
Factoring RSA Modulus Using Prime

Reconstruction from Random Known Bits

Subhamoy Maitra, Santanu Sarkar, and Sourav Sen Gupta

Applied Statistics Unit, Indian Statistical Institute,
203 B T Road, Kolkata 700 108, India

subho@isical.ac.in, santanu r@isical.ac.in, sg.sourav@gmail.com

Abstract. This paper discusses the factorization of the RSA modulus
N (i.e., N = pq, where p, q are primes of same bit size) by reconstructing
the primes from randomly known bits. The reconstruction method is a
modified brute-force search exploiting the known bits to prune wrong
branches of the search tree, thereby reducing the total search space to-
wards possible factorization. Here we revisit the work of Heninger and
Shacham in Crypto 2009 and provide a combinatorial model for the
search where some random bits of the primes are known. This shows
how one can factorize N given the knowledge of random bits in the least
significant halves of the primes. We also explain a lattice based strategy
in this direction. More importantly, we study how N can be factored
given the knowledge of some blocks of bits in the most significant halves
of the primes. We present improved theoretical result and experimental
evidences in this direction.

Keywords: Factorization, Prime reconstruction, Random known bits,
RSA.

1 Introduction

The RSA [12] public key cryptosystem uses two primes p, q (usually of the same
bit size, i.e., q < p < 2q or p < q < 2p). The RSA modulus is N = pq. The
factorization of N cannot be done efficiently on classical computational model
without the knowledge of p, q, and this provides the security of RSA. However,
there may be different possibilities to know partial information regarding the
secret parameters (through side channel attacks, say) and it is necessary to
study how that can affect the security of a cryptosystem. In addition, the basic
problem of integer factorization is of great interest in literature.

An extensive amount of research has been done in RSA factorization and we
refer the reader to the survey papers by Boneh [1] and May [10] for a complete
account. One major class of RSA attacks exploit partial knowledge of the RSA
secret keys or the primes. Rivest and Shamir [11] pioneered these attacks using
Integer Programming and factored RSA modulus given two-third of the LSBs of a
factor. This result was improved in the seminal paper [4] by Coppersmith, where
factorization of the RSA modulus could be achieved given half of the MSBs of

D.J. Bernstein and T. Lange (Eds.): AFRICACRYPT 2010, LNCS 6055, pp. 82–99, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Factoring RSA Modulus Using Prime Reconstruction 83

a factor. His method used LLL [9] lattice reduction technique to solve for small
solutions to modular equations. This method triggered a host of research in
the field of lattice based factorization, e.g., the works by Howgrave-Graham [7],
Jochemsz and May [8].

These attacks require knowledge of contiguous blocks of bits of the RSA secret
keys or the primes. In a different model, one may not get contiguous blocks,
but may gain the knowledge of random bits of the RSA secret keys through
cold boot or other side channel attacks. In [6], it has been shown how N can
be factored with the knowledge of a random subset of the bits (distributed
over small contiguous blocks) in one of the primes. Later, a similar result has
been studied by Heninger and Shacham [5] to reconstruct the RSA private keys
given a certain fraction of the bits, distributed at random. This is the work [5]
where the random bits of both the primes are considered unlike the earlier works
(e.g., [4,2,6]) where knowledge of the bits of a single prime have been exploited.

This paper studies how the least (respectively most) significant halves of the
RSA primes can be completely recovered from some amount of randomly chosen
bits from the least (respectively most) significant halves of the same. Thereafter
one can exploit the existing lattice based results towards factoring the RSA
modulus N = pq when p, q are of the same bit size. It is possible to factor
N in any one of the following cases in poly(log N) time: (i) when the most
significant half of any one of the primes is known [4, Theorem 4], (ii) when the
least significant half of any one of the primes is known [2, Corollary 2.2].

Road Map. In Section 2, we analyze the algorithm of [5] using a combinatorial
model for reconstruction. The knowledge of random prime bits and existing
lattice based method [2] allows us to factor N efficiently given certain fraction of
the bits of p and q, namely about 0.5 fraction of the bits from the least significant
halves of the primes when N is 1024 bits. In certain cases, the strategy presented
in Section 2 does not work well. To overcome this, we present a lattice based
strategy in Section 3. More importantly, we propose in Section 4 an idea to
reconstruct the upper half of a prime using the knowledge of certain fraction
of bits in p and q. Once one obtains the top half of any one of the primes, the
factorization of N is possible using existing lattice based method [4]. Theoretical
results as well as extensive experimental evidences are presented to corroborate
our claims.

2 The LSB Case: Combinatorial Analysis of [5]

In this section, we analyze the reconstruction algorithm by Heninger and
Shacham [5, Section 3] from combinatorial point of view. Though the algorithm
extends to all relations among the RSA secret keys, we shall concentrate our
attention to the primary relation N = pq for the sake of factorization. The algo-
rithm is a smart brute-force method on the total search space of unknown bits
of p and q, which prunes the solutions those are infeasible given the knowledge
of N and some random bits of the primes. Henceforth, we shall denote by lN the
bit size of N , i.e, lN = �log2 N�.

84 S. Maitra, S. Sarkar, and S. Sen Gupta

2.1 The Reconstruction Algorithm

Definition 1. Let us define X [i] to be the i-th bit of X with X [0] being the LSB.
Also define Xi to be the partial approximation of X through the bits 0 to i.

Then Algorithm 1 (described below) creates all possible pairs (pi, qi) by append-
ing (p[i], q[i]) to the partial solutions (pi−1, qi−1) and prunes the incorrect ones
by checking the validity of the available relation. A formal outline of Algorithm 1,
which retrieves the least significant t many bits of both p, q, is as follows. It is
easy to see that the correct partial solution till the t many LSBs will exist in the
set of all pairs (pt−1, qt−1) found from Algorithm 1.

