you see
Remove the pattern

Look at the residuals

o &~ wbdh-~

Repeat at step 2 until no patterns left
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One of these things is not like the others
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Stationarity

« The upper-right-corner plot is Stationary.
« Mean doesn't change in time

- no Trend
- no Seasons (known frequency)
- no Cycles (unknown frequency)

« Variance doesn't change in time
« Correlations don't change in time
- Up to here, weakly stationary
» Joint Distributions don't change in time

1vovember JONAL Makes it stronghstationary



Basic Notation

e TImeis “t’, not “n”

- even though it's discrete
. State (value)is Y, not X

- to avoid confusion with x-axis, which is time.
« Value attime tis Y, not Y(t)

- because time Is discrete
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Detrending: deterministic trend

Trend stationary Process (TSP)

» Fit a plain linear regression, then subtract it out:
- FitY,=m*t + b,
-NewdataisZ, =Y, —m*t—-Db
- Or use quadratic fit, exponential fit, etc.
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Detrending: stochastic trend
Difference Stationary Process (DSP)

« Differencing
. Forlinear trend, newdatais Z =Y, -Y,
« 1o remove quadratic trend, do it again:
W\ =24, =2 =Y, =2 + Y,
. Like taking derivatives

« What's the equivalent if you think the
trend is exponential, not linear?
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Hard to decide: regression or differencing?

Problems with wrong Assumed Model
choice of model TSP DSP
TSP \/ Error
Correct becomes MA
Model DSP Error becomes \/
Heteroscedastic

1 November 2017
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Autocorrelation Function

 How correlated is the series with itself at

various lag values?

« E.g. If you plot Y,
correlation, that's the corre

« ACF lets you calculate all t
plotting at each lag value.

Versus Yt and find the

.atlag 1

nese correls. without

« ACF is a basic building block of time series

analysis.
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Fake data on bus IATs

Lag-1 of bus IATs y=-0.4234x+1.4167

ACF and PACF of bus IATs
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Properties of ACF

. Atlag 0, ACF=1
« Symmetric around lag 0

« Approx. confidence-interval bars around ACF=0
- To help you decide when ACF drops to near-0
. Less reliable at higher lags

» Often assume ACF dies off fast enough so its
absolute sum is finite.

- If not, called “long-term memory”; e.g.

 River flow data over many decades

« Traffic on computer networks
1 November 2017 Diganta Mukherjee, ISI 14



ACF atlag h

N—-h _

Z Yt-}-h—y) E Z (¥ — Yt-}-h—y)

t=1 t=1

« Y-bar is mean of whole data set
- Not just mean of N-h data points
. Left side: old way, can produce correl>1

« Right side: new way
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Common Models
« White Noise
« AR
. MA
« ARMA
« ARIMA
. SARIMA
« ARMAX
. Kalman Filter
« Exponential Smoothing, trend, seasons

1 November 2017 Diganta Mgcherjee, ISI
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White Noise

 Sequence of |.1.D. Variables ¢,

« mean=zero, Finite std.dev., often unknown

. Often, but not always, Gaussian
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AR: AutoRegressive

« Order 1: Y=a*Y,_, + ¢

t

E.g. New = (90% of old) + random fluctuation
« Order 2: Y,=a,7Y, , +a,*Y, + ¢,

« Order p denoted AR(p)
o P=1,2 common; >2 rare

« AR(p) like p'th order O
« AR(1) not stationary if

DE

al>=1

« E[Y,] =0, can generalize
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Things to do with AR

« Find appropriate order

. Estimate coefficients

- via Yule-Walker eqgn.
» Estimate std.dev. of white noise

. If estimated |a|>0.98 :Unit Root Test.

1 November 2017
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Dickey — Fuller Unit Root Test

« Model : Y=a*Y, ., +¢

t

. TestforH,:a=1vs.H,:a<1.

. If H, accepted, series non-stationary

Extensions:

« ADF (additional AR terms),

« PP (switch |

o and H,),

« KPSS (allowing for heteroscedasticity)

1 November 2017
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MA: Moving Average

o Order 1:
- Y, = bgg, +bye
« Order g: MA(q)
« Important in theory of filters
» Stationary regardless of b values
« E[Y,] =0, can generalize
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ACF of an MA process

. Drops to zero after | ]

lag=q i

. That'sa goodwayto | e
determine what g b s % m m W
should be!
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ACF of an AR process”?

