
Indian Statistical Institute, Kolkata
Numerical Analysis (BStat–I)

Instructor: Sourav Sen Gupta
Scribe:
Saptarshi Chakraborty(BS1504)
Rohan Hore(BS1519)
Date of Lecture: 05 February 2016

LECTURE

6

More on SVD and Gram-Schmidt Orthogonalization

6.1 Physical Interpretation of SVD

In this section we give the physical interpretation of singular value decomposition(SVD). Before
we proceed we need the following theorem.

Theorem 6.1. The determinant of an orthogonal matrix is either +1 or −1

Proof. Since det(A) = det(AT )

1 = det(In) = det(ATA) = det(AT )det(A) = (det(A))2

=⇒ det(A) = +1or − 1

Let A = UΣV T be the svd of Am×n.To interpret svd geometrically we observe matrices U and
V T are orthogonal.Hence they preserve lengths and angles.consider the vector ~x .By multiplying
by V T we find its’ components a along the direction of v′is.Where v′is form the columns of V .Then
the matrix Σ expands the component along vi by a factor of di.Then the matrix U throws it
into the column space of A preserving the lengths and angles.

6.1.1 relation between det(A) and det(Σ)

If we assume An×n is a square matrix,then

∣∣det(A)
∣∣ =
∣∣det(U)

∣∣∣∣det(Σ)
∣∣∣∣∣V T

∣∣∣ =
∣∣det(Σ)

∣∣ =
n∏

i=1

|σi|

Physically a determinant can be interpreted as the volume of the n-cuboid formed by the
columns of A.This is equal to the product the diagonal entries of Σ.



6.2 Approximation by low rank matrices

Expanding A = UΣV T we get,

A =
l∑

i=1

σi ~ui~vi
T

where l = min{m,n}and ~ui and ~vi are the i-th column of U and V respectively.The sum goes
to l because the other terms will be zeroed out by Σ.This shows that the matrix A(say of rank
r) is the sum of matrices of rank 1 each.In practice if we drop out a few terms having small
σi,this serves as a very good approximation of A.This is called row rank approximation of the
matrix A.

6.2.1 Application of low rank approximation

One application of low rank approximation is to store high quality digital picture in small
memory.The amount of memory to store A high.Instead if we store some columns of U ,V and
some values of σi, then we require much less memory.
As a simple illustration we show the picture quality of the following pictures when we take
10,20,30 terms of the sum.(see figure 6.1)

6.3 Gram-Schmidt Process

6.3.1 Regular Gram-Schmidt process

Our first algorithm for QR decomposition is the regular Gram-Schmidt process.Assuming the
columns of the matrix Am×n be linearly independent,we can apply Gram-Schmidt orthogonal-
ization process to orthonormalize the columns of Am×n.To do this we multiply A by a bunch
of upper triangular matrices to do the column operations.In this way we get Q.By taking the
inverse of the bunch of upper triangular matrices, we get R.The algorithm for regular Gram-
Schmidt process is as follows.
function Gram-Schmidt (~v1, ~v2, ..., ~vk)
compute an orthonormal basis â1, ..., âk of the span {~v1, ~v2, ..., ~vk}
Assumes {~v1, ~v2, ..., ~vk} are linearly independent. â1 = ~v1/‖~v1‖
for(i in 2:k)
~p = ~0
for(j in 1:1)
~p = ~p+ (~vi.âj)âj
~r = ~vi − ~p
âi = ~r/‖~r‖ return{â1, ..., âk}

6.3.2 modified gram-Schmidt process

Here also,initially we have the column vectors ~v1,~v2.. ~vn and we go on finding the orthonormal
vectors q̂1,q̂2...q̂n but here once we get one of the orthonormal vectors(say q̂i) we will immedi-
ately project q̂i out of the remaining column vectors ~vi+1, ~v1+2 and so on.
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Figure 6.1: (Clockwise)picture having 10,20,30 principal components respectively and the orig-
inal picture

6.3.2.1 Algorithm For Modified Gram-Schmidt Process

Thus the algorithm for performing the modified gram Schmidt process can be understood by
this algorithm written using R language:

for(i in 1:k)~vi= rnorm(n,mean=0,sd=1)
computes an orthonormal basis q̂1, .....q̂k for the input ~v1, ..... ~vk
Assumes ~v1, ..... ~vk linearly independent
for(i in 1:k)q̂i = ~vi/norm(~vi, type = ”F”)
for(j in i+1:k)~vj = ~vj − (〈~vj .q̂i〉) ∗ q̂i
return( q̂1, ....q̂k)

6.3.3 comparison between the Gram-Schmidt Process

The Gram-Schmidt algorithm sometimes is not good .For instance, due to rounding and other
issues,sometimes q̂i ’s are not completely orthogonal after the projection step. Our projection
formula for finding ~p within the algorithm, however, only works when the q̂i’s are orthogonal.
For this reason, in the presence of rounding, the projection ~p of ~pi becomes less accurate.
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One way to solve this issue is the ”modified Gram-Schmidt” algorithm which has similar running
time but makes a subtle change in the way projections are computed. Rather than computing
the projection ~p in each iteration ’i’ onto span [q̂i; : : : ; q̂i−1], as soon as q̂i is computed it is
projected out of [ ~pi+1; : : : ; ~pk] subsequently. we never have to consider q̂i again. This way,
even if the basis is not completely orthogonal due to rounding, the projection step is valid since
it only projects onto one q̂i at a time. In the absence of rounding, modified Gram-Schmidt and
regular Gram-Schmidt generate identical output.But,in terms of machine computation ”MGS”
is better.

