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These notes give a short introduction to Gaussian mixture models (GMMs) and the
Expectation-Maximization (EM) algorithm, first for the specific case of GMMs, and then
more generally. These notes assume you’re familiar with basic probability and basic calculus.
If you’re interested in the full derivation (Section 3), some familiarity with entropy and KL
divergence is useful but not strictly required.

The notation here is borrowed from Introduction to Probability by Bertsekas & Tsitsiklis:
random variables are represented with capital letters, values they take are represented with
lowercase letters, pX represents a probability distribution for random variable X, and pX(x)
represents the probability of value x (according to pX). We’ll also use the shorthand notation
Xn

1 to represent the sequence X1, X2, . . . , Xn, and similarly xn1 to represent x1, x2, . . . , xn.
These notes follow a development somewhat similar to the one in Pattern Recognition

and Machine Learning by Bishop.

1 Review: the Gaussian distribution

If random variable X is Gaussian, it has the following PDF:

pX(x) =
1

σ
√

2π
e−(x−µ)2/2σ2

The two parameters are µ, the mean, and σ2, the variance (σ is called the standard deviation).
We’ll use the terms “Gaussian” and “normal” interchangeably to refer to this distribution.

To save us some writing, we’ll write pX(x) = N(x;µ, σ2) to mean the same thing (where the
N stands for normal).

1.1 Parameter estimation for Gaussians: µ

Suppose we have i.i.d observations Xn
1 from a Gaussian distribution with unknown mean

µ and known variance σ2. If we want to find the maximum likelihood estimate for the
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parameter µ, we’ll find the log-likelihood, differentiate, and set it to 0.

pXn
1
(xn1 ) =

n∏
i=1

N(xi;µ, σ
2) =

n∏
i=1

1

σ
√

2π
e−(x1−µ)2/2σ2

ln pXn
1
(xn1 ) =

n∑
i=1

ln

(
1

σ
√

2π

)
− 1

2σ2
(xi − µ)2

d

dµ
ln pXn

1
(xn1 ) =

n∑
i=1

1

σ2
(xi − µ)

Setting this equal to 0, we see that the maximum likelihood estimate is µ̂ = 1
N

∑
i xi: it’s the

average of our observed samples. Notice that this estimate doesn’t depend on the variance
σ2! Even though we started off by saying it was known, its value didn’t matter.

2 Gaussian Mixture Models

A Gaussian mixture model (GMM) is useful for modeling data that comes from one of several
groups: the groups might be different from each other, but data points within the same group
can be well-modeled by a Gaussian distribution.

2.1 Examples

For example, suppose the price of a randomly chosen paperback book is normally distributed
with mean $10.00 and standard deviation $1.00. Similarly, the price of a randomly chosen
hardback is normally distributed with mean $17 and variance $1.50. Is the price of a ran-
domly chosen book normally distributed?

The answer is no. Intuitively, we can see this by looking at the fundamental property
of the normal distribution: it’s highest near the center, and quickly drops off as you get
farther away. But, the distribution of a randomly chosen book is bimodal: the center of
the distribution is near $13, but the probability of finding a book near that price is lower
than the probability of finding a book for a few dollars more or a few dollars less. This is
illustrated in Figure 1a.

Another example: the height of a randomly chosen man is normally distributed with a
mean around 5′9.5” and standard deviation around 2.5”. Similarly, the height of a randomly
chosen woman is normally distributed with a mean around 5′4.5” and standard deviation
around 2.5” 1 Is the height of a randomly chosen person normally distributed?

The answer is again no. This one is a little more deceptive: because there’s so much
overlap between the height distributions for men and for women, the overall distribution is
in fact highest at the center. But it’s still not normally distributed: it’s too wide and flat in
the center (we’ll formalize this idea in just a moment). This is illustrated in Figure 1b. These
are both examples of mixtures of Gaussians : distributions where we have several groups and

1In the metric system, the means are about 177 cm and 164 cm, and the standard deviations are about
6 cm.
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Figure 1: Two Gaussian mixture models: the component densities (which are Gaussian) are
shown in dotted red and blue lines, while the overall density (which is not) is shown as a
solid black line.

the data within each group is normally distributed. Let’s look at this a little more formally
with heights.

