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Introduction

* Survival analysis deals with time to event data.

 Survival analysis is a collection of statistical procedures for data analysis
for which the outcome variable of interest is time until an event occurs.

* Event: death, disease incidence, disease remission, relapse from remis-
sion or any designated experience of interest that may happen to an in-
dividual.

* By time, we mean years, months, weeks or days from the beginning of
follow-up of an individual until an event occurs. Alternatively, time can
refer to the age of an individual when an event occurs.

End point: The point where event of interest occurs.

Starting T End
Point ! Point
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Introduction

* In considering the failure time data, it is important to have unambiguous
definition of the time origin from which survival is measured.

* The natural time origin may be the occurrence of some event, such as
randomization or entry into a study or diagnosis of a particular disease.

* Example: Laboratory animals are subject to doses of the carcinogenic
substances and then observed to see if they develop tumors. Variable of
interest is the time to appearance of a tumor, measured from when the
dose is administered.

- Here time origin is when the dose is administered.
* Date of joining a service.
* Insurance starting date.

* Date of subscribing a service.
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Lifetime/Survival time/Failure time

» Leukemia patients: the event of interest is “going out of remission”. The
survival time/lifetime is “time in weeks (say) until a person goes out of
remission”.

* Disease-free cohort of individuals over several years to see who develops
heart disease.

* Post-surgery survival time of heart patients.
* Duration of marriage/friendship etc.

* Customer churn: Time to churn (Duration: a customer stay with a par-
ticular company, service provider etc.).

If the customer churned, lifetime is the number of days (or weeks, months,
whatever) between the day they subscribed and the day they unsub-
scribed.
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Lifetime/Survival time/Failure time

* Credit Risk Modeling: Time to default
* Calculate the probability of default at different time point .

Credit risk models are used by financial companies to evaluate in advance
the insolvency risk caused by credits that enter into default.

Traditional credit risk models aim at determining the probability of default
on loan repayment.

Survival models is used to etsimate the probability of default by a certain
time.

* Example: A bank granted loans between January and February 2009
with a short loan term of 12 months. A customer was considered de-
faulter if his had a period of 90 days without loan repayment.

* Insurance Attrition/Retention: Time of termination.
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Lifetime

Survival time/Failure time/Lifetime: A non-negative random variable
represents the length of time between a suitable starting point and an
end point.

e T: Survival time. It is a nonnegative random variable.

» The basic quantity employed to describe time-to-event phenomena is
the survival function, the probability of an individual surviving beyond
time ¢. It is defined as

S(t) = P[T > 1].

* S(t+) = P[T >1]. S(t+) = S(¢), if T is continuous.

* In some contexts involving systems or lifetimes of manufactured prod-
ucts, S(7) is referred to as the reliability function. Normally, it is denoted

by R(?).
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Continuous Models
» T is continuous lifetime random variable defined over the interval [0, co).

e F(1): pdfof T: F(1): cdfof T; S(r) = 1— F(r): S(t) = / Flu)du
t
* F(t) = P[T < t]. F(0) = 0, F(o0) = 1, F is non-dcreasing and right
continuous.

* Properties of S(7)
() S(0) =1

(i) lim S(r) =0
— 00
(iil) S(r) is non-increasing continuous function in ¢.

(iv) S(2) is left continuous.

+ Sometimes we wish to allow S(c0) > 0, to consider settings where some

individuals never fail.
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Continuous Models: Hazard Rate

» Hazard rate or Failure rate: The hazard rate is defined by

Pt <T<t+ AT >t
e = tim PEST<t+ AT 214
Atl0 At

* Hazard rate ranges between 0 and oco.

* The hazard rate (A(¢)) specifies the instantaneous rate of death or failure
(or occurring any event) at time #, given that the individual survives up
to time .

* Note: A(7)At is the approximate probability of death (of occurring an
event) in [¢, 7 + At], given survival up to f.

* This is also known as force of mortality in demography.
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Hazard Rate

* Hazard rate indicates the way the risk of failure varies with age or time.