6.3.4 Drawbacks of Gram-Schmidt Process

if any two of the input vectors i.e. ~vi and ~vj of the input vectors are very close,then that will
turn the Gram-Schmidt process unstable.
Suppose,we provide two vectors v1=(1,1) and v2 = (1 + ε, 1) where ε << 1.Then one reasonable
basis of span[v1,v2] can be [(0, 1)t,(1, 0)t] But,if we apply Gram-Schmidt process we obtain
q̂1 = ~v1/‖~vi‖ = (1/

√
2) ∗ (1, 1)t

~p = ((2 + ε)/2) ∗ (1, 1)t

~r=~v2-~p = (1/2) ∗ (ε,−ε)t
‖~r‖=(1/

√
2) ∗ ε

So,computing q̂2 =(1/
√

2)*(1,−1)t needs division by a very small number of o(ε)which leads us
to unstable numerical operation.
Thus,in these cases we should avoid applying Gram-Schmidt process.

6.4 QR decomposition

We can do QR decomposition by Gram-Schmidt Process.Consider the columns of The given
matrix(Say,A(mxn))as the vectors v1,v2.....vn as given set of vectors.We will apply Gram-
Schmidt process to the set of vectors to get q1,q2....qn and then R will be found.Now,A may
not be full column rank matrices.In that case,we will consider only the linearly independent
columns and then will extend it.
For a full column rank matrix the R matrix can be written as:

〈x1.x2〉 〈x2.q1〉 ... 〈xm.q1〉
0 〈x2.q2〉 ... 〈xm.q2〉
0 0 .. 〈xm.qn−1〉
0 0 0 〈xm.qn〉


6.4.1 QR decomposition by other ways

The general process of QR decomposition by Gram-Schmidt can be pictorised as:
A*U1*U2*...*Un−1*Un=Q
where Q is the ultimate resultant orthogonal matrix.And U are the upper triangular matrices we
multiplied with.Thus,the R is evaluated by U−1n ,U−1n−1...U

−1
1 thus here,we are post-multiplying

A by upper-triangular matrices to get Q..but let’s try to pre multiply A by some matri-
ces to get R.Obviously,the matrices are bound to be orthogonal.Since,QT *A=R.thus,We are
multiplying A by orthogonal matrices.Now,orthogonal matrices can’t do any kind of stretch-
ing.Thus,orthogonal matrices can only do reflection and rotation.
Let’s try rotation first.
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6.4.1.1 QR decomposition by rotation

objective: all the elements below the diagonal of the kth column of the given matrices should
be made.
Thus,we want to make all the elements below the first element of column a zero.Say,the first
column of A=(a11,a12,...a1n) should be transformed by this process: A=(a11,a12,...a1n) –>
(a111,0,.....a11n)–> (a211,0,0,...a21n)–> (an−111 ,0,0....0)
Now,since rotation matrices do not perform any kind of stretching,our objective is to do a ro-
tation which performs ~v –> ‖~v‖*e1 where say e1 is the first vector of canonical basis.In case of
R2 we already know,how to do it.
now,in case of R2 we know,the rotation matrix turns out to be[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]

thus we generalised this rotation matrix in case of Rn by the process of Given’s rotation ma-
trix.Given defined the matrix G(i, j, θ) as follows:

1 0 .. .. 0
0 1 .. .. 0
: .. [c]i,i [s]i,j 0
: .. [−s]j,i [c]j,j 0
: .. .. .. 1


where c= cos(θ) and s=sin(θ) appears at the ith and jth rows and columns.

The non-zero elements of given matrix G(i, j, θ)is defined as:
gkk=1
gii=c
gjj=c
gij=s if j > i
gji=-s if j < i
the product G(i, j, θ)x means a counter clockwise rotation of x by θ radians in the (i,j)planes.
thus,we will multiply A by all G(i, j, θ) ∀ j>i.Thus,by performing all the multiplications,we
ultimately get the R matrix.Thus,we are done.

6.4.1.2 QR by reflection

So far,we have only done QR decomposition by pre-multiplying by suitable rotation matri-
ces.Now,since we started our talk with performing QR by any orthonormal matrices,now we
should think about whether it is even possible.
The answer is ”yes” and the way to do it is called ’householder transformation’.
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