2.2 The model

Formally, suppose we have people numbered i = 1, . . . , n. We observe random variable
Yi ∈ R for each person’s height, and assume there’s an unobserved label Ci ∈ {M,F} for
each person representing that person’s gender 2. Here, the letter c stands for “class”. In
general, we can have any number of possible labels or classes, but we’ll limit ourselves to two
for this example. We’ll also assume that the two groups have the same known variance σ2,
but different unknown means µM and µF . The distribution for the class labels is Bernoulli:

pCi(ci) = q1(ci=M)(1− q)1(ci=F )

We’ll also assume q is known. To simplify notation later, we’ll let πM = q and πF = 1 − q,
so we can write

pCi(ci) =
∏

c∈{M,F}

π1(ci=c)
c (1)

The conditional distributions within each class are Gaussian:

pYi|Ci(yi|ci) =
∏
c

N(yi;µc, σ
2)1(ci=c) (2)

2Naive Bayes model, this is somewhat similar. However, here our features are always Gaussian, and in
the general case of more than 1 dimension, we won’t assume independence of the features.

3



2.3 Parameter estimation: a first attempt

Suppose we observe i.i.d. heights Y1 = y1, . . . , Yn = yn, and we want to find maximum
likelihood estimates for the parameters µM and µF . This is an unsupervised learning problem:
we don’t get to observe the male/female labels for our data, but we want to learn parameters
based on those labels 3

Exercise: Given the model setup in (1) and (2), compute the joint density of all the data
points pY1,...,YN (y1, . . . , yn) in terms of µM , µF , σ, and q. Take the log to find the log-
likelihood, and then differentiate with respect to µM . Why is this hard to optimize?
Solution: We’ll start with the density for a single data point Yi = yi:

pYi(yi) =
∑
ci

pCi(ci)pYi|Ci(yi|ci)

=
∑
ci

(
πcN(yi;µC , σ

2)
)
1(ci=c)

= qN(yi;µM , σ
2) + (1− q)N(yi;µF , σ

2)

Now, the joint density of all the observations is:

pY n1 (yn1 ) =
n∏
i=1

(
qN(yi;µM , σ

2) + (1− q)N(yi;µF , σ
2)
)
,

and the log-likelihood of the parameters is then

ln pY n1 (yn1 ) =
n∑
i=1

ln
(
πMN(yi;µM , σ

2) + πFN(yi;µF , σ
2)
)
, (3)

We’ve already run into a small snag: the sum prevents us from applying the log to the normal
densities inside. So, we should already be a little worried that our optimization won’t go as
smoothly as it did for the simple mean estimation we did back in Section 1.1. By symmetry,
we only need to look at one of the means; the other will follow almost the same process.
Before we dive into differentiating, we note that

d

dµ
N(x;µ, σ2) =

d

dµ

[
1

σ
√

2π
e−

(x−µ)2

2σ2

]
=

1

σ
√

2π
e−

(x−µ)2

2σ2 · 2(x− µ)

2σ2

= N(x;µ, σ2) · (x− µ)

σ2

Differentiating (3) with respect to µM , we obtain
n∑
i=1

1

πMN(yi;µM , σ2) + πFN(yi;µF , σ2)
πMN(yi;µM , σ

2)
yi − µM
σ2

= 0 (4)

At this point, we’re stuck. We have a mix of ratios of exponentials and linear terms, and
there’s no way we can solve this in closed form to get a clean maximum likelihood expression!