* Prior information about the shape of the hazard function can help guide
model selection.

» Hazard rate may be increasing, decreasing, constant, bathtub-shaped or
of some other characteristics which describes the failure mechanism.

 Constant hazard: It occurs in stable settings where failure or death is due
to random phenomenon such as shocks or accidents, which are external
to the individual.

* Increasing hazard rate:
* Due to natural aging or wear.

* Patients (say, leukemia) not responding to treatment, where event of inter-
est is death.
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Hazard Rate

* Decreasing hazard
* Infant mortality (due to infant disease)

* Post surgery failure rate- event is death in persons who are recovering from
surgery, because the potential for dying after surgery ususally decreases as
the time after surgery increases.

* First increasing and then decreasing:

* Such graph is expected for tuberculosis patients, since there potential for
dying increases early in the disease and decreses later.

* In connection with the duration of marriage.

* Bathtub-shaped hazard:

« It is appropriate in populations followed from birth. During an early pe-
riod, death result primarily from infant disease, after which the death rate
stabilizes, followed by an increasing hazard rate due to natural aging pro-
cess.
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Relationship of S() and A(7)

* The functions, f(¢), F(r), S(¢) and A(¢) are mathematically equivalent
specifications of the distribution of T

" A1) =5

* S(t) = exp [— fo du} = exp [—A(7)], where A(z) is known as cu-
mulative hazard.

 f(0) = Me)exp | = Jy A(w)du].

« Example: If \(¢) = ), then f(¢) = A\e~: Exponential distribution.
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Continuous Lifetime Distribution
» Exponential: f(¢) = Ae ™™, t >0, > 0.
S(t) = e=, A(t) = X, independent of time ¢ (Memoryless property).

 Weibull: £(¢) = aX*®"le= ()"t > 0,0 > 0,\ > 0.
.« S(1) = e~ "

c A1) = aX*r*~ . This is increasing in t, if & > 1. Decreasing in ¢, if
a < 1. It reduces to exponential model, if o = 1.

* Gamma distribution: )t" le=X 1> 0,A>0.

- Hazard is increasing in ¢ for n > 1; decreasing for n < 1. Reduces to
exponential model for n = 1.

_ (ni—p)?

202

* Log-normal distribution: f(¢) =

vV 27701

- Hazard rate first increasing, then decreasing.
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Discrete Models

* T takes on values #;, tp, ..., with O < #; < £, < ---. The corresponding
masses pi,pa, . ...

* The survival function is

S@) =PT>41=> p.

l:llzlj

In general S(z) = ij.

Jiti>t

* S(¢) is a left-continuous, non-increasing step function, with S(0) = 1
and S(c0) = 1.
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Discrete Models

* The discrete time hazard at 7 is

P
S(4)

* Note that the hazard is zero at any time other than the mass point.

Ai=Al) =PIT =4|T > 1] =

* In this case, the hazard is a conditional probability lying between 0 and
1, whereas it is like a conditional density in the continuous case.

* As in the continuous case, the probability, survival functiona nd hazard
functions give equivalent specifications of the distribution 7.

*AG) =1- 5 =12

() L
j—1
#S(5) = [J(1 - )
=1
* In general S(1) = H (1 — ) foralls > 0.

Ji<t
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Survival Data

10 O Failure

2 X : Censored

Study begins End of Study

Calender Time
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Survival Data

10 O Failure

2 X : Censored

Time in study
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Features of Survival Data

* Features which are typically encountered in analysis of survival data:

* Individuals do not all enter the study at the same time. This is known as
staggered entry.

* When the study ends, some individuals still haven’t had the event yet

* Some individuals get lost in the middle of the study, and all we know
about them is the last time they were still free of the event

* These features relate to “censoring” of the failure time events.

* Population may be heterogeneous.
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Covariates/Explanatory variables

* Analysis of survival data in presence of heterogeneity in a population is
an important issue.

