
Time Series!

l  Look at the data!!
l  Common Models!
l  Multivariate Data !
l  Cycles/Seasonality!
l  Filters!

1 November 2017 ! 1!Diganta Mukherjee, ISI!



Atmospheric CO2 !

Years: 1958 to now; vertical scale 300 to 400ish !
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Ancient sunspot data !
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Our Basic Procedure !

1.  Look at the data !
2.  Quantify any pattern you see !
3.  Remove the pattern !
4.  Look at the residuals!
5.  Repeat at step 2 until no patterns left!
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One of these things is not like the others!
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Stationarity!
l  The upper-right-corner plot is Stationary.!
l  Mean doesn't change in time !
-  no Trend !
-  no Seasons (known frequency)!
-  no Cycles (unknown frequency)!

l  Variance doesn't change in time !
l  Correlations don't change in time !
-  Up to here, weakly stationary!

l  Joint Distributions don't change in time !
-  That makes it strongly stationary!1 November 2017 ! 7!Diganta Mukherjee, ISI!



Basic Notation !

l  Time is “t”, not “n” !
-  even though it's discrete !

l  State (value) is Y, not X!
-  to avoid confusion with x-axis, which is time.!

l  Value at time t is Yt, not Y(t)!
-  because time is discrete !
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Detrending: deterministic trend !
!

Trend stationary Process (TSP)!

l  Fit a plain linear regression, then subtract it out:!
-  Fit Yt = m*t + b, !
-  New data is Zt = Yt – m*t – b !
-  Or use quadratic fit, exponential fit, etc.!
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Detrending: stochastic trend !
   !

Difference Stationary Process (DSP) !

l  Differencing !
l  For linear trend, new data is Zt = Yt – Yt-1 !
l  To remove quadratic trend, do it again: !
- Wt = Zt – Zt-1=Yt – 2Yt-1 + Yt-2 !

l  Like taking derivatives
!

l  What’s the equivalent if you think the 
trend is exponential, not linear? !
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Problems with wrong 
choice of model !

Assumed Model !
TSP! DSP!

Correct 
Model !

TSP! √! Error 
becomes MA!

DSP! Error becomes 
Heteroscedastic! √!

!
Hard to decide: regression or differencing? !

 !
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Autocorrelation Function !

l  How correlated is the series with itself at 
various lag values? !

l  E.g. If you plot Yt+1 versus Yt and find the 
correlation, that's the correl. at lag 1 !

l  ACF lets you calculate all these correls. without 
plotting at each lag value.!

l  ACF is a basic building block of time series 
analysis.!
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Fake data on bus IATs!
Lag-1 of bus IATs y = -0.4234x + 1.4167

R2 = 0.1644
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Properties of ACF!
l  At lag 0, ACF=1 !
l  Symmetric around lag 0 !
l  Approx. confidence-interval bars around ACF=0 !
-  To help you decide when ACF drops to near-0 !

l  Less reliable at higher lags!
l  Often assume ACF dies off fast enough so its 

absolute sum is finite.!
-  If not, called “long-term memory”; e.g.!

l  River flow data over many decades!
l  Traffic on computer networks!
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ACF at lag h !

l  Y-bar is mean of whole data set!
-  Not just mean of N-h data points!

l  Left side: old way, can produce correl>1 !
l  Right side: new way!

1 November 2017 ! 15!Diganta Mukherjee, ISI!



Common Models!
l  White Noise !
l  AR !
l  MA!
l  ARMA!
l  ARIMA!
l  SARIMA!
l  ARMAX!
l  Kalman Filter!
l  Exponential Smoothing, trend, seasons!
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White Noise !
l  Sequence of I.I.D. Variables εt!

l  mean=zero, Finite std.dev., often unknown !
l  Often, but not always, Gaussian !
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AR: AutoRegressive !

l  Order 1: Yt=a*Yt-1 + εt!

E.g. New = (90% of old) + random fluctuation !
l  Order 2: Yt=a1*Yt-1 +a2*Yt-2+ εt!

l  Order p denoted AR(p)!
l  p=1,2 common; >2 rare !
l  AR(p) like p'th order ODE!
l  AR(1) not stationary if |a|>=1 !
l  E[Yt] = 0, can generalize !
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Things to do with AR !

l  Find appropriate order!
l  Estimate coefficients!
-  via Yule-Walker eqn.!

l  Estimate std.dev. of white noise !
l  If estimated |a|>0.98 :Unit Root Test.!
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Dickey – Fuller Unit Root Test!

l  Model : Yt=a*Yt-1 + εt!

l  Test for H0 : a = 1 vs. H1 : a < 1.!
l  If H0 accepted, series non-stationary!