3Note that in a truly unsupervised setting, we wouldn’t be able to tell which one of the two was male
and which was female: we’d find two distinct clusters and have to label them based on their values after the
fact.
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2.4 Using hidden variables and the EM Algorithm

Taking a step back, what would make this computation easier? If we knew the hidden labels
Ci exactly, then it would be easy to do ML estimates for the parameters: we’d take all the
points for which Ci = M and use those to estimate µM like we did in Section 1.1, and then
repeat for the points where Ci = F to estimate µF . Motivated by this, let’s try to compute
the distribution for Ci given the observations. We’ll start with Bayes’ rule:

pCi|Yi(ci|yi) =
pYi|Ci(yi|ci)pCi(ci)

pYi(yi)

=

∏
c∈{M,F} (πcN(yi;µc, σ

2))
1(c=ci)

πMN(yi;µM , σ2) + πFN(yi;µF , σ2)
= qCi(ci) (5)

Let’s look at the posterior probability that Ci = M :

pCi|Yi(M |yi) =
πMN(yi;µM , σ

2)

πMN(yi;µM , σ2) + πFN(yi;µF , σ2)
= qCi(M) (6)

This should look very familiar: it’s one of the terms in (4)! And just like in that equation,
we have to know all the parameters in order to compute this too. We can rewrite (4) in
terms of qCi , and cheat a little by pretending it doesn’t depend on µM :

n∑
i=1

qCi(M)
yi − µM
σ2

= 0 (7)

µM =

n∑
i=1

qCi(M)yi

n∑
i=1

qCi(M)

(8)

This looks much better: µM is a weighted average of the heights, where each height is
weighted by how likely that person is to be male. By symmetry, for µF , we’d compute the
weighted average with weights qCi(F ).

So now we have a circular setup: we could easily compute the posteriors over Cn
1 if we

knew the parameters, and we could easily estimate the parameters if we knew the posterior
over Cn

1 . This naturally suggests the following strategy: we’ll fix one and solve for the other.
This approach is generally known as the EM algorithm. Informally, here’s how it works:

• First, we fix the parameters (in this case, the means µM and µF of the Gaussians) and
solve for the posterior distribution for the hidden variables (in this case, qCi , the class
labels). This is done using (6).

• Then, we fix the posterior distribution for the hidden variables (again, that’s qCi , the
class labels), and optimize the parameters (the means µM and µF ) using the expected
values of the hidden variables (in this case, the probabilities from qCi). This is done
using (4).
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• Repeat the two steps above until the values aren’t changing much (i.e., until conver-
gence).

Note that in order to get the process started, we have to initialize the parameters somehow.
In this setting, the initialization matters a lot! For example, suppose we set µM = 3′ and
µF = 5′. Then the computed posteriors qCi would all favor F over M (since most people are
closer to 5′ than 3′), and we would end up computing µF as roughly the average of all our
heights, and µM as the average of a few short people.
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Figure 2: An illustration of a special case of Jensen’s inequality: for any random variable X,
E[logX] ≥ logE[X]. Let X be a random variable with PDF as shown in red. Let Z = logX.
The center and right figures show how to construct the PDF for Z (shown in blue): because
of the log, it’s skewed towards smaller values compared to the PDF for X. logE[X] is the
point given by the center dotted black line, or E [X]. But E [logX], or E [Z], will always be
smaller (or at least will never be larger) because the log “squashes” the bigger end of the
distribution (where Z is larger) and “stretches” the smaller end (where Z is smaller).

3 The EM Algorithm: a more formal look

Note: This section assumes you have a basic familiarity with measures like entropy and
KL divergence, and how they relate to expectations of random variables. You can still
understand the algorithm itself without knowing these concepts, but the derivations depend
on understanding them.

By this point you might be wondering what the big deal is: the algorithm described
above may sound like a hack where we just arbitrarily fix some stuff and then compute other
stuff. But, as we’ll show in a few short steps, the EM algorithm is actually maximizing a
lower bound on the log likelihood (in other words, each step is guaranteed to improve our
answer until convergence). A bit more on that later, but for now let’s look at how we can
derive the algorithm a little more formally.