* The use of explanatory variables or covariates in a regression analysis
model is an important way to represent heterogeneity in a population.

» Covariates: Age, gender, socioeconomic status, dietary habits, smok-
ing history, alcohol consumption, blood pressure, blood glucose level,
hemoglobin level etc.

* The main object in many studies is to understand and exploit the rela-
tionship between lifetime and covariates.

* For lung cancer patients, age, type of tumor, smoking history etc. can be
considered as covariates.

* In clinical trial, the treatment assigned to a patient may be considered as
a covariate.
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Objectives

* To investigate different characteristics of the lifetime (e.g. mean, me-
dian, quantiles, variance, survival function etc.)

* Two compare survival of two or more groups.
Example: Treatment and Placebo groups.

 To investigate the effect of certain explanatory variables (known as co-
variates) on survival experience.
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Data

Complete data: Lifetimes are completely observed and recorded on n
individuals.

Censored data: A lifetime is censored if we do not observe it exactly
but only know that it lies within a certain interval.

Type of censoring: Right censoring, left censoring and interval censor-
ing.

Right censoring: Type-I censoring, Type-II censoring and Random Cen-
soring

Type-I censoring: n individuals are on a study upto a pre-specified time
Ty. The event of interest is observed only if it occurs before Ty.

Type-1I censoring: The study continues until the failure of the first r
individuals, where r is some predetermined integer (r < n).
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Random Censoring

Random censoring: Each individual is assumed to have a lifetime 7 and
a censoring time C. One observe T or C whichever is earlier.

Observation (X, ¢), where X = min(7T,C) and 6 = I(T < C).

6 = 1 if lifetime is observed, that is the event of interest is observed.
0 = 0 if censored.

For n individuals: (X;,01),. .., (X, 0y).

Random censoring occurs due to: Loss to follow up, drop-out or study
termination.

Independent censoring: censoring should not convey any information
about the future failure time.

-T and C are independently distributed.
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Left Censoring and Interval Censoring

* Left-censoring: It occurs when it is known that the event of interest
occurred prior to a certain time ¢, but the exact time of occurrence is
unknown.

Example: We want to know the age at diagnosis in a follow-up study of
diabetic retinopathy. At the time of examination, a 50-year old partici-
pant was found to have already developed retinopathy, but the exact age
was not known. Thus the age at examination (i.e. 50) is a left-censored
observation. So the age of diagnosis for this patient is at most 50 years.

* We observe X; = max(T;; U;) and 6; = 1if T; > U; 0if T; < U;

* Interval-censoring: This occurs when the event of interest is known
to have occurred between times L and U. Observe (L;, U;) where T; €
(Li, Uy).

Example: Consider the retinopathy example. If medical records indicate
that at age 45, the patient did not have retinopathy, his age at diagnosis
is between 45 and 50 years.
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Some Examples

* Time to first use of Marijuana:

In this study, 199 school boys were asked, “when did you first use mari-
juana?”. The answers were the exact ages (uncensored observations); “I
never used it”, which are right-censored observations at the boys’ current
ages or “I have used it but cannot recall just when the first time was”,
which is a left-censored observations. Notice that a left-censored obser-
vation tells us only that the event has occurred prior to the boys’ current
age.

In a study of age at which African children learn a task. Some already
knew (left-censored), some learned during study (exact), some had not
yet learned by end of study (right-censored).
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Example: Stanford Heart Transplant data

 The patients with heart problem were admitted to the Stanford Program
(Crowley and Hu, 1977, JASA). The observations started at that point of

time.
) Censoring 24 Censoring
Date of Date of
Admission HT Death
(103) (30) (69) (45)
Death before
H.T.

» Covariates: age, previous history of surgery, waiting time for transplan-
tation and mismatch score. One may be interested the effect of these
covariates on post transplant survival time.
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Truncated Data

Truncation: A lifetime T is observed only when T belongs to a particular
setA = [a, D).

* An individual whose event time is not in this interval is not observed and
no information is available to the investigator.

