
Indian Statistical Institute, Kolkata
Numerical Analysis (BStat–I)

Instructor: Sourav Sen Gupta
Scribe: Sayan Bhadra, Sinchan Snigdha Adhikary
Date of Lecture: 18 January 2016

LECTURE

2

Role of Linear Algebra in Numerical Analysis

2.1 Introduction : Why Linear Algebra?

One of the most important works of Numerical Analysis, turns out to be often of this form: find the
best approximate solution to a system of simultaneous equations AX = B. Now the B is always
the experimental observations, hence error is bound to creep in , often leading the whole system to
be inconsistent. Due to all these difficulties, the only way left to get a satisfactory solution of the
system is to try to minimise |AX −B| i.e. ,find out the solution set for which the above is closest
to zero.

For this, we need various techniques.Consider the following facts:

• Factorising a matrix in efficient ways can greatly help reduce computational time and com-
plexity.

• If we are able to know somehow what effect the matrix(the coefficients of the system of
equations) has on the vectors(the variables), then we can some sort of get a lead as how to
minimise |AX −B|.

• The variables of our system of equations often have very high probabilities of being dependent
on each other. In such cases, if we are able to corner out the biased ones(as well as how
and upon what) then minimisation can become a lot simpler as then only minimising the
independent ones would suffice, thus reducing the number of variables to deal with.

It is easy to guess now, why Linear Algebra is a part and parcel of Numerical Analysis.

2.2 A Don’t

For any analytical purpose, always avoid direct computation of A−1.This is because it not only
involves an O(n3) computational time,but also most of the time, the purpose can be served in a
shorter way without even computing it.

2.3 What does a Matrix do to a vector?

In simple words, a matrix ′transforms ′ a vector in some sense. If A is a m x n matrix, and v ∈ Rn,
then Av defines a linear transformation(T) from Rn → Rm , which satisfies the following
properties:

• T (v1 + v2) = T (v1) + T (v2)

• T (αv1) = αT (v1)∀v1, v2, α(∈ R)

We can perform a variety of operations on vectors namely reflection (w.r.t a subspace),rotation
(w.r.t the origin), scaling up or down a vector, projection on a subspace, etc.

However there is something related to this called Affine Transformation which does not follow strict
”linearity” but follows Affine linearity 1. Mathematically, this can be expressed as U(v) = Av+v0
where v0 = U(0) 6= 0. Examples include translation, rotation w.r.t a non-origin point etc.

Example: Let the vector space be R2 and the matrix be M =

(
2 3
1 2

)
w.r.t the canonical

basis. This matrix maps the basis vectors ε1, ε2 to the vectors (2, 1) & (3, 2) respectively.

Figure 2.1: The working of a matrix A

1Affine combination of n vectors {x1, . . . , xn}is of the form
n∑

i=1

αixi where
n∑

i=1

αi = 1. Affine linearity means

U(
n∑

i=1

αixi) =
n∑

i=1

αiU(xi); where
n∑

i=1

αi = 1.

L2–P2

2.4 Norms: Lengths, angles etc.

You can easily visualize a circle or a square in 2D space increase 2 to 3. Here also you can visualize
an analog, namely a sphere or a plane or a line. But can you visualize an analog in more than 3
dimensions? In 2D or 3D, you know what is meant by distance and angle. Can you visualise an
analog in 4D? Does this mean they don’t exist in higher dimensions?

The answer is given by norms. There are a variety of norms, but they are, in general defined in
the following way:

Definition 2.1. A norm on a vector space V (F = R or C) is a map x → ||x|| from V to R
satisfying the conditions

• ||x|| ≥ 0 ;equality iff x = 0

• ||αx|| = |α|.||x||

• ||x+ y|| ≤ ||x||+ ||y||

A particular class of norms is the Lp norms (p ≥ 1) 2, given by the following general formula : if
a particular vector v = (α1, . . . , αn),then

Lp =

(
n∑
i=1

|αi|p
) 1

p

e.g.

L1 =
n∑
i=1

|αi| L2 =

(
n∑
i=1

|αi|2
) 1

2

L∞ = max (|αi|)

However the corresponding notions of lengths are quite different as are evident from the unit
”circles”

Figure 2.2: The unit CIRCLE in various norms

From Fig. 2.2, we see that the unit circle is a ”circle” in case of only L2. The unit circle tends to
shrink towards the rhombic square (as in case of L1 norm) and expands towards the pink square
as p increases to ∞.