Input: N, t and p[i], q[j], for some random values of i, j
Output: Contiguous t many LSBs of p, q
Initialize: i = 1 and p0 = p[0] = 1, q0 = q[0] = 1 (as both are odd);1

for all (pi−1, qi−1) do2

for all possible (p[i], q[i]) do3

pi := APPEND(p[i], pi−1);4

qi := APPEND(q[i], qi−1);5

if N ≡ piqi (mod 2i+1) then6

ADD the pair (pi, qi) at level i;7

end

end

end
if i < t − 1 then8

i := i + 1;9

GOTO Step 2;10

end
REPORT all (pt−1, qt−1) pairs;11

Algorithm 1. The search algorithm

As one may notice, there are at most 4 possible choices for (p[i], q[i]) branches
at any level i. Algorithm 1 works with all possible combinations of the bits
p[i], q[i] at level i and hence one may want to obtain a relation between p[i] and
q[i] in terms of the known values of N, pi−1, qi−1 so that it poses a constraint on
the possibilities. Heninger and Shacham [5, Section 4] uses Multivariate Hensel’s
Lemma to obtain such a relation

p[i] + q[i] ≡ (N − pi−1qi−1)[i] (mod 2). (1)

Now, this linear relation between p[i], q[i] restricts the possible choices for the
bits. Thus, at any level i, instead of 4 possibilities, the number cuts down to 2.

If we construct the search tree, then these possibilities for the bits at any
level give rise to new branches in the tree. The tree at any level i contains all
the partial solutions pi, qi up to the i-th LSB (the correct partial solution is one

Factoring RSA Modulus Using Prime Reconstruction 85

among them). It is quite natural to restrict the number of potential candidates
(i.e., the partial solutions) at any level so that the correct one can be found
easily by exhaustive search among all the solutions and the space to store all
these solutions is within certain feasible limit. This calls for restricting the width
of the search tree at each level. Let us denote the width of the tree at level i by
Wi. Now we take a look at the situations (depending on the knowledge of the
random bits of the primes) that control the branching behavior of the tree.

2.2 Growth of the Search Tree

Consider the situation where we have a pair of partials (pi−1, qi−1) and do not
have any information of (p[i], q[i]) in Step 3 of Algorithm 1. Naturally there are
4 options, (0, 0), (0, 1), (1, 0) and (1, 1) for getting (pi, qi). However, Equation (1)
and the knowledge of N , pi−1, qi−1 impose a linear dependence between p[i], q[i]
and hence restrict the number of choices to exactly 2. If (N−pi−1qi−1)[i] = 0 then
we have p[i] + q[i] ≡ 0 (mod 2) and (N − pi−1qi−1)[i] = 1 implies p[i] + q[i] ≡ 1
(mod 2). Hence the width of the tree at this level will be twice the width of the
tree at the previous one, as shown in Figure 1.

Fig. 1. Branching when both the bits p[i], q[i] are unknown

Next, let us have a look at the situation when exactly one of p[i], q[i] is known.
First, the number of branches restricts to 2 by Equation (1), as discussed before.
Moreover, the knowledge of one bit fixes the other in this relation. For example,
if one knows the value of p[i] along with N, pi−1, qi−1 in Equation (1), then q[i]
gets determined. Thus the number of choices for p[i], q[i] and hence the number
of pi, qi branches reduces to a single one in this case. This branching, which keeps
the tree-width fixed, may be illustrated as in Figure 2 (p[i] = 0 is known, say).

Though the earlier two cases are easy to understand, the situation is not so
simple when both p[i], q[i] are known. In this case, the validity of Equation (1)
comes under scrutiny. If we fit in all the values p[i], q[i], N, pi−1, qi−1 in Equation
(1) and it is satisfied, then we accept the new partial solution pi, qi at level
i and otherwise we do not. In the case where neither of the possibilities for
pi, qi generated from pi−1, qi−1 satisfy the relation, we discard the whole subtree

86 S. Maitra, S. Sarkar, and S. Sen Gupta

Fig. 2. Branching when exactly one bit of p[i], q[i] is known

rooted at pi−1, qi−1. Thus, the pruning procedure not only discards the wrong
ones at level i, but also discards subtrees from level i − 1, thereby narrowing
down the search tree. An example case (p[i] = 0 and q[i] = 1 are known, say)
may be presented as in Figure 3.

Fig. 3. Branching when both the bits p[i], q[i] are known

Based on our discussion so far, let us try to model the growth of the search
tree following Algorithm 1. As both p, q are odd, we have p[0] = 1 and q[0] = 1.
Thus the tree starts from W0 = 1 and the expansion or contraction of the tree
at each level can be modeled as follows.

– p[i] = UNKNOWN, q[i] = UNKNOWN: Wi = 2Wi−1.
– p[i] = KNOWN, q[i] = UNKNOWN: Wi = Wi−1.
– p[i] = UNKNOWN, q[i] = KNOWN: Wi = Wi−1.
– p[i] = KNOWN, q[i] = KNOWN: Wi = γiWi−1.

Here, we assume that the tree narrows down to a γi fraction (0 < γi ≤ 1) from
the earlier level if both the bits of the primes are known. One may note that
Heninger and Shacham [5, Conjecture 4.3] conjectures the average value of γi

(call it γ) to be 1
2 . We shall discuss this in more details later.

Factoring RSA Modulus Using Prime Reconstruction 87

Suppose that randomly chosen α fraction of bits of p and β fraction of bits
of q are known (by some side channel attack, e.g., cold boot). Then the joint
probability distribution table for the bits of the primes will be as follows.

↓ q[i], p[i] → UNKNOWN KNOWN

UNKNOWN (1 − α)(1 − β) α(1 − β)

KNOWN (1 − α)β αβ

As shown before, the growth of the search tree depends upon the knowledge of
the bits in the primes. Hence, we can model the growth of the tree as a recursion
on the level index i:

Wi = (1 − α)(1 − β)2Wi−1 + α(1 − β)Wi−1 + (1 − α)βWi−1 + αβγiWi−1

= (2 − α − β + αβγi)Wi−1.

If we want to restrict Wi (that is the growth of the tree) as a polynomial of
i (that is the number of level), we would like (roughly speaking) the value of
(2 − α − β + αβγi) close to 1 on an average. Considering the average value
γ (instead of γi at each level), we get, 2 − α − β + αβγ ≈ 1 which implies
1 − α − β + αβγ ≈ 0. If we assume that the same fraction of bits are known
for p and q, then α = β and we get 1 − 2α + α2γ ≈ 0 ⇒ α ≈ 1−√

1−γ
γ . If

we assume [5, Conjecture 4.3], then γ ≈ 0.5 and hence α ≈ 2 − √
2 ≈ 0.5858,

as obtained in [5, Section 4.4]. One may note that our idea is simpler compared
to the explanation in [5]. This simplification is achieved here by using average
value for γi in the recurrence relation of Wi.