Extensions: !
l  ADF (additional AR terms), !
l  PP (switch H0 and H1),!
l  KPSS (allowing for heteroscedasticity)!
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MA: Moving Average !

l  Order 1: !
-  Yt = b0εt  +b1εt-1 !

l  Order q: MA(q)!
l  Important in theory of filters!
l  Stationary regardless of b values!
l  E[Yt] = 0, can generalize !
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ACF of an MA process!

l  Drops to zero after 
lag=q !

l  That's a good way to 
determine what q 
should be!!
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ACF of an AR process? !

l  Never completely dies 
off, not useful for finding 
order p.!

l  AR(1) has exponential 
decay in ACF!

l  Instead, use Partial ACF 
= PACF, which dies after 
lag=p !

l  PACF of MA never dies.!

ACF

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

1 November 2017 ! 23!Diganta Mukherjee, ISI!



ARMA!
l  ARMA(p,q) combines AR and MA!
l  Often p,q <= 1 or 2 !

ARIMA!
• AR-Integrated-MA!

• ARIMA(p,d,q)!

• d=order of differencing before applying 

ARMA(p,q)!

• For nonstationary data w/stochastic trend !
1 November 2017 ! 24!Diganta Mukherjee, ISI!



SARIMA, ARMAX!

l  Seasonal ARIMA(p,d,q) – and – (P,D,Q)S!

l  Often S=!
-  12 (monthly) or!
-   4 (quarterly) or !
-  52 (weekly)!

l  Or, S=7 for daily data inside a week
!

l  ARMAX=ARMA with outside explanatory 
variables (halfway to multivariate time series)!
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State Space Model, Kalman Filter!

l  Underlying process that we don't see !
l  We get noisy observations of it!
l  Like a Hidden Markov Model (HMM), but state 

is continuous rather than discrete.!
l  AR/MA, etc. can be written in this form too.!
l  State evolution (vector): St = F * St-1 + ηt!

l  Observations (scalar): Yt = H * St + εt!
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ARCH, GARCH(p,q)!

l  (Generalized) AutoRegressive Conditional 
Heteroskedasticity

!
l  Variance changes randomly in time according 

to ARMA process.

!
l  Used for many financial models!
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Volatility!

l  Volatility – conditional variance of the process!
-  Don’t observe this quantity directly (only one observation at each 

time point)!

l  Common features!
-  Serially uncorrelated but a depended process!
-  Stationary!
-  Clusters of low and high volatility!
-  Tends to evolve over time with jumps being rare !
-  Asymmetric as a function of market increases or market 

decreases!
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The basic models!
l  Consider a process r(t) where !

)()()( tattr += µ
))1(|)(()( −= tFtrEtµ

∑ ∑
= =

−+−+=
p

j

q

k
kj ktajtrt

1 1
0 )()()( θφφµ

))1(|)(()(2 −= tFtrVartσ

Conditional mean evolves as an ARMA process!

How does the conditional variance evolve? !
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Modeling the volatility!

l  Evolution of the conditional variance follows to 
basic sets of models!
-  The evolution is set by a fixed equation (ARCH, 

GARCH,…)!
-  The evolution is driven by a stochastic equation 

(stochastic volatility models).!

l  Notation: !
-  a(t)=shock or mean-corrected return; !
-            is the positive square root of the volatility!)(tσ
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ARCH model !

l  We have the general format as before !
l  The equation defining the evolution of the 

volatility (conditional variance) is an AR(m) 
process.!
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Why would this model yield 
“volatility clustering”? !
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Basic properties ARCH(1)!
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Unconditional mean is 0.!
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Basic properties, ARCH(1)!
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Unconditional variance!

What 
constraint 
does this 

put on α1? !
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Basic properties of ARCH !
l  0≤α1<1 !

l  Higher order moments lead to additional constraints on the parameters!

-  Finite positive (always the case) fourth moments requires!
0≤ α1

2<1/3 !
l  Moment conditions get more difficult as the order increases – see 

Enders!

l  Note that in general the kurtosis for a(t) is greater than 3 even if the 
ARCH model is built from normal random variates.!

l  Thus the tails are heavier and you expect more “outliers” than “normal”.!

!
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ARCH Estimation, Model Fitting and Forecasting !

l  MLE for normal and t-dist ε’s is discussed in Enders!

l  The full likelihood is very difficult and thus the conditional likelihood is 
most generally used.!

l  The conditional likelihood ignores the component of the likelihood that 
involves unobserved values (in other words, obs 1 through m)!

l  MLE for joint estimation of parameters and degree of the t-distribution 
is given.!

l  Model selection !