* When b is infinite, we have left truncation. We only observe those indi-
viduals whose event time T > a.

* Left truncation occurs when subjects enter the study at a particular age
(not necessarily the origin for the event of interest).

Consider a survival study of residents of a retirement center. Ages at
death are recorded, as well as ages at which individuals entered the re-
tirement community (truncated event). Since an individual must survive
to a sufficient age to enter the retirement center, all individuals who died
earlier will not enter the study.
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Truncated Data Contd..

* Right truncation occur when a = 0. We observe the survival time only
when 7' < b.

* Right truncation occurs when only individuals who have experienced the
event of the interest are observable.

A group of 258 patients (Lagakos et al., 1988) with AIDS had been
exposed to HIV through blood transfusion on a known date (April 1,
1978). Patients who had not developed AIDS before the end of the study
(June 30, 1986) are not included.

* In case of truncated data, we have to use conditional distribution for
constructing the likelihood function.

* In censoring, there is at least partial information on each subject is avail-
able.
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Remission Data of leukemia patients

* The remission times of 42 patients with acute leukemia were reported
by Freiereich et al. (1963, Blood, 21(6)) in a clinical trail undertaken
to assess the ability of 6-mercaptopurine (6-MP) to maintain Steriod-
induced remission.

* Each patient was randomized to receive 6-MP or placebo

* The study was terminated after one year. The remission times

6-MP (21 patients) : 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+,
17+, 19+, 20+, 25+, 32+, 32+, 34+, 35+.

- Placebo (21 patients): 1, 1,2,2,3,4,4,5,5,8,8,8,8, 11, 11, 12, 12,
15, 17, 22, 23.

* One may be interested to know the relapsed rate and the probability of
having a remission time longer than 10 weeks in each group.
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Estimation

* Parametrically: if we assume a distribution for 7' with pdf f(z : 6), then
estimates of A(¢), S(¢) follows from the estimate of 6.

* We find the maximum likelihood estimate of 6.

* Suppose we have random censored data (x1, 1), . . ., (Xn, d,). Under the
assumption of independent random censoring, the likelihood function
becomes

L(fox, x, 8

« Example: Exponential distribution: f(#; \) = e,

- Estimate of A\: A\ = %i , > 0; = number of failures.

- Then estimate of S(¢) is S(r) = N,
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Estimation Contd.

* Consider the leukemia data. Assume that exponential distribution fits
the data. Then

6-MP: \ = 2 = 0.025 per week. [i (mean) =

1 _
359 =40 weeks.

0.025

The probability of staying in remission for one year (or 52 weeks) or
more is estimated by

§(52) = exp[—0.025 x 52] = 0.273.

* Placebo: \ = % = 0.115 per week. j1 = 8.7 weeks.

S(52) = exp[—0.115 x 52] = 0.003.
* What if the assumption is wrong?
* Non-parametric estimation means we do not specify a distribution for 7.

* Non-parametric estimator for right-censored data: Kaplan-Meier esti-
mator.
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Kaplan-Meier Estimator
* Right censored data: (x1,01),. .., (X, 0)-

* Suppose t; < t, < ... < t; are ordered observed failure times
* d; = number of failures at ¢;.

* m; = number of censoring in [t;,f;11),i = 0,1, ...k, where t, = 0 and
tk1 = OQ.

* n; = number of individuals at risk just prior to time ¢;.

* Kaplan-Meier estimator of survival function S() is given by

d;

Skm (1) = H (- ;,)
. R . 5 d;
Var(Sgu (t)) = {Skm (1)} Z m
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Kaplan-Meier Estimate: Leukemia Data

6-MP (21 patients) : 6, 6, 6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+,
19+, 20+, 25+, 32+, 32+, 34+, 35+.