The most natural strategy is to first apply Algorithm 1 to retrieve the least
significant half of any one of the primes and then apply the result of Boneh
et. al. [2, Corollary 2.2] to factorize N . One may note that [5] utilizes their
prime reconstruction algorithm to reconstruct the whole primes p, q whereas
our idea is to use lattice based results after reconstructing just one half of any
prime. This is more practical as it requires the knowledge of lesser number of
random bits of the primes, namely, just about 0.5858× 0.5 ≈ 0.3 fraction of bits
(from the LSB half) instead of 0.5858 fraction of the primes as explained in [5].
Moreover, factorization being the main objective, one need not reconstruct the
primes completely, but just requires to obtain enough information that suffices
for factoring the product N based on the existing efficient techniques. In this
direction, let us first present the following result.

2.3 Known Prime Bits: Complementary Sets for p, q

Theorem 1. Let N = pq, when p, q are primes of same bit size. Let S =
{0, . . . , �lN/4�}. Consider U ⊆ S and V = S \ U . Assume that p[i]’s for i ∈ U
and q[j]’s for j ∈ V are known. Then one can factor N in poly(log N) time.

Proof. Let us apply Algorithm 1 in this case to retrieve the bits of the primes
at each level. We shall use induction on the index of levels in this case.

88 S. Maitra, S. Sarkar, and S. Sen Gupta

For level 0, we know that p[0] = 1 and q[0] = 1. Hence, the width of the search
tree is W0 = 1 and we have a single correct partial (p0, q0). Let us suppose that
we have possible pairs of partials (pi−1, qi−1) at level i − 1, generated by Algo-
rithm 1. At level i, two cases may arise. If i ∈ U then we know p[i], N, pi−1, qi−1

which restricts the branching to a single branch and keeps the width of the
tree fixed (Wi = Wi−1). Else one must have i ∈ V (V = S \ U) and we know
q[i], N, pi−1, qi−1. This restricts the branching to a single branch as well and
keeps the width fixed (Wi = Wi−1). Hence, by induction on i, Wi = Wi−1 for
i = 0, . . . , �lN/4�. As W0 = 1, this boils down to Wi = 1 for i ≤ �lN/4�.

Thus we obtain a single correct partial pair pi, qi at level i = �lN/4� using
Algorithm 1 in O(log3 N) time (�lN/4� iterations and O(log2 N) computing time
for each iteration) and O(lN/2) space (actually we need space to store a single
partial pair at the current level). This provides us with the least significant half
of both the primes and using any one of those two, the lattice based method of [2,
Corollary 2.2] completes the factorization of N = pq in poly(log N) time. ��
It is interesting to analyze the implications of this result in a few specific cases.
An extreme case may be U = S, that is we know all the bits in the least significant
half of a single prime p and do not know any such bits for q. In this scenario, one
need not apply Algorithm 1 at all and the lattice based method in [2, Corollary
2.2] suffices for factorization. Second case is when |U | = |S| − x, i.e., missing x
bits of p at random positions. In such a case, one can use a brute force search
for these missing bits and apply lattice based factoring method [2, Corollary 2.2]
for all of the 2x possibilities, if x is small. However, for large x, e.g., x ≈ |U |, i.e.,
around half of the random bits from the least significant halves of p as well as
q are known, then the brute force strategy fails, and one must use Algorithm 1
before applying the lattice based method in [2, Corollary 2.2].

2.4 Known Prime Bits: Distributed at Random

Here we consider the case when random bits of p, q are available, lifting the
constraint V = S \U . That is, here we only consider U, V to be random subsets
of S. For 512-bit primes, we observed that knowledge of randomly chosen half of
the bits from least significant halves of p, q is sufficient to recover the complete
least significant halves of p as well as q using Algorithm 1.

Now let us present a select few of our experimental results in Table 1. The first
column represents the size of the RSA primes and the second column gives the
fraction of bits known randomly from the least significant halves of the primes
(call these αp, βq respectively). The value of t in the third column is the target
level we need to run Algorithm 1 for, and is half the size of the primes. Wt is
the final width of the search tree at the target level t. This denotes the number
of possible partial solutions for p, q at the target bit level t, whereas the next
column gives us the maximum width of the tree observed during the run of
Algorithm 1. The last column depicts the average value of the shrink ratio γ, as
we have defined earlier.

Factoring RSA Modulus Using Prime Reconstruction 89

Table 1. Experimental results corresponding to Algorithm 1

Size |p|, |q| Known αp, βq Target t Final Wt maxt
i=1 Wi Average γ

256, 256 0.5, 0.5 128 30 60 0.56
256, 256 0.5, 0.5 128 2816 5632 0.52
256, 256 0.47, 0.47 128 106 1508 0.54
256, 256 0.45, 0.45 128 6144 6144 0.49
512, 512 0.5, 0.5 256 352 928 0.53
512, 512 0.5, 0.5 256 8 256 0.55
512, 512 0.5, 0.5 256 716 3776 0.53
512, 512 0.5, 0.5 256 152 2240 0.59
512, 512 0.55, 0.45 256 37 268 0.51
512, 512 0.55, 0.45 256 64 334 0.51
512, 512 0.6, 0.4 256 1648 13528 0.55
512, 512 0.6, 0.4 256 704 5632 0.56
512, 512 0.7, 0.3 256 158 1344 0.53
512, 512 0.7, 0.3 256 47 4848 0.52
1024,1024 0.55, 0.55 512 1 352 0.53
1024,1024 0.53, 0.53 512 16 764 0.53
1024,1024 0.51, 0.51 512 138 15551 0.54
1024,1024 0.51, 0.5 512 17 4088 0.52

A few crucial observations can be made from the data presented in Table 1.
We have run the experiments for different sizes of RSA keys, and though the
theoretical requirement for the fraction of known bits (α, β) is 0.5858, we have
obtained better results when lN ≤ 2048. For 512 bit N , the knowledge of just
0.45 fraction of random bits from the least significant halves of the primes proves
to be sufficient for Algorithm 1 to retrieve the halves, whereas for 1024 and 2048
bit N , we require about 0.5 fraction of such bits. The main reason is that the
growth of the search tree increases with increasing size of the target level t. As
we have discussed before, the growth will be independent of the target if we
know 0.5858 fraction of bits instead. One may also note that for 1024 bit N , we
have obtained successful results when the fraction of bits known is not the same
for the two primes. For such skewed cases, the average requirement of known
bits stay the same, i.e, 0.5 fraction of the least significant halves. The examples
for (0.7, 0.3) in such skewed cases provides interesting results compared to the
result by Herrmann and May [6]. Knowing about 70% of the bits of one prime
is sufficient for their method to factorize N , but the runtime is exponential in
the number of blocks over which the bits are distributed. By knowing 35% of
one prime (70% from the least significant half) and 15% of the other (30% of
the least significant half), Algorithm 1 can produce significantly better results
in the same direction.