Suppose we have observed a random variable Y . Now suppose we also have some hidden
variable C that Y depends on. Let’s say that the distributions of C and Y have some
parameters θ that we don’t know, but are interested in finding.

In our last example, we observed heights Y = {Y1, . . . , Yn} with hidden variables (gender
labels) C = {C1, . . . , Cn} (with i.i.d. structure over Y and C), and our parameters θ were
µM and µF , the mean heights for each group.

Before we can actually derive the algorithm, we’ll need a key fact: Jensen’s inequality.
The specific case of Jensen’s inequality that we need says that:

log(E[X]) ≥ E[log(X)] (9)

For a geometric intuition of why this is true, see Figure 2. For a proof and more detail, see
Wikipedia 4 5.

4http://en.wikipedia.org/wiki/Jensen_inequality
5This figure is based on the one from the Wikipedia article, but for a concave function instead of a convex

one.
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Now we’re ready to begin: Section 3.1 goes through the derivation quickly, and Section 3.2
goes into more detail about each step.

3.1 The short verion

We want to maximize the log-likelihood:

log pY (y; θ)

(Marginalizing over C and introducing qC(c)/qC(c)) = log

(∑
c

qC(c)
pY,C(y, c; θ)

qC(c)

)

(Rewriting as an expectation) = log

(
EqC

[
pY,C(y, C; θ)

qC(C)

])
(Using Jensen’s inequality) ≥ EqC

[
log

pY,C(y, C; θ)

qC(C)

]
Let’s rearrange the last version:

EqC
[
log

pY,C(y, C; θ)

qC(C)

]
= EqC [log pY,C(y, C; θ)]− EqC [log qC(C)]

Maximizing with respect to θ will give us:

θ̂ ← argmax
θ

EqC [log pY,C(y, C; θ)]

That’s the M-step. Now we’ll rearrange a different way:

EqC
[
log

pY,C(y, C; θ)

qC(C)

]
= EqC

[
log

pY (y; θ)pC|Y (C|y; θ)

qC(C)

]
= log pY (y; θ)− EqC

[
log

qC(C)

pC|Y (C|y; θ)

]
= log pY (y; θ)−D(qC(·)||pC|Y (·|y; θ))

Maximizing with respect to qC will give us:

q̂C(·)← pC|Y (·|y; θ)

That’s the E-step.

3.2 The long version

We’ll try to do maximum likelihood. Just like we did earlier, we’ll try to compute the
log-likelihood by marginalizing over C:

log pY (y; θ) = log

(∑
c

pY,C(y, c)

)

8



Just like in Section 2.3, we’re stuck here: we can’t do much with a log of a sum. Wouldn’t
it be nice if we could swap the order of them? Well, an expectation is a special kind of sum,
and Jensen’s inequality lets us swap them if we have an expectation. So, we’ll introduce a
new distribution qC for the hidden variable C:

log pY (y; θ) (10)

(Marginalizing over C and introducing qC(c)/qC(c)) = log

(∑
c

qC(c)
pY,C(y, c; θ)

qC(c)

)

(Rewriting as an expectation) = log

(
EqC

[
pY,C(y, C; θ)

qC(C)

])
(Using Jensen’s inequality) ≥ EqC

[
log

pY,C(y, C; θ)

qC(C)

]
(11)

Using definition of conditional probability = EqC
[
log

pY (y; θ)pC|Y (C|y; θ)

qC(C)

]
(12)

Now we have a lower bound on log pY (y; θ) that we can optimize pretty easily. Since we’ve
introduced qC , we now want to maximize this quantity with respect to both θ and qC .