-  Fit ARMA model to mean structure !
-  Review PACF to identify order of ARCH !
-  Check the standardized residuals – should be WN !

l  Forecasting – identical to AR forecasting but we forecast volatility first 
and then forecast the process.!
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GARCH model !

l  Generalize the ARCH model by including an 
MA component in the model for the volatility or 
the conditional variance.!

∑ ∑
= =

−+−+=

=
m

j

s

k
kj ktjtat

ttta

1 1

22
0

2 )()()(

)()()(

σβαασ

εσ

Proceed as before – using all you learned from ARMA models.!
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Exponential Smoothing = EWMA!
l  More a method than a model.!
l  Very common in practice !
l  Forecasting w/o much modeling of the process.!
l  At = forecast of series at time t!
l  Pick some parameter α between 0 and 1 !
l  At = α Yt + (1-α)At-1 !

-   or At = At-1 + α*(error in period t)!

l  Why call it “Exponential”? !
-  Weight on Yt at lag k is (1-α)k!
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How to determine the parameter!

l  Train the model: try various values of α
l  Pick the one that gives the lowest sum of 

absolute forecast errors!
l  The larger α is, the more weight given to recent 

observations!
l  Common values are 0.10, 0.30, 0.50 !
l  If best α is over 0.50, there's probably some 

trend or seasonality present!
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Holt-Winters!

l  Exponential smoothing: no trend or seasonality!
-  Excel/Analysis Toolpak can do it if you tell it α

l  Holt's method: accounts for trend.!
-  Also known as double-exponential smoothing !

l  Holt-Winters: accounts for trend & seasons!
-  Also known as triple-exponential smoothing !
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Multivariate !

l  Along with ACF, use Cross-Correlation !
l  Cross-Correl is not 1 at lag=0 !
l  Cross-Correl is not symmetric around lag=0 !
l  Leading Indicator: one series' behavior helps 

predict another after a little lag !
-  Leading means “coming before”, not “better than 

others”!

l  Can also do cross-spectrum, aka coherence !
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Cycles/Seasonality!

l  Suppose a yearly cycle !
l  Sample quarterly: 3-med, 6-hi, 9-med, 12-low !
l  Sample every 6 months: 3-med, 9-med !
-  Or 6-hi, 12-low !

l  To see a cycle, must sample at twice its freq.!
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The basic problem!

l  We have data, want to find !
-  Cycle length (e.g. Business cycles), or!
-  Strength of seasonal components!

l  Idea: use sine waves as explanatory variables!
l  If a sine wave at a certain frequency explains 

things well, then there's a lot of strength.!
-  Could be our cycle's frequency!
-  Or strength of known seasonal component!

l  Explains=correlates!
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Correlate with Sine Waves!

l  Ordinary covar: !
!

l  At freq. Omega,!
!

(means are zero)!
l  Problem: what if that sine is out of phase with 

our cycle? !

∑
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Solution !

l  Also correlate with a cosine !
-  90 degrees out of phase with sine !

l  Why not also with a 180-out-of-phase? !
-  Because if that had a strong correl, our original sine 

would have a strong correl of opposite sign.!

l  Sines & Cosines, —combine using complex 
variables!!
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The Discrete Fourier Transform!
!
!
l  Often a scaling factor like 1/T, 1/sqrt(T), 1/2pi, 

etc. out front.!
l  Some people use +i instead of -i !
l  Often look only at the frequencies!
l  k=0,...,T-1 !
!
!
 !
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l  Define a matrix F whose j,k entry is !
exp(-i*j*k*2pi/T)!

l  Then!
l  Matrix multiplication takes T^2 operations!
l  This matrix has a special structure, can do it in 

about T log T operations!
l  That's the FFT=Fast Fourier Transform !
l  Easiest if T is a power of 2 !

Yd F=
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So now we have complex values...!

l  Take magnitude & argument of each DFT result!
l  Plot squared magnitude vs. frequency!
-  This is the “Periodogram”!

l  Large value = that frequency is very strong !
l  Often plotted on semilog-y scale, “decibels”!
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Interpretations!

l  Value at k=0 is mean of data series!
-  Called “DC” component!

l  Area under periodogram is proportional to 
Var(data series)!

•  Height at each point=how much of variance is 
explained by that frequency!

l  Plotting argument vs. frequency shows phase !
l  Often need to smooth with moving avg.!
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Long-memory time series!

l  Ordinary theory assumes that ACF dies off 
faster than 1/h !

l  But some time series don't satisfy that:!
-  River flows!
-  Packet amounts on data networks!

l  Connected to chaos & fractals!
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