Another important point to note from the results is the average value of the
shrink ratio γ. It is conjectured in [5] that γ = 0.5. However, our experiments
clearly show that the value of γ is more than 0.5 in most (17 out of 18) of the
cases. A theoretical explanation of this anomaly may be of interest.

90 S. Maitra, S. Sarkar, and S. Sen Gupta

2.5 Known Prime Bits: Distributed in a Pattern

In addition to these results, some interesting cases appear when we consider the
knowledge of the bits to be periodic in a systematic pattern, instead of being
totally random. Suppose that the bits of the primes p, q are available in the
following pattern: none of the bits is known over a stretch of U bits, only q[i] is
known for Q bits, only p[i] is known for P bits and both p[i], q[i] are known for
K bits. This pattern of length U + P + Q + K repeats over the total number
of bits. In such a case, one may expect the growth of the tree to obey the
following heuristic model – grows in doubles for U bits, stays the same for Q+P
length and shrinks thereafter (approximately by halves, considering γ = 0.5) for
a stretch of K bits. If this model is followed strictly, one expects the growth of
the tree by a factor of 2U2−K = 2U−K over each period of the pattern. The
total number of occurrences of this pattern over the stretch of T bits is roughly

T
U+Q+P+K . Hence the width of the tree at level T may be roughly estimated by

WT ≈ [
2U−K

] T
U+Q+P+K = 2

T (U−K)
U+Q+P+K . A closer look reveals a slightly different

observation. We have expected that the tree shrinks in half if both bits are
known, which is based on the conjecture that γ ≈ 1/2 on an average. But in
practical scenario, this is not the case. So, the width WT at level T , as estimated
above, comes as an underestimate in most of the cases.

Let us consider a specific example for such a band-LSB case. The pattern
followed is [U = 5, Q = 3, P = 3, K = 5]. Using the estimation formula above,
one expects the final width of the tree at level 256 to be 1, as U = K. But in
this case, the final width turns out to be 8 instead. The reason behind this is
that the average value of γ in this experiment is 0.55 instead of 0.5.

It is natural for one to notice that the fraction of bits to be known in this band-
LSB case is (P +K)/(U+Q+P +K) for the prime p and (Q+K)/(U+Q+P +K)
for the prime q. If we choose Q = P and U = K, then this fraction is 0.5. Thus,
by knowing 50% of the bits from the least significant halves of the primes, that
is, knowing just 0.25 fraction of bits in total, Algorithm 1 can factorize N = pq
in this case. One may note that the result by Herrmann and May [6] requires the
knowledge of about 70% of the bits distributed over arbitrary number of small
blocks of a single prime. Thus, in terms of total number of bits to be known
(considering both the primes), our result is clearly better.

An extension of this idea may be applied in case of MSBs. Though we can
retrieve information about the primes from random bits at the least significant
side, we could not exploit similar information from the most significant part. But
we could do better if bands of bits are known instead of isolated random bits.
A novel idea for reconstructing primes based on such knowledge is presented in
Section 4.

3 The LSB Case: Lattice Based Technique

Consider the scenario when a long run (length u) of p[i], q[i] is not known, for
k < i ≤ k+u say, starting at the (k+1)-th bit level. In such a case, Algorithm 1

Factoring RSA Modulus Using Prime Reconstruction 91

will require large memory as the width of the tree will be at least 2u at the u-th
level. If u is large, say u ≥ 50, then it will be hard to accommodate the number
of options, which is greater than 250. We describe a lattice based method below
to handle such situation.

For basics related to lattices and solution to modular equations using lattice
techniques, one may refer to [4,7,8]. First we recall the following result from [7].

Lemma 1. Let g(x, y) ∈ Z[x, y] be a polynomial which is the sum of ω many
monomials. Suppose g(x1, y1) ≡ 0 mod n, where |x1| < X1 and |y1| < Y1. If
‖ g(xX1, yY1) ‖2 < n√

ω
, then g(x1, y1) = 0 holds over integers.

We apply resultant techniques to solve for the roots of the bivariate polyno-
mials. It may sometimes happen that the resultant between the two bivariate
polynomials is zero. There is no way to avoid this and it is a common problem
in bivariate Coppersmith method. Thus one cannot always find common roots
using this method. Though our technique works in practice as noted from the ex-
periments we perform, we formally state the following assumption, which proves
to be crucial in Theorem 2.

Assumption 1. Let {f1, f2} be two polynomials in two variables sharing com-
mon roots of the form (x1, y1). Then it is possible to find the roots efficiently by
calculating the resultant of {f1, f2}.
Now we will state and prove the main result of this section.

Theorem 2. Let N = pq where p, q are of same bit size. Suppose τlN many
least significant bits (LSBs) of p, q are unknown but the subsequent ηlN many
LSBs of both p, q are known. Then, under Assumption 1, one can recover the
τlN many unknown LSBs of p, q in poly(log N) time, if τ < η

2 .

Proof. Let p0 correspond to the known ηlN many bits of p and q0 correspond
to the known ηlN bits of q. Let p1 correspond to the unknown τlN many bits
of p and q1 correspond to the unknown τlN bits of q. Then we have (2τlN p0 +
p1)(2τlN q0 + q1) ≡ N mod (2(τ+η)lN). Let T = 2(τ+η)lN . Hence we are interested
to find the roots (p1, q1) of f(x, y) = (2τlN p0 + x)(2τlN q0 + y) − N over ZT .

Let us take X = 2τlN and Y = 2τlN . One may note that X, Y are the upper
bounds of the roots (p1, q1) of f(x, y), neglecting small constants. For a non
negative integer m, we define two sets of polynomials

gi,j(x, y) = xif j(x, y)T m−j , where j = 0, . . . , m, i = 0, . . . , m − j and
hi,j(x, y) = yif j(x, y)T m−j, where j = 0, . . . , m, i = 1, . . . , m − j.
Note that gi,j(p1, q1) ≡ 0 mod (T m) and hi,j(p1, q1) ≡ 0 mod (T m). We call

gi,j the x-shift and hi,j the y-shift polynomials, as per their respective construc-
tions following the idea of [8].