We’ll use (11) and (12), respectively, to do the optimizations separately. First, using (11)
to find the best parameters:

EqC
[
log

pY,C(y, C; θ)

qC(C)

]
= EqC [log pY,C(y, C; θ)]− EqC [log qC(C)]

In general, qC doesn’t depend on θ, so we’ll only care about the first term:

θ̂ ← argmax
θ

EqC [log pY,C(y, C; θ)] (13)

This is called the M-step: the M stands for maximization, since we’re maximizing with
respect to the parameters. Now, let’s find the best qC using (12).

EqC
[
log

pY (y; θ)pC|Y (C|y; θ)

qC(C)

]
= EqC [log pY (y; θ)] + EqC

[
log

pC|Y (C|y; θ)

qC(C)

]
The first term doesn’t depend on c, and the second term almost looks like a KL divergence:

= log pY (y; θ)− EqC
[
log

qC(C)

pC|Y (C|y; θ)

]
= log pY (y; θ)−D(qC(·)||pC|Y (·|y; θ)) 6 (14)

So, when maximizing this quantity, we want to make the KL divergence as small as possible.
KL divergences are always greater than or equal to 0, and they’re exactly 0 when the two
distributions are equal. So, the optimal qC is pC|Y (c|y; θ):

q̂C(c)← pC|Y (c|y; θ) (15)

6Remember that this is a lower bound on log pY (y; θ): that is, log pY (y; θ) ≥ log pY (y; θ) −
D(qC(·)||pC|Y (·|y; θ)). From this, we can see that the “gap” in the lower bound comes entirely from the
KL divergence term.
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This is called the E-step: the E stands for expectation, since we’re computing qC so that we
can use it for expectations. So, by alternating between (13) and (15), we can maximize a
lower bound on the log-likelihood. We’ve also seen from (15) that the lower bound is tight
(that is, it’s equal to the log-likelihood) when we use (15).

3.3 The algorithm

Inputs: Observation y, joint distribution pY,C(y, c; θ), conditional distribution pC|Y (c|y; θ),
initial values θ(0)

1: function EM(pY,C(y, c; θ), pC|Y (c|y; θ), θ(0))
2: for iteration t ∈ 1, 2, . . . do
3: q

(t)
C ← pC|Y (c|y; θ(t−1)) (E-step)

4: θ(t) ← argmaxθ Eq(t)C [pY,C(y, C; θ)] (M-step)

5: if θ(t) ≈ θ(t−1) then
6: return θ(t)

3.4 Example: Applying the general algorithm to GMMs

Now, let’s revisit our GMM for heights and see how we can apply the two steps. We have
the observed variable Y = {Y1, . . . , Yn}, and the hidden variable C = {C1, . . . , Cn}. For the
E-step, we have to compute the posterior distribution pC|Y (c|y), which we already did in (5)
and (6). For the M-step, we have to compute the expected joint probability.

EqC [ln pY,C(y, C)] = EqC [ln pY |C(y|C)pC(C)]

= EqC

ln
n∏
i=1

∏
c∈{M,F}

(
πcN(yi;µc, σ

2)
)
1(Ci=c)


= EqC

 n∑
i=1

∑
c∈{M,F}

1(Ci = c)
(
lnπc + lnN(yi;µc, σ

2)
)

=
n∑
i=1

∑
c∈{M,F}

EqC [1(Ci = c)]

(
lnπc + ln

1

σ
√

2π
− (yi − µc)2

2σ2

)

EqC [1(Ci = c)] is the probability that Ci is c, according to q. Now, we can differentiate with
respect to µM :

d

dµM
EqC [ln pY |C(y|C)pC(C)] =

n∑
i=1

qCi(M)

(
yi − µM
σ2

)
= 0
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This is exactly the same as what we found earlier in (7), so we know the solution will again
be the weighted average from (8):

µM =

n∑
i=1

qCi(M)yi

n∑
i=1

qCi(M)

Repeating the process for µF , we get

µF =

n∑
i=1

qCi(F )yi

n∑
i=1

qCi(F )
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