R-Code

library(survival)

treatment<- c(6, 6, 6, 7, 10, 13, 16, 22, 23,6, 9, 10, 11, 17, 19, 20, 25, 32,
32, 34, 35)

censl<-c(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, 0,0, 0, 0)
surv.treatment <- survfit(Surv(treatment, censl) 1, conf.type= "none"
summary(surv.treatment)

plot(surv.treatment, xlab="Time", ylab="Survival Probability")
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Kaplan-Meier Estimate: Leukemia Data
6-MP (21 patients) : 6, 6,6, 7, 10, 13, 16, 22, 23, 6+, 9+, 10+, 11+, 17+,
19+, 20+, 25+, 32+, 32+, 34+, 35+.
R-Code

OUTPUT:
summary(surv.treatment)
Call: survfit(formula = Surv(treatment, cens1) 1, conf.type = "none")

time | n.risk | n.event | survival | std.err
6 21 3 0.857 | 0.0764
7 17 1 0.807 | 0.0869
10 15 1 0.753 | 0.0963
13 12 1 0.690 | 0.1068
16 11 1 0.627 | 0.1141
22 7 1 0.538 | 0.1282
23 6 1 0.448 | 0.1346

Note: R gives estimate of survival probabilty S(7+).
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Nonparametric Estimator of Cumulative Hazard

* Cumulative hazard: A(f) = fot A(u)du.

N d:
* Nonparametric estimator of A(¢): A(z) = Z bk
N
J:i<t 7

* Plot A(t) give useful information about the shape of the hazard function.
For example, A(¢) is linear if \(¢) is constant.

SQC & OR Unit Indian Statistical Institute, Kolkata



Model Validation

* Graphical Methods:

- PP Plot

-QQ Plot
- Hazard Plotting

* Goodness-of-fit Tests.
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Model validation: Graphical Method

« F(1;0): CDF

 P-P (Probability-Probability) Plot

* Complete Data

Lifetimes of n items: x, . .., X,.

Corresponding ordered observations: Xy, . - ., X(x)-

Plot F(x();0) vs. =23, i = 1,2,...,n. 6 = MLE of 0. =%3 is called
plotting position.

If the parametric model is appropriate the points should lie around a straight
line.

Exponential distribution: Plot 1 — e~ @ vs. =93,

Weibull distribution: 1 — =" vs. =03,
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P-P Plot: Right Censored Data

* Observations: (x1,91), ..., (X, 0,)

* Lett) < t,--- < 1 be the distinct failure times.

* Plot F(t/;0) vs. 1 =S (ti+),i = 1,2, ..., k. Sxu(t) is the Kaplan-Meier
estimator of S(z).

* If the parametric model is appropriate the points should lie around a
straight line.

« Exponential distribution: Plot 1 — e~ i vs. 1 — Sen(ti+)

« Weibull distribution: 1 — e~ )" vs. 1 — Sy (1i)
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Q-Q Plot: Complete Data

Lifetimes of n items: x1, ..., X,.

Corresponding ordered observations: x(yy, - . . , X(n)-

Plot F~1(=23:0) vs. x(y, i = 1,2,...,n. § =MLE of 6. =2 is called
plotting position.

If the parametric model is appropriate the points should lie around a
straight line.

Exponential distribution: Plot — In(1 — =22) vs. x(;).

Weibull distribution:
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Q-Q Plot: Censored Data

* Observations: (x1,01), ..., (X, 0,)

* Letty < t--- < t be the distinct failure times.

« Plot F' (1 — Seu(ti4):0) vs. ti,i = 1,2,.. ., n.

* Exponential distribution: Plot —% In(Se(ti+)) vs. 1.

* Weibull distribution:
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Two-sample /K-sample problem

The problem of comparing survival experience of two or more groups is
an important issue in biomedical studies.

For example

- A diabetologist may wish to compare the retinopathy-free time of two
groups of diabetic patients.

- A clinical oncologist may be interested in comparing the ability of two
or more treatments to prolong life or maintain health.

These differences can be illustrated by drawing graphs of the estimated
survivorship functions, but that gives only a rough idea of the difference
between the distributions.