Next, we form a lattice L by taking the coefficient vectors of the shift polyno-
mials gi,j(xX, yY) and hi,j(xX, yY) as basis. One can verify that the dimension
of the lattice L is ω = (m + 1)2. The matrix containing the basis vectors of
L is lower triangular and has diagonal entries of the form X i+jY jT m−j, for

92 S. Maitra, S. Sarkar, and S. Sen Gupta

j = 0, . . . , m and i = 0, . . . , m − j, and XjY i+jT m−j for j = 0, . . . , m and
i = 1, . . . , m− j, coming from gi,j and hi,j respectively. Thus, one can calculate

det(L) =

⎡

⎣
m∏

j=0

m−j∏

i=0

X i+jY jT m−j

⎤

⎦

⎡

⎣
m∏

j=0

m−j∏

i=1

XjY i+jT m−j

⎤

⎦ = Xs1Y s2T s3

where s1 = 1
2m3 +m2 + 1

2m, s2 = 1
2m3 +m2 + 1

2m, and s3 = 2
3m3 + 3

2m2 + 5
6m.

To utilize resultant techniques and Assumption 1, we need two polynomials
f1(x, y), f2(x, y) which share the roots (p1, q1) over integers. From Lemma 1,
we know that one can find such f1(x, y), f2(x, y) using LLL lattice reduction
algorithm [9] over L when det(L) < T mω, neglecting the small constants. Given
det(L) and ω as above, the condition becomes Xs1Y s2T s3 < T m((m+1)2), i.e.,
Xs1Y s2 < T s0 , where s0 = m((m + 1)2) − s3 = 1

3m3 + 1
2m2 + 1

6m. Putting
the values of the bounds X = Y = 2τlN , and neglecting o(m3) terms, we get
τ
2 + τ

2 < τ+η
3 and thus get the required bound for τ . Now, one can find the

root (p1, q1) from f1, f2 under Assumption 1. The claimed time complexity of
poly(log N) can be achieved as

– the time complexity of the LLL lattice reduction is poly(log N); and
– given a fixed lattice dimension of small size, we get constant degree poly-

nomials and the complexity of resultant calculation is polynomial in the
sum-of-degrees of the polynomials.

This completes the proof of Theorem 2. ��

This lattice based technique complements Algorithm 1 by overcoming one of its
limitations. As we discussed before, the search tree grows two-folds each time
we do not have any information about the bits of the primes. Hence in a case
where an initial chunk of LSBs is unknown for both the primes, one can not use
Algorithm 1 for reconstruction as it would require huge storage space for the
search tree. This lattice based technique provides a feasible solution in such a
case. We present a few experimental results in Table 2 to illustrate the operation
of this technique. All the experiments have been performed in SAGE 4.1 over
Linux Ubuntu 8.04 on a Compaq machine with Dual CORE Intel(R) Pentium(R)
D CPU 1.83 GHz, 2 GB RAM and 2 MB Cache.

Table 2. Experimental runs of the Lattice Based Technique with lattice dimension 64

of Unknown # of Known Time in Seconds
bits (τ lN) bits (ηlN) LLL Algorithm Resultant Calculation Root Extraction

40 90 36.66 25.67 < 1
50 110 47.31 35.20 < 1
60 135 69.23 47.14 < 1
70 155 73.15 58.04 < 1

Factoring RSA Modulus Using Prime Reconstruction 93

The limitation of this technique is that it asks for double or more the number
of missing bits for both the primes. If one misses 60 LSBs for the primes say, this
method requires the next 120 or more bits of both the primes to be known to
reconstruct all 60 + 120 = 180 LSBs. In the practical scenario, the requirement
of bits to be known is 135 (shown in Table 2), instead of 120, as we use limited
lattice dimensions in the experiments. In all the cases mentioned above, we miss
the first τlN LSBs of the primes. If we miss the information of the bits of the
prime in a contiguous block of size τlN somewhere in the middle, after the i-th
level say, then this method offers similar solution if we have η > 2τ + 2i/lN .

4 The MSB Case: Our Method and Its Analysis

In this section, we put forward a novel idea of reconstructing the most significant
half of the primes p, q given the knowledge of some blocks of bits. To the best of
our knowledge, this has not been studied in a disciplined manner in the existing
literature. As before, N = pq, and the primes p, q are of the same bit size. For
this section of MSB reconstruction, let us propose the following definition to
make notations simpler.

Definition 2. Let us define X [i] to be the i-th most significant bit of X with
X [0] being the MSB. Also define Xi to be the partial approximation of X where
Xi shares the most significant bits 0 through i with X. Let lX denote the bit size
of X, i.e, lX = �log2 X�.

4.1 The Reconstruction Idea

The idea for reconstructing the most significant halves of the primes is quite
simple. We shall use the basic relation N = pq. If one of the primes, p say, is
known, the other one is easy to find by q = N/p. Now, if a few MSBs of one
of the primes, p say, is known, then we may obtain an approximation p′ of p.
This allows us to construct an approximation q′ = �N/p′� of the other prime q
as well. Our idea is to use the known blocks of bits of the primes in a systematic
order to repeat this approximation process until we recover half of one of the
primes. A few obvious questions may be as follows.

– How accurate are the approximations?
– How probable is the success of the reconstruction process?
– How many bits of the primes do we need to know?

We answer these questions by describing the reconstruction algorithm in Sec-
tion 4.2 and analyzing the same in Section 4.3. But first, let us present an outline
of our idea.

Suppose that we have the knowledge of MSBs {0, . . . , a} of prime p. This
allows us to construct an approximation pa of p, and hence an approximation
q′ = �N/pa� of q. Lemma 2, discussed later in Section 4.3, tells us that q′

matches q through MSBs {0, . . . , a−t−1}, i.e, q′ = qa−t−1, with some probability

94 S. Maitra, S. Sarkar, and S. Sen Gupta

depending on t. Now, if one knows the MSBs {a− t, . . . , 2a} of q, then a better
approximation q2a may be constructed using qa−t−1 and these known bits. Again,
q2a facilitates the construction of a new approximation p′ = �N/q2a�, which by
Lemma 2, satisfies p′ = p2a−t−1 with some probability depending on t. With the
knowledge of MSBs {2a − t, . . . , 3a} of p, it is once again possible to construct
a better approximation p3a of p. This process of constructing approximations is
recursed until one reconstructs the most significant half of one of the primes. A
graphical representation of the reconstruction process is illustrated in Figure 4.

