INDIAN STATISTICAL INSTITUTE

Mid-Semester of Second Semester Examination : 2015–16

Course : Bachelor of Statistics (Hons.) Subject : Numerical Analysis : BStat-I

Date : 22 February 2016	Maximum Marks : 60	Duration : 3 Hours
-------------------------	--------------------	--------------------

Attempt any two from the first three problems. In addition, attempt the bonus problem.

Problem 1

Given a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, the QR decomposition of the matrix satisfies $\mathbf{A} = \mathbf{QR}$, where $\mathbf{Q} \in \mathbb{R}^{m \times n}$ is an orthogonal matrix, and $\mathbf{R} \in \mathbb{R}^{n \times n}$ is an upper-triangular matrix.

|25|

|25|

- A. Describe an algorithm that orthogonalizes **A** through successive right multiplication by upper triangular matrices, such that $\mathbf{AR}_1\mathbf{R}_2\cdots\mathbf{R}_n = \mathbf{Q}$, and $\mathbf{R} = (\mathbf{R}_1\mathbf{R}_2\cdots\mathbf{R}_n)^{-1}$. [10]
- B. Describe an algorithm that triangularizes **A** through successive left multiplication by orthogonal matrices, such that $\mathbf{Q}_n \cdots \mathbf{Q}_2 \mathbf{Q}_1 \mathbf{A} = \mathbf{R}$, and $\mathbf{Q} = (\mathbf{Q}_n \cdots \mathbf{Q}_2 \mathbf{Q}_1)^{-1}$. [10]
- C. Which of the above two algorithms will you prefer for the QR decomposition of an arbitrary $m \times n$ real matrix **A**? Justify you answer. [5]

Problem 2

- A. Prove that all eigenvalues of a real symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ are real. [4]
- B. Suppose that $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a real symmetric matrix, having *n* distinct eigenvalues, which satisfy the ordering $|\lambda_1| > |\lambda_2| > \cdots |\lambda_n| > 0$. Describe an *iterative* algorithm to compute the largest (in absolute value) eigenvalue λ_1 of \mathbf{A} . [7]
- C. Propose a similar iterative method, by introducing a modification in the above algorithm, to compute the smallest (in absolute value) eigenvalue λ_n of **A**. [7]
- D. Given a real number σ , propose a similar iterative method, with a modification in the above algorithm, to compute the eigenvalue λ_k of **A** that is closest (in absolute value) to σ . [7]

Note: In this problem, do not use an algorithm that tries to find *all* eigenvalues of A simultaneously.

Problem 3

A. Suppose that the *full* Singular Value Decomposition of $\mathbf{A} \in \mathbb{R}^{m \times n}$ results in:

$$\mathbf{A} = \begin{bmatrix} \begin{vmatrix} & & & & \\ \mathbf{u}_1 & \cdots & \mathbf{u}_r & \cdots & \mathbf{u}_m \\ & & & & \end{vmatrix} \begin{bmatrix} \sigma_1 & & & \\ & \ddots & & 0 \\ \hline & \sigma_r & & \\ \hline & 0 & & 0 \end{bmatrix} \begin{bmatrix} & & & & & \\ \mathbf{v}_1 & \cdots & \mathbf{v}_r & \cdots & \mathbf{v}_n \\ & & & & & \end{vmatrix}^T$$

What are the dimensions of each matrix on the right-hand-side of this decomposition? Discuss the connection of these matrices with the RowSpace, ColSpace and NullSpace of A. How can you determine the Rank of A given this SVD representation? [3 + 6 + 1]

- B. As per the SVD of \mathbf{A} , determine the dimension and rank of each of the matrices $\mathbf{Z}_i = \sigma_i \mathbf{u}_i \mathbf{v}_i^T$, where $1 \leq i \leq r$. Is it possible to reconstruct \mathbf{A} given the matrices \mathbf{Z}_i for $1 \leq i \leq k$, where k is strictly less than r? If so, provide such a construction. If not, provide an *approximate* reconstruction \mathbf{A}_k of \mathbf{A} using the available matrices \mathbf{Z}_i for $1 \leq i \leq k$. Provide an expression for $||\mathbf{A} - \mathbf{A}_k||_2 = \max_{||\mathbf{x}||_2=1} ||(\mathbf{A} - \mathbf{A}_k)\mathbf{x}||_2$ in terms of the singular values σ_i . [2 + 3 + 5]
- C. The *pseudo-inverse* of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is generally expressed as $\mathbf{A}^+ = (\mathbf{A}^T \mathbf{A})^{-1} \mathbf{A}^T$. Provide a computationally simple construction of \mathbf{A}^+ from the singular value decomposition of \mathbf{A} . [5]

Bonus Problem

Represent a book in the form of an $m \times n$ real matrix **B**, where *m* is the total number of sentences in the book and *n* is the total number of distinct words in the book, such that the entry **B**[*i*, *j*] in this matrix represents the frequency of occurrence of the *j*-th word W_j in the *i*-th sentence S_i .

Importance of the words and sentences are denoted by *scores*. Score u_i of sentence S_i is proportional to the weighted sum of scores of the words in it. Score v_j of word W_j is proportional to the weighted sum of scores of the sentences it is contained in. This may be expressed as follows.

$$u_i \propto \sum_{j=1}^n \mathbf{B}[i,j] \cdot v_j$$
 for $i = 1, 2, \dots, m$ $v_j \propto \sum_{i=1}^m \mathbf{B}[i,j] \cdot u_i$ for $j = 1, 2, \dots, n$

Devise an efficient strategy to identify 10 keywords (i.e., the most important words) from the book.

[10]