« Never completely dies
off, not useful for finding

ACF

order p. AN
. AR(1) has exponential | . \\N\
decay in ACF s

. Instead, use Partial ACF |o.f 5 ©

30

= PACF, which dies after| ©*

-0.6

lag=p ol

« PACF of MA never dies. |
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ARMA

« ARMA(p,q) combines AR and MA
« Oftenp,g<=1or2

ARIMA

* AR-Integrated-MA

* ARIMA(p,d,q)

» d=order of differencing before applying
ARMA(p,q)

* For nonstationary data w/stochastic trend
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SARIMA, ARMAX

. Seasonal ARIMA(p,d,q) —and - (P,D,Q).

. Often S=

- 12 (monthly) or
- 4 (quarterly) or
- 52 (weekly)

« Or, S=7 for daily data inside a week

« ARMAX=ARMA with outside explanatory
variables (halfway to multivariate time series)
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State Space Model, Kalman Filter

« Underlying process that we don't see
« We get noisy observations of it

. Like a Hidden Markov Model (HMM), but state
IS continuous rather than discrete.

« AR/MA, etc. can be written in this form too.

. State evolution (vector): S, =F * S, , + n,

 Observations (scalar): Y, =H™* S, + ¢,

1 November 2017 Diganta Mukherjee, ISI
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ARCH, GARCH(p,q)

 (Generalized) AutoRegressive Conditional
Heteroskedasticity

« Variance changes randomly in time according
to ARMA process.

« Used for many financial models

1 November 2017 Diganta Mukherjee, ISI
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Volatility

 Volatility — conditional variance of the process

- Don’t observe this quantity directly (only one observation at each
time point)

« Common features

- Serially uncorrelated but a depended process

- Stationary

- Clusters of low and high volatility

- Tends to evolve over time with jumps being rare

- Asymmetric as a function of market increases or market
decreases
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The basic models

« Consider a process r(t) where
r(t) = u(t) +a(t)
u(t) = E(r(t) [ F(t-1))

Conditional mean evolves as an ARMA process

() =gy + 9,11 )+ Y Bt~

o’ (t) =Var(r(t)| F(t-1))

How does the conditional variance evolve?
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Modeling the volatility

. Evolution of the conditional variance follows to
basic sets of models

- The evolution is set by a fixed equation (ARCH,
GARCH,...)

- The evolution is driven by a stochastic equation
(stochastic volatility models).

o Notation:

- a(t)=shock or mean-corrected return;
- 0(?) is the positive square root of the volatility
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ARCH model

« We have the general format as before

« The equation defining the evolution of the
volatility (conditional variance) is an AR(m)
process.

a(t) = o()e(?)

Why would this model yield
“volatility clustering”?

o')=a,+a,a’ (t-1)++a a’(t-m)
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Basic properties ARCH(1)

Unconditional mean is 0.
Ela()]= E[E(a(t) | F' (¢ -1))]
= E[E(o()e(@) | F(t-1))]
Elo(t)E((1)))
0



Basic properties, ARCH(1)
Unconditional variance
Varla(t)]=Var|E(a(t)| F(t-1))]|+ E[Var(a(t)| F(t -1)]
=0+ E[o”(?)]
= E[a, +a,a’(t =1)]

=a,+aEla’(t-1)]

What
constraint

=a, +aVarla(t-1)] does this

=, +aVar|a(t)]
Varla(t)]=a, /(1 - )
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Basic properties of ARCH

° OS(},1<1
« Higher order moments lead to additional constraints on the parameters

- Finite positive (always the case) fourth moments requires
O< a°<1/3

. Moment conditions get more difficult as the order increases — see
Enders

. Note that in general the kurtosis for a(t) is greater than 3 even if the
ARCH model is built from normal random variates.

« Thus the tails are heavier and you expect more “outliers” than “normal”.
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ARCH Estimation, Model Fitting and Forecasting

« MLE for normal and t-dist ¢'s is discussed in Enders

« The full likelihood is very difficult and thus the conditional likelihood is
most generally used.

« The conditional likelihood ignores the component of the likelihood that
involves unobserved values (in other words, obs 1 through m)

« MLE for joint estimation of parameters and degree of the t-distribution
IS given.

« Model selection
- Fit ARMA model to mean structure
- Review PACF to identify order of ARCH

- Check the standardized residuals — should be WN

« Forecasting — identical to AR forecasting but we forecast volatility first
and then forecast the process.
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GARCH model

« Generalize the ARCH model by including an
MA component in the model for the volatility or
the conditional variance.

a(t) = o()e(t)
o’(t)=a,+ éajaz(t—j)+ i/a’kaz(t—k)

Proceed as before - using all you learned from ARMA models.