Fig. 4. The feedback mechanism in MSB reconstruction

4.2 The Reconstruction Algorithm

Let S = {0, . . . , T} denote the set of bit indices from the most significant halves
of the primes. Let us assume that k = �T/a� is odd in this case. Consider
U, V ⊆ S such that U = {0, . . . , a}∪{2a− t, . . . , 3a}∪· · ·∪{(k−1)a− t, . . . , ka},
V = {a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , T}. Also consider that
p[i]’s are known for i ∈ U and q[j]’s are known for j ∈ V . Then, Algorithm 2
reconstructs T many contiguous most significant bits of the prime q.

The subroutine CORRECT used in Algorithm 2 (and Algorithm 4 later) takes
as input a partial approximation Y of X and a set of contiguous known bits,
X [i] for i ∈ Σ, say. It outputs a better approximation Z of X by correcting
the bits of the partial approximation Y using the knowledge of the known bits.
Formally, the subroutine works as described is Algorithm 3.

In the case where k = �T/a� is even, Algorithm 2 needs to be tweaked a little
to work as expected. One may consider a slightly changed version of U, V ⊆ S
such that U = {0, . . . , a} ∪ {2a − t, . . . , 3a} ∪ · · · ∪ {ka − t, . . . , T} and V =
{a− t, . . . , 2a}∪{3a− t, . . . , 4a}∪· · ·∪{(k−1)a− t, . . . , ka}. As before, p[i]’s are
known for i ∈ U and q[j]’s are known for j ∈ V . Then, Algorithm 4 reconstructs
T many contiguous most significant bits of the prime p.

4.3 Analysis of the Reconstruction Algorithm

Algorithm 2 and Algorithm 4 follow the same basic idea of reconstruction as
discussed in Section 4.1, and differs only in a minor issue regarding the practical
implementation. We have stated both the algorithms in Section 4.2 for the sake

Factoring RSA Modulus Using Prime Reconstruction 95

Input: N, T and p[i], q[j] for all i ∈ U and j ∈ V
Output: Contiguous T many MSBs of q
Initialize: p0 := 2lp−1, q0 := 2lq−1;1

pa := CORRECT(p0, p[j] for j ∈ {1, . . . , a} ⊂ U);2

qa−t := � N
pa

�;3

for i from 2 to k − 1 in steps of 2 do4

qia := CORRECT(q(i−1)a−t, q[j] for j ∈ {(i − 1)a − t, . . . , ia} ⊂ V);5

pia−t−1 := � N
qia

�;6

p(i+1)a := CORRECT(pia−t−1, p[j] for j ∈ {ia − t, . . . , (i + 1)a} ⊂ U);7

q(i+1)a−t−1 := � N
p(i+1)a

�;8

end
qT := CORRECT(qka−t−1, q[j] for j ∈ {ka − t, . . . , T} ⊂ V);9

REPORT qT ;10

Algorithm 2. The MSB reconstruction algorithm [k odd]

Input: Y and X[i] for i ∈ Σ
Output: Z, the correction of Y
for j from 0 to lX do1

if j ∈ Σ then Z[j] = X[j]; // Correct the j-th MSB if the bit X[j]2

is known

else Z[j] = Y [j]; // Keep the j-th MSB of Y as X[j] is not known

end
REPORT Z;3

Algorithm 3. Subroutine CORRECT

of completeness. But in case of the analysis and the experimental results, we
shall consider only one of them, Algorithm 2 say, without loss of generality.

Algorithm 2 requires the knowledge of at most (T − ka + 1) + k(a + t + 1) ≤
k(a+ t)+ (k+a) ≤ T (1+ t

a)+ (k +a) many bits of p and q to (probabilistically)
reconstruct T contiguous MSBs of one prime. The runtime of Algorithm 2 is
linear in terms of the number of known blocks, i.e, linear in terms of k = �T/a�.
If we set the target T = lN/4, then Algorithm 2 outputs the most significant half
of one of the primes in O(k) steps with some probability of success depending
on a and t. In this context, we propose Theorem 3 to estimate the probability
of success of Algorithm 2. Before that, let us introduce the following technical
result (Lemma 2) which is necessary to prove Theorem 3.

Lemma 2. If X and X ′ are two integers with same bit size and |X−X ′| < 2H,
then the probability that X and X ′ share lX − H − t many MSBs for some
0 ≤ t ≤ H is at least Pt = 1 − 1

2t .

Proof. We know that |X − X ′| < 2H , i.e, X = X ′ + Y or X ′ = X + Z where
0 ≤ Y, Z < 2H , say. Let us consider the case X = X ′ + Y first, and the other
case will follow by symmetry between X and X ′.

96 S. Maitra, S. Sarkar, and S. Sen Gupta

Input: N, T and p[i], q[j] for all i ∈ U and j ∈ V
Output: Contiguous T many MSBs of p
Initialize: p0 := 2lp−1, q0 := 2lq−1;1

pa := CORRECT(p0, p[j] for j ∈ {1, . . . , a} ⊂ U);2

for i from 1 to k − 3 in steps of 2 do3

qia−t−1 := � N
pia

�;4

q(i+1)a := CORRECT(qia−t−1, q[j] for j ∈ {ia − t, . . . , (i + 1)a} ⊂ V);5

p(i+1)a−t−1 := � N
q(i+1)a

�;6

p(i+2)a := CORRECT(p(i+1)a−t−1, p[j] for7

j ∈ {(i + 1)a − t, . . . , (i + 2)a} ⊂ U);
end

q(k−1)a−t−1 := � N
p(k−1)a

�;8

qka := CORRECT(q(k−1)a−t−1, q[j] for j ∈ {(k − 1)a − t, . . . , ka} ⊂ V);9

pka−t−1 := � N
qka

�;10

pT := CORRECT(pka−t−1, p[j] for j ∈ {ka − t, . . . , T} ⊂ U);11

REPORT pT ;12

Algorithm 4. The MSB reconstruction algorithm [k even]

Let us split X ′ = 2HX0 + X1. Then, clearly X = 2HX0 + (X1 + Y). The
addition of Y < 2H affects the lower part X1 directly and the carry from the
sum (X1 + Y) affects the first half X0 up to a certain level. Our goal is to find
out the probability that the carry affects less than or equal to t bits of X0 from
the lower side. Let us assume that the probability of (X1 +Y) generating a carry
bit is pc. We also know that this carry bit will propagate through the lower bits
of X0 until it hits a 0, and we can assume any bit of X0 to be 0 or 1 randomly
with equal probabilities of 1/2 each. Then, the probability of the carry bit to
propagate less than or equal to t bits of X0 from the lower side is
P [carry propagation ≤ t]

= P [no carry] +
∑t

i=1 P [carry]P [carry propagation = i]
= P [no carry] +

∑t
i=1 P [carry]P [first 0 occurs at i-th LSB of X0]

= (1 − pc) +
∑t

i=1 pc
1
2i = 1 − pc

2t .