2For p < 1, the triangle inequality does not hold , hence Lp for such p is not a norm (strictly speaking)

L2–P3

2.5 Eigenvectors and Eigenvalues

While dealing with linear operators on vector spaces, have you come across the following question:

Are there any vectors which are mapped to a scalar multiple of itself?

Well, the answer is definitely yes if the field is C, but such vectors may or may not exist if the field
is R.

Definition 2.2. If a non-null vector v ∈ V satisfies Av = λv for some λ ∈ F, then v is an
eigenvector of the matrix(transformation) A w.r.t eigenvalue λ.

Example: Reflection along X-axis has eigenvectors (1, 0) & (0, 1) with respect to eigenvalues
1 & (−1) respectively.

Let matrix A have a eigenvector v w.r.t eigenvalue λ, then

Av = λv =⇒ A2v = A(λv) = λ2v

=⇒

=⇒ Akv = λkv

∴ Ak has the same eigenvector v w.r.t eigenvalue λk

Now the following question arises:

How to find out the eigenvalues for a particular given matrix A?

For this, we have to solve the following determinant3 equation for λ

det(A− λI) = 0

Remember this is only a necessary (not sufficient) condition for finding λ.The idea is that Av = λv
implies (A− λI)v = 0 . But if det(A− λI) 6= 0 then its inverse exists which would imply that v is
identically 0, a contradiction.

A common problem that is often encountered in the solving determinants approach is the huge
time complexity (O(n!)) involved solely in the determinant evaluation. Another perhaps greater
hurdle in evaluating λ (was proved by Abel namely the Abel-Ruffini theorem) is the fact that no
polynomial with degree 5 or more has a general closed form solution. But seldom are matrices less
than degree 5 in large computational practices(like those used in search engines!). In these atypical
cases, numerical analysis is our only way out.

2.6 A few things about A−1

The following statements are equivalent:
A−1 exists . . . (i)
⇔ A is a square matrix with full row and column rank . . . (ii)
⇔ R(A) = C (A) = Rn . . . (iii)

3For a better explanation of determinants ,follow the link http://mathworld.wolfram.com/Determinant.html

L2–P4

⇔{v1, . . . , vn} is a basis =⇒ {A(v1), . . . , A(vn)} is also a basis. . . . (iv)
⇔ det(A) 6= 0 . . . (v)

Outline of the proof goes as follows
(i) =⇒ (ii) : AA−1 = In = A−1A. As In has rank n , so has A and A−1

(ii) =⇒ (iii): As A is n × n, C (A) ⊆ Rn.But also dim(C (A)) = n, so C (A) = Rn. Similarly,
R(A) = Rn.
(iii) =⇒ (i):

C (A) = Rn

=⇒ ∃ {u1, . . . , un} such that Aui = εi ∀ i ∈ {1, . . . , n}
=⇒ A[u1|u2| . . . |un] = [ε1|ε2| . . . |εn] = I

=⇒ A−1exists

(i) =⇒ (iv):

n∑
i=1

αiAvi = 0

=⇒ A

(
n∑
i=1

αivi

)
= 0

=⇒
n∑
i=1

αivi = 0
(
pre-multiplying with A−1

)
=⇒ αi = 0 ∀i ∈ {1, . . . , n}

(iv) =⇒ (v): Sorry! The proof is beyond the scope , but is quite easy once the concept of
determinants has been covered in class.

(v) =⇒ (i): A−1 = adj(A)
detA

2.7 Factorisations of a Matrix

2.7.1 QR factorisation

Any square matrix A an be decomposed as

A = QR

where Q is an orthogonal matrix (its columns are orthogonal unit vectors meaning QtQ = I) and
R is an upper triangular matrix. If A is invertible, then the factorization is unique if we require
that the diagonal elements of R be positive.