It does not reveal whether the differences are significant or merely chance
variations. So a statistical test is necessary.
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Two-sample Problem: Log-Rank Test

* Test whether the survival functions of two groups (say treatments) are
identical.

* To test whether two samples could have arisen from identical survival
function. Hy : S (¢) = S»(¢) against Hy : S;(t) # S»(¢)

* We observe the data as follows
Group 1: {(xyj, o) j=1,2,--- ,m}
Group 2: {(x2,09))| j=1,2,--- ,m}

* -t; = Time of the jth failure time (across group)
- dij = Number of failures for group 1 at time ¢
- dpj = Number of failures for group 2 at time ¢

- n1; = Number risk for group 1 prior to time ¢
- np; = Number risk for group 2 prior to time ¢;

SQC & OR Unit Indian Statistical Institute, Kolkata



Two-sample Problem: Log-Rank Test

+ At j™ death time we have the following table.

Number of Number of

Group Deaths Survivor  Total
1 dl j nyj — d] j nyj
2 dzj ny; — d]j ny;

Total dj n; — dj n;

* Construct similar table corresponding to other death/failure times.
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Two-sample Problem: Log-Rank Test

Calculate the following:
di = dj + dyj, nj = ny; + nyj, ey =

01— Ey =) (dij — ey))
_ nynyd;(nj—d;)
Vlj - l/n?(,/,jll) .

Vi=3, Vy

* Test Statistic: Vo = (01 — E1)?/Vi ~ x3.

nydy;
n;

* The log-rank is sometimes called the Cox-Mantel test.

* Observed value of the log-rank statics for the leukemia example is

5 (10.251)?

Xiogrank = g7~ = 16.793 p-value = 0.00004
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Log-Rank Test: R-Code

library(survival)

treatment<- c(6, 6, 6, 7, 10, 13, 16, 22, 23, 6,9, 10, 11, 17, 19, 20, 25, 32,
32, 34, 35)

>censl<-¢(1,1,1,1,1,1,1,1,1,0,0,0,0,0, 0,0, 0, 0,0, 0, 0)

> placebo<- ¢(1, 1,2, 2,3,4,4,5,5,8,8,8,8, 11, 11, 12, 12, 15, 17, 22, 23)
> cens2 <-rep(1, 21)

> time <- c(treatment, placebo)

> status <- c(censl, cens2)

> combined <- c(rep(l, 21), rep(2, 21))

> fit <- survdiff(formula = Surv(time, status) ~ combined)

> fit Call: survdiff(formula = Surv(time, status) ~ combined)

Chisq= 16.8 on 1 degrees of freedom, p=0.00004
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Regression Models for Survival Data

* A problem frequently encountered in analyzing survival data is that of
adjusting the survival function to account for covariates.

» Consider a failure time 7' > 0 and a vector of covariates Z = (Z,, ... ..., Z,)
associated with the failure time 7.

* Z may include quantitative variables, such as blood pressure, tempera-
ture, age, weight etc. It can be qualitative, such as gender, race, treatment
etc.

* Z may be time-dependent also: Z(r) = (Z(t),...,Z,(¢))’. Example:
Serial blood pressure.

» The objective is to establish the relationship between the failure time T
and one more of the covariates.

* For example: One may be interested to compare the survival functions
of two groups using a covariate Z. Define Z =0 for Group 1 and 1 for
Group 2.
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Regression Models Contd.

» Two approaches to the modeling of covariate effects on survival have
become popular.

» The first approach is analogous to the classical linear regression ap-
proach. Here the natural logarithm of the survival time is modeled

Y=W(T)=u+BZ+oW,

where 8 = (Bi,...,[3,) is a vector of regression coefficients and W is
the error random variable.

» This model is called the accelerated failure-time model.

* It can be shown that )
S(1|2) = So(te=?%),

where S is the survival function of 7" without covariate effect.
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Proportional hazard model

* At|Z) = Mo(2)g(Z) with g(Z) > 0 and g(0) = 1.
* X\o(?) is called baseline hazard function.