Now, one may expect the probability of carry generated from the sum (X1+Y)
to be pc ≈ 1/2. A careful statistical modelling of the difference Y will reveal a
better estimate of pc. As we do not assume any distribution of Y here, we consider
the trivial bound pc ≤ 1. Thus the probability of X and X0, and hence X and
X ′, sharing lX − H − t many MSBs is 1 − pc

2t ≥ 1 − 1
2t . ��

At this point, we can state and prove the main result of this section, the following
theorem.

Theorem 3. Let S = {0, . . . , T} and k = �T/a� is odd. Suppose U, V ⊆ S
such that U = {0, . . . , a} ∪ {2a − t, . . . , 3a} ∪ · · · ∪ {(k − 1)a − t, . . . , ka}, V =
{a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , T}, where p[i]’s are known
for i ∈ U and q[j]’s are known for j ∈ V , as discussed before. Then, Algorithm 2

Factoring RSA Modulus Using Prime Reconstruction 97

reconstructs T many contiguous most significant bits of one of the primes cor-
rectly in O(k) steps with probability at least Pa,t(T) =

(
1 − 1

2t

)�T/a�
.

Proof. The success of Algorithm 2 relies on the correct construction of the ap-
proximations at various levels. The CORRECT function produces correct ap-
proximations with probability 1 given the known sets of bits U, V , as mentioned
before. Hence, success probability of Algorithm 2 depends on the correctness of
{qa−t−1, p2a−t−1, q3a−t−1, . . . , p(k−1)a−t−1, qka−t−1}.

Let us first consider the case p > q. We know that in such a case, as p, q are
of the same bit size, one must have

√
N/2 < q <

√
N < p <

√
2N . Suppose

that there exists an approximation pha of p, sharing the MSBs {0, . . . , ha} for
some 1 ≤ h ≤ k. In this case, |p − pha| < 2lp−ha. Using pha, one constructs
an approximation q′ = �N/pha� of q. Then we have |q − q′| ≈

∣
∣
∣N

p − N
pha

∣
∣
∣ =

N
ppha

|p − pha| < |p−pha| < 2lp−ha, as p, pha >
√

N . If pha <
√

N from the initial
approximation, we reassign pha = �√N� as a better approximation to p. The
case p < q produces an approximation q′ of q with |q−q′| < 2|p−pha| < 2lp−ha+1.

Then, we know for sure that |q − q′| < 2lp−ha+1. Thus, by Lemma 2, setting
H = lp−ha+1, we get that q and q′ share the first lp−(lp−ha+1)−t = ha−t−1
MSBs with probability at least Pt = 1− 1

2t . In other words, the probability that q′

correctly represents qha−t−1 is at least Pt = 1− 1
2t . The probability of correctness

is the same in case of the approximations of p by pga−t−1 for all 1 < g < k.
Now, the k approximations of p, q at different bit levels, as mentioned above,

can be considered independent. Hence, the probability of success of Algorithm 2
in constructing T many contiguous MSBs of q (or p in another case) is at least
Pa,t = P k

t =
(
1 − 1

2t

)k =
(
1 − 1

2t

)�T/a�
. ��

Once the most significant half of any one of the primes is known using Algo-
rithm 2, one may use a lattice based method of to factorize N = pq. In this
context, let us present the following result for factoring the RSA modulus N
using Algorithm 2.

Corollary 1. Let S = {0, . . . , lN/4} and k = �lN/4a� is odd. Suppose U, V ⊆
S such that U = {0, . . . , a} ∪ {2a − t, . . . , 3a} ∪ · · · ∪ {(k − 1)a − t, . . . , ka},
V = {a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , lN/4}, where p[i]’s are
known for i ∈ U and q[j]’s are known for j ∈ V , as discussed before. Then, one
can factor N in poly(log N) time with probability at least Pa,t =

(
1 − 1

2t

)�lN /4a�
.

Proof. By setting T = lN/4 in Theorem 3 we obtain that Algorithm 2 is able to
recover contiguous lN/4 many MSBs of one of the primes p, q in O(lN/4) steps
with probability at least Pa,t =

(
1 − 1

2t

)�lN /4a�. Since one call of CORRECT
costs O(lN), thus the total time complexity is O(log2 N).

Once we get these lN/4 MSBs, that is the complete most significant half, of one
of the primes, one can use the existing lattice based method [4] by Coppersmith
to factor N = pq in poly(log N) time. ��

98 S. Maitra, S. Sarkar, and S. Sen Gupta

4.4 Experimental Results for the Reconstruction Algorithm

We present some experimental results in Table 3 to support the claim in Theo-
rem 3. The blocksize for known bits, i.e, a, and the approximation offset t are
varied to obtain these results for lN = 1024. The target size for reconstruction is
T = 256 as the primes are 512 bits each. We have run the experiment 1000 times
for each pair of fixed parameters a, t. The first value in each cell represents the
experimental percentage of success in these cases and illustrate the practicality
of our method. The second value in each cell is the theoretical probability of
success obtained from Theorem 3.