1 November 2017 Diganta Mukherjee, ISI 36



Exponential Smoothing = EWMA

. More a method than a model.
« Very common in practice
« Forecasting w/o much modeling of the process.
. A, = forecast of series at time t
« Pick some parameter a between 0 and 1
e Ama Y, +(1-0)A ,
- or A, = A, + ox(error in period t)
« Why call it “Exponential™?
- Weight on Y, at lag k is (1-a)
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How to determine the parameter

« Train the model: try various values of o

« Pick the one that gives the lowest sum of
absolute forecast errors

. The larger a is, the more weight given to recent
observations

« Common values are 0.10, 0.30, 0.50

o If best a is over 0.50, there's probably some
trend or seasonality present
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Holt-Winters

« Exponential smoothing: no trend or seasonality
- Excel/Analysis Toolpak can do it if you tell it o

« Holt's method: accounts for trend.
- Also known as double-exponential smoothing

« Holt-Winters: accounts for trend & seasons

- Also known as triple-exponential smoothing

1 November 2017 Diganta Mukherjee, ISI
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Multivariate

« Along with ACF, use Cross-Correlation
« Cross-Correl is not 1 at lag=0

« Cross-Correl is not symmetric around lag=0

« Leading Indicator: one series' behavior helps
predict another after a little lag

- Leading means “coming before”, not “better than
others”

« Can also do cross-spectrum, aka coherence

1 November 2017 Diganta Mukherjee, ISI 40



Cycles/Seasonality

« Suppose a yearly cycle
« Sample quarterly: 3-med, 6-hi, 9-med, 12-low

« Sample every 6 months: 3-med, 9-med
- Or 6-hi, 12-low
« T0 see a cycle, must sample at twice its freq.

1 November 2017 Diganta Mukherjee, ISI
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The basic problem

 We have data, want to find

- Cycle length (e.g. Business cycles), or
- Strength of seasonal components

. ldea: use sine waves as explanatory variables

. If a sine wave at a certain frequency explains
things well, then there's a lot of strength.

- Could be our cycle's frequency
- Or strength of known seasonal component

« Explains=correlates

1 November 2017 Diganta Mukherjee, ISI
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Correlate with Sine Waves

« Ordinary covar:

3 (X, - X0, - 1)

T-1
. At freq. Omega, E sin(wt )Y,
1=0

(means are zero)

« Problem: what if that sine is out of phase with
our cycle?
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Solution

« Also correlate with a cosine
- 90 degrees out of phase with sine
« Why not also with a 180-out-of-phase?

- Because if that had a strong correl, our original sine
would have a strong correl of opposite sign.

» Sines & Cosines, —combine using complex
variables!
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The Discrete Fourier Transform
T-1
d(CU) _ e—ia)t)/t

. Often a scaling factor like 1/T, 1/sqrt(T), 1/2pi,
etc. out front.

o Some people use +i instead of -i
. Often look only at the frequencies W, = 2mc /T

. k=0,...,T-1 -

d(a)k 2 e—ZJzik/TYt
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» Define a matrix F whose j,k entry is
exp(-1"j*k*2pi/T)

. Then J _ Fy

« Matrix multiplication takes T"2 operations

« This matrix has a special structure, can do it in
about T log T operations

o Ihat's the FFT=Fast Fourier Transform
« Easiestif T is a power of 2

1 November 2017 Diganta Mukherjee, ISI
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S0 now we have complex values...

« Take magnitude & argument of each DFT result
« Plot squared magnitude vs. frequency

- This is the “Periodogram”
» Large value = that frequency is very strong

» Often plotted on semilog-y scale, “decibels”
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Interpretations

« Value at k=0 is mean of data series
- Called “DC” component

« Area under periodogram is proportional to
Var(data series)

. Height at each point=how much of variance is
explained by that frequency

« Plotting argument vs. frequency shows phase
» Often need to smooth with moving avg.
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Long-memory time series

o Ordinary theory assumes that ACF dies off
faster than 1/h

« But some time series don't satisfy that:

- River flows
- Packet amounts on data networks

« Connected to chaos & fractals
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49



References

« Walter Enders (2003), Applied Econometric
Time Series, Wiley

. Shumway R. H., Stoffer (2011), Time Series
Analysis and its Applications, Springer.

. J. Campbell, A. Lo and C. Mackinlay (1997),
The Econometrics of Financial Markets,
Princeton University Press

« Hamilton, James (1994), Time Series Analysis,
Princeton University Press.

1 November 2017 Diganta Mukherjee, ISI

50