* Why proportional?
Consider two individuals with respective covariates Z and Z*. Then

AtZ) _ e(2)

Atz*) — g(z7)’
which is independent of ¢. So the hazard rates are proportional.
* Normally g(Z) is taken as
8(Z) = exp(B1Z1 + - + B,Z,) = exp(B'Z).

* Then, A(¢|Z) = A\o(¢) exp(5'Z)

SQC & OR Unit Indian Statistical Institute, Kolkata



Proportional hazard model Contd.

* A(t1Z) = Xo(7) exp(5'Z)
* One can consider any parametric form of \y(7).
+ Example: \o(¢) = A, It is exponential regression model.
* Cox Proportional Hazard Model
A(t1Z) = o(r) exp(5'2),
where Ao(7) is arbitrary and unspecified.
- (B is estimated by partial likelihood method.

* Data: (x;,0;,%;)
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Proportional hazard model Contd.

% is called relative risk (RR) or hazard ratio.

- Relative risk of an individual with risk factor Z having an event as
compared to an individual with risk factor Z*.

» Example: Suppose Z; indicates the treatment effect. Z; = 1 if treatment
and Z; = 0 if placebo. All other covariates have the same value. Then

A(#Z)

A(tZ¥)

= exp(f1).

* So exp(/31) is the risk of having the event if the individual received the
treatment relative to the risk of having the event should the individual
have received the placebo.

SQC & OR Unit Indian Statistical Institute, Kolkata



Proportional Hazard Model: Example

* Consider the survival time data from 30 patients with AML (Acute myel-
ogenous leukemia). Two covariates age and cellularity status are consid-

ered.

P { 1 if patient is > 50 years old
1 p—

0 otherwise

7 1 if cellularity of marrow clot section is 100%
71 0 otherwise

* Sample Data:
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Proportional Hazard Model: Example
* Consider the Cox proportional hazard model
A(t|Z) = Xo(1) exp(BiZ1 + B222),
where () is unspecified.

* Parameters ((’s) are estimated by partial likelihood method.

Regression Analysis Result

Covariate | Regression | Standard Error | p Value | exp(coefficient)
Z 1.01 0.46 0.0013 275
Z 0.35 0.44 0.212 1.42

» The positive sign of regression coefficients indicate that the older pa-
tients (> 50 years) and patients with 100% cellularity of the narrow clot
section have a higher risk of dying
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Proportional Hazard Model: Example

» Age is significantly related to survival after adjustment for cellularity.

* The estimated risk of dying for patients at least 50 years of age is 2.75
times higher than that for patients younger than 50.

* Patients with 100% cellularity have a 42% higher risk of dying than
patients with less than 100 % cellularity.

* The relative risk for a patients who is over 50 years of age and whose
cellularity is 100% compared to patients who are younger than 50 and
whose cellularity is less than 100% = exp(1.01+0.35)=3.90

* R-code: coxph(formula = Surv(time, status) ~ Z; + Z5)
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Cox PH Model for Leukemia data: R-Code

library(survival)

treatment<- c(6, 6, 6, 7, 10, 13, 16, 22, 23, 6,9, 10, 11, 17, 19, 20, 25, 32,
32, 34, 35)

>censl<-c¢(1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0, 0, 0, 0)

> placebo<-¢(1, 1,2,2,3,4,4,5,5,8,8,8,8, 11, 11, 12, 12, 15, 17, 22, 23)
> cens2 <-rep(1, 21)

> time <- c(treatment, placebo)

> status <- c(censl, cens2)

group <- c(rep(1, 21), rep(0, 21))

> Regression <- coxph(formula = Surv(time, status) ~ group)

> Regression

Call: coxph(formula = Surv(time, status) ~ group)

Covariate | coef | exp(coef) | se(coef) z p
group -1.57 0.208 0.412 | -3.81 | 0.00014

Likelihood ratio test=16.4 on 1 df, p=5.26e-05 n= 42, number of events= 30
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