Procedure: Assuming A to be full column rank, let us denote the ith column as A∗i with inner
product defined in the normal way, i.e. < v,w >= v∗w. Now using Gram–Schmidt orthogonali-
sation4 we can find a set orthonormal basis vectors {e1, . . . , en} from the set{A∗1, . . . , A∗n} such

4For a detailed description of the process check this video https://www.khanacademy.org/math/linear-algebra/

alternate_bases/orthonormal_basis/v/linear-algebra-the-gram-schmidt-process

L2–P5

that

A∗i =
i∑

j=1

< ej , A∗k > ej

Now we construct our matrix Q and R as follows:

Q = [e1, . . . , en] R′ =

< e1, A∗1 > < e1, A∗2 >, · · · < e1, A∗n >

0 < e2, A∗2 >, · · · < e2, A∗n >
...

...
. . .

...
0 0 · · · < en, A∗n >

Thus in this way we get an orthogonal matrix Q and an upper triangular matrix R′. Now, to get
our R, we have to make all the diagonal entries positive; so we perform the following operations
on R′ & Q: If < ei, ai > is negative, multiply the ith row of R′ as well as the ith column of Q
by (−1).Thus one particular characteristic of matrix R is that it has all of its diagonal elements
positive.

Now we prove the uniqueness of QR factorisation.

Let A have two QR factorisations namely Q1, R1 & Q2, R2

∴ A = Q1R1 = Q2R2

=⇒ Q−12 Q1 = R2R
−1
1 = P (say)

=⇒ P is orthogonal(from LHS) as well as Upper triangular(from RHS)

=⇒ P t is Lower triangular

=⇒ (P t)−1 is Lower triangular

Now (P t)−1 = P (as P is orthogonal). ∴ P is both Upper and Lower Triangular. ∴ P must be a
diagonal matrix.

Now I = PP t = ((a2ij)) where ((aij)) are the elements of P . So we have a2ii = 1. =⇒ aii = ±1 .

But as R1 & R2 both have positive diagonal entries (R has +ve diagonal entries =⇒ R−1 also has
positive diagonal entries) , so has P = R2R

−1
1 .

∴ P = I

=⇒ Q−12 Q1 = R2R
−1
1 = I

=⇒ Q2 = Q1 & R2 = R1 Q.e.d

2.7.2 LU factorization

In real life, we are often faced with solving a system of linear equations, in the general format
Ax = b.The layman’s technique would be to solve it using x = A−1b procedure , which from the
very beginning has been a taboo.

So what now? A very efficient solution is provided by factorizing the given (nonsingular) matrix
into a lower triangular and an upper triangular matrix in the way given below.

L2–P6

Let A be a square matrix. An LU factorization refers to the factorization of A, with proper row
or column orderings or permutations, into two factors, a lower triangular matrix L and an upper
triangular matrix U ,

A = LU

The huge benefit is achieved in the following way:

Consider the system Ax = b with LU factorization A = LU . Then we have

L Ux︸︷︷︸ = b;

=: y

∴ we can perform (a now familiar) 2-step solution procedure:
1. Solve the lower triangular system Ly = b for y by forward substitution.
2. Solve the upper triangular system Ux = y for x by back substitution.

In order to appreciate the usefulness of this approach note that the operations count for the matrix
factorization is O(m3), while that for forward and back substitution is O(m2).

Another advantage of the technique is that suppose in a setup, you have the same design matrix (A)
but different experimental values i.e. different right hand sides. In this case we need to compute
the factorization A = LU only once, and then

AX = B ⇔ LUX = B

and we proceed as before
1. Solve LY = B by many forward substitutions (in parallel).
2. Solve UX = Y by many back substitutions (in parallel).

However there can be cases when a square matrix is not factorisable into A = LU , even if it is
non-singular. For e.g. if the leading element (or some leading minor) turns out to be zero.In such
cases , we have to modify the original matrix so as to forcibly make it factorisable, i.e.

PA = LU

where P is a permutation matrix.The reason why we can multiply A with P is due to the fact that
the permutation matrix changes only the order of rows (the equations) and nothing else and this
doesn’t change the solution set.

Algorithm: 5

Initialize U = A,L = I, P = I
for (k = 1 : m− 1)
{

find i ≥ k to maximize |U(i, k)|
U(k, k : m)←→ U(i, k : m)
L(k, 1 : k − 1)←→ L(i, 1 : k − 1)
P (k, :)←→ P (i, :)
for (j = k + 1 : m)
{
5For a more detailed algorithm check this link : https://www.youtube.com/watch?v=5hO3MrzPa0A

L2–P7

L(j, k) = U(j, k)/U(k, k)
U(j, k : m) = U(j, k : m)− L(j, k)U(k, k : m)
}
}

Here A←→ B means exchange A and B and x : y implies from x to y.