Table 3. Percentage of success of Algorithm 2 with 512-bit p, q, i.e., lN = 1024

a t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7 t = 8 t = 9 t = 10
10 0, 0 2.5, 0.07 16.8, 3.55 41.5, 19.9 64.5, 45.2 82.1, 67.5 90.6, 82.2 95.0, 90.7 97.2, 95.2 -
20 1.8, 0.02 18.7, 3.17 44.5, 20.1 65.7, 46.1 81.9, 68.3 90.6, 82.8 94.8, 91.0 97.5, 95.4 98.5, 97.7 99.3, 97.6
40 15.5, 1.6 42.8, 17.8 66.7, 44.9 81.8, 67.9 90.8, 82.7 95.2, 91.0 97.8, 95.4 98.6, 97.7 99.3, 98.8 99.9, 99.4

60 29.1, 6.3 55.6, 31.6 75.7, 58.6 86.6, 77.2 91.7, 88.1 95.3, 93.9 97.4, 96.9 98.9, 98.4 99.5, 99.2 99.9, 99.7

80 41.9, 12.5 66.4, 42.2 82.9, 67.0 91.0, 82.4 95.7, 90.9 98.3, 95.4 99.1, 97.7 99.4, 98.8 99.7, 99.4 100, 99.7

100 50.6, 25.0 74.4, 56.2 86.6, 76.6 93.7, 87.9 97.1, 93.8 98.8, 96.9 99.6, 98.4 99.8, 99.2 99.9, 99.6 100, 99.8

One may note that our theoretical bounds on the probability (second value
in each cell) is an underestimate compared to the experimental evidences (first
value in each cell) in all the cases. This is because we have used the bound on
the probability of carry loosely as pc ≤ 1 in Lemma 2, whereas a better estimate
should have been pc ≈ 1

2 . As an example, let us check the case with a = 40, t = 3.
Here, the theoretical bound on the probability with pc ≤ 1 is 44.9% whereas with
pc = 0.5, the same bound comes as 67.9%. The experimental evidence of 66.7%
is quite clearly closer to the second one. But we could not correctly estimate the
value of pc and hence opted for a safe (conservative) margin.

The results in italic font are of special interest. In these cases one can factorize
N in poly(log N)time, with probability greater than 1

2 by knowing less than 70%
of the bits of both the primes combined, that is, by knowing approximately just
35% of the bits of each prime p, q. Note that the result by Herrmann and May [6]
requires about 70% of the bits of one of the primes in a similar case where the
known bits are distributed over small blocks. Their result factorizes N in time
exponential in the number of such blocks, whereas our method produces the
same result in time polynomial in the number of blocks.

5 Conclusion

Our work discusses the factorization of RSA modulus N by reconstructing
the primes from randomly known bits. The reconstruction method exploits the
known bits to prune wrong branches of the search tree and reduces the total
search space. We have revisited the work of Heninger and Shacham [5] in Crypto
2009 and provided a combinatorial model for the search where certain bits of the
primes are known at random. This, combined with existing lattice based tech-
niques, can factorize N given the knowledge of randomly chosen prime bits in the

Factoring RSA Modulus Using Prime Reconstruction 99

least significant halves of the primes. We also explain a lattice based strategy to
remedy one of the shortcomings of the reconstruction algorithm. Moreover, we
study how N can be factored given the knowledge of some blocks of bits in the
most significant halves of the primes. We propose an algorithm that recovers the
most significant halves of one or both the primes exploiting the known bits. An
obvious open question in this direction is to attack this problem when random
MSBs (as in the case for LSBs) instead of certain blocks are available.

Acknowledgments. The authors are grateful to the reviewers for their invalu-
able comments and suggestions. The second and third authors would like to
acknowledge the Council of Scientific and Industrial Research (CSIR) and the
Department of Information Technology (DIT), India, for supporting their respec-
tive research. The authors are thankful to Amrita Saha of Jadavpur University
for implementing the code for the LSB case in the preliminary phase of the work.

References

1. Boneh, D.: Twenty Years of Attacks on the RSA Cryptosystem. Notices of the
AMS 46(2), 203–213 (1999)

2. Boneh, D., Durfee, G., Frankel, Y.: Exposing an RSA Private Key Given a Small
Fraction of its Bits. In: Ohta, K., Pei, D. (eds.) ASIACRYPT 1998. LNCS,
vol. 1514, pp. 25–34. Springer, Heidelberg (1998)

3. Cohen, H.: A Course in Computational Algebraic Number Theory. Springer, Hei-
delberg (1996)

4. Coppersmith, D.: Small Solutions to Polynomial Equations and Low Exponent
Vulnerabilities. Journal of Cryptology 10(4), 223–260 (1997)

5. Heninger, N., Shacham, H.: Reconstructing RSA Private Keys from Random Key
Bits. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 1–17. Springer,
Heidelberg (2009)

6. Herrmann, M., May, A.: Solving Linear Equations Modulo Divisors: On Factoring
Given Any Bits. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp.
406–424. Springer, Heidelberg (2008)

7. Howgrave-Graham, N.: Finding Small Roots of Univariate Modular Equations Re-
visited. In: Darnell, M.J. (ed.) Cryptography and Coding 1997. LNCS, vol. 1355,
pp. 131–142. Springer, Heidelberg (1997)

8. Jochemsz, E., May, A.: A Strategy for Finding Roots of Multivariate Polynomials
with new Applications in Attacking RSA Variants. In: Lai, X., Chen, K. (eds.)
ASIACRYPT 2006. LNCS, vol. 4284, pp. 267–282. Springer, Heidelberg (2006)

9. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring Polynomials with Rational
Coefficients. Mathematische Annalen 261, 513–534 (1982)

10. May, A.: Using LLL-Reduction for Solving RSA and Factorization Problems: A
Survey. In: LLL+25 Conference in honour of the 25th birthday of the LLL algo-
rithm (2007), http://www.cits.rub.de/personen/may.html

11. Rivest, R.L., Shamir, A.: Efficient Factoring based on Partial Information. In: Pich-
ler, F. (ed.) EUROCRYPT 1985. LNCS, vol. 219, pp. 31–34. Springer, Heidelberg
(1986)

12. Rivest, R.L., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures
and Public Key Cryptosystems. Communications of ACM 21(2), 158–164 (1978)

http://www.cits.rub.de/personen/may.html

	Factoring RSA Modulus Using Prime Reconstruction from Random Known Bits
	Introduction
	The LSB Case: Combinatorial Analysis of [5]
	The Reconstruction Algorithm
	Growth of the Search Tree
	Known Prime Bits: Complementary Sets for p, q
	Known Prime Bits: Distributed at Random
	Known Prime Bits: Distributed in a Pattern

	The LSB Case: Lattice Based Technique
	The MSB Case: Our Method and Its Analysis
	The Reconstruction Idea
	The Reconstruction Algorithm
	Analysis of the Reconstruction Algorithm
	Experimental Results for the Reconstruction Algorithm

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