There is another famous (and perhaps better) algorithm known as Crout’s Algorithm6, the discus-
sion of which is beyond the scope of this lecture.

2.7.3 Eigenvalue factorisation / diagonalisation

For this type of factorisation,the matrix A must be a square matrix. with full rank. More specifi-
cally, , if A is a n × n matrix, and qi (i ∈ {1 : k − 1}) be the n distinct eigenvectors(a must for
this type of factorisation), then A can be factorised into

A = QΛQ−1

where Q is the square n×n matrix whose ith column is the eigenvector qi of A and Λ is the diagonal
matrix whose diagonal elements are the corresponding eigenvalues, i.e., Λii = λi.

Now the question is, why do we do this type of decomposition? These are the following benefits:

• It is the only form that helps us with the intuitive application of matrices.

Let us look at a special property of this factorisation:

A = QΛQ−1

=⇒ A2 = QΛQ−1QΛQ−1

= QΛ(Q−1Q)ΛQ−1

= QΛ2Q−1 (as QQ−1 = I)

=⇒ Ak = QΛkQ−1 (similarly using induction)

What does a matrix, in general, do to a space? Scales it. It scales a vector(say v) to Av.
Now what if we further scale the space,i.e. A(Av)? Intuitively , only the magnitude of scaling
should change, not the directions right? This is what it exactly does, as is quite evident from
the above property: only the scaling factor of each direction gets changed, not the directions
themselves!

• It helps in reducing the number of working dimensions in high-dimensional vector spaces.

This factorisation clearly tells the amount of scaling the matrix does (the λi’s) to the different
(orthogonal) directions (the eigenvectors of Q). If we sort them (the λi’s) there may be seen
a huge difference between the scaling the matrix does in different directions.

What we mean is this: say in a 100 dimensional space, the first 20 dimensions get scaled by
(say) above 1 and the rest by less than one. With such a matrix, if the space is scaled a
huge number of times(as is often required), then those 80 dimension will some sort of remain
unaffected by the matrix, while the initial 20 will dominate.

6A detailed description of Crout’s algorithm can be found in Wikipedia or http://faculty.ksu.edu.sa/Almutaz/
Documents/Summer-2010/ChE-401/LU_decomposition.pdf

L2–P8

So it isn’t worthwhile working with all the 100 dimensions and trying to solve 100 degree
polynomials. Instead we can, sort of, throw the worthless dimensions out, i.e. neglect those
eigenvectors (and corresponding eigenvalues) which are very less scaled. Just think of how
much easier it is to work with 20 rather than with 100!

This breaking up of a matrix into the scaling part and the direction part is only possible
via eigenvalue decomposition.

• Another benefit, whose description, perhaps, is somewhat out of our scope ,is related to matrix
exponentials.7

Singular Value Decomposition In a nutshell, the SVD is a more general form of factorisaion;
namely given any rectangular matrix Mm×n it can be factorised into:

Mm×n = Um×ρΣρ×ρ(Vn×ρ)
∗

where V ∗ denotes the adjoint of matrix V . As obvious, eigenvalue decomposition is a special case
of this type of factorisation, where M needs to be a square matrix.Not only that, it must also be
non-singular and diagonalizable8

References

[1] Wolfram MathWorld: mathworld.wolfram.com

[2] Stack Exchange : http://math.stackexchange.com/

[3] Linear Algebra by A.Ramachandra Rao & P. Bhimsankaram

[4] YouTube videos of lectures by Justin Solomon (https://www.youtube.com/user/
justinmsolomon) and G. Strang (https://www.youtube.com/watch?v=ZK3O402wf1c&list=
PL49CF3715CB9EF31D)

7To know more about matrix exponentials, see http://mathworld.wolfram.com/MatrixExponential.html.
To know how this factorisation is useful, check(the bottom portion of) http://mathworld.wolfram.com/

EigenDecomposition.html
8refer to this link for knowing what is meant by a diagonalizable matrix https://en.wikipedia.org/wiki/

Diagonalizable_matrix

L2–P9

