Cryptogr. Commun. (2013) 5:19-47
DOI 10.1007/512095-012-0074-6

Designing integrated accelerator for stream ciphers
with structural similarities

Sourav Sen Gupta - Anupam Chattopadhyay -
Ayesha Khalid

Received: 15 January 2012 / Accepted: 30 August 2012 / Published online: 28 September 2012
© Springer Science+Business Media, LLC 2012

Abstract To date, the basic idea for implementing stream ciphers has been confined
to individual standalone designs. In this paper, we introduce the notion of integrated
implementation of multiple stream ciphers within a single architecture, where the
goal is to achieve area and throughput efficiency by exploiting the structural similar-
ities of the ciphers at an algorithmic level. We present two case studies to support
our idea. First, we propose the merger of SNOW 3G and ZUC stream ciphers,
which constitute a part of the 3GPP LTE-Advanced security suite. We propose
HiPAcc-LTE, a high performance integrated design that combines the two ciphers in
hardware, based on their structural similarities. The integrated architecture reduces
the area overhead significantly compared to two distinct cores, and also provides
almost double throughput in terms of keystream generation, compared with the state-
of-the-art implementations of the individual ciphers. As our second case study, we
present IntAcc-RCHC, an integrated accelerator for the stream ciphers RC4 and
HC-128. We show that the integrated accelerator achieves a slight reduction in
area without any loss in throughput compared to our standalone implementations.

This is an extended version of the conference paper [19] by Sen Gupta, Chattopadhyay and
Khalid, presented at INDOCRYPT 2011. Summary of changes: Sections 1 and 2 have been
considerably revised. Sections 3 and 4 are based on [19], with major revision in Section 4.
Sections 4.5, 4.6 and 5 are completely new contributions in this work.

S. Sen Gupta (X))
Centre of Excellence in Cryptology, Indian Statistical Institute, Kolkata, India
e-mail: sg.sourav@gmail.com

A. Chattopadhyay - A. Khalid
MPSoC Architectures, UMIC, RWTH Aachen University, Aachen, Germany

A. Chattopadhyay
e-mail: anupam@umic.rwth-aachen.de

A. Khalid
e-mail: ayesha.khalid@umic.rwth-aachen.de

@ Springer

20 Cryptogr. Commun. (2013) 5:19-47

We also achieve at least 1.5 times better throughput compared to general purpose
processors. Long term vision of this hardware integration approach for cryptographic
primitives is to build a flexible core supporting multiple designs having similar
algorithmic structures.

Keywords Stream ciphers - Integrated accelerator - ASIC - Area efficiency -
High throughput - 3GPP LTE-Advanced - SNOW 3G - ZUC. RC4 - HC-128

Mathematics Subject Classification (2010) 94A60

1 Introduction

Stream ciphers hold a major share in the world of symmetric key cryptography,
primarily due to their blazing speed of operation and simplicity of design suitable
for implementation in both software and hardware. During the last decade, an array
of stream ciphers has been developed to cater to the needs of modern day digital
communication, both in public and private sectors. Although RC4, designed in 1987,
still remains the most widely used stream cipher in the commercial domain, new
designs have emerged to address issues of higher security and platform-specific
implementation. The main initiative was taken up in the eSSTREAM project by Euro-
pean Network of Excellence in Cryptology (ECRYPT), where the goal was to build
a portfolio of modern stream ciphers in two categories—software and hardware.
The current portfolio of eSTREAM [24] contains HC-128, Rabbit, Salsa20/12 and
SOSEMANUK in the software category, and Grain vl, MICKEY v2 and Trivium in
the hardware category. Another prime motivation for new stream cipher design has
been instigated by the advent of 4G mobile technology. 3GPP LTE-Advanced [2]
has been proposed as the leading candidate for 4G mobile broadband services, and
it contains the two stream ciphers SNOW 3G and ZUC at the core of its security
architecture [1].

It is interesting to note that the design of stream ciphers follow a general trend
and frequently abides by either of the following three principles:

— pseudorandom words extracted from a regularly updated pseudorandom state,
e.g., RC4, HC-128, Rabbit,

— pseudorandom words extracted from a finite state machine (FSM) that receives
its input from a regularly updated linear feedback shift register (LFSR), e.g.,
SNOW 3G, ZUC, SOSEMANUK, and

— pseudorandom bits as output from a boolean function with inputs drawn from
a mutually interdependent or independent combination of LFSR and/or NFSR,
e.g., Grain vl, MICKEY v2, Trivium.

Among the stream ciphers mentioned earlier, Salsa20/12 is the only one that follows
a block cipher like state update which is completely different from any other design.
Apart from that, it seems that modern stream ciphers share a lot of structural
similarities, which may potentially be exploited during implementation.

@ Springer

Cryptogr. Commun. (2013) 5:19-47 21

Motivation We consider of the following problem in this direction.

If one wants to implement two or more stream ciphers on the same platform, and
if the ciphers share certain structural similarities, then how should one approach
the design of an integrated accelerator?

A general solution towards this direction is to incorporate custom instructions for
the individual ciphers into a general purpose processor and thus facilitate it to run any
cipher independently. However, this kind of an implementation may not always be
the best choice in terms of throughput and area, as a general purpose processor with
custom instructions do not provide the implementor with full freedom to explore the
design space for an optimal solution.

We approach this problem from a completely different angle. Implementing
custom instructions in a processor attempts to merge the ciphers from a hardware
implementation point of view. We take a step back, and try to merge the ciphers
from an algorithmic point of view. Once this is accomplished, one may design an
integrated accelerator for the ciphers such that each of the algorithms can be accessed
individually. This approach offers the flexibility of

(a) sharing of resources, both storage and logic,

(b) throughput vs. area optimization at the base level,
(c) optimization of mutual critical path, and

(d) combined protection against fault attacks.

The process of integration at both algorithm and hardware levels produce the
best solutions in terms of throughput and area, and provides the designer with
handles on both. The hybrid approach tries to find the common computational
kernel and add necessary flexibility layer on top of it to cover multiple algorithms.
This way, one gains in flexibility, and may also gain in terms of area and power.
In many application areas (e.g., wireless communication), flexibility is introduced
even at the cost of area in order to save power. A prominent example of this
design choice is running different algorithms to perform the same task with different
accuracy and power consumption factors. However, such a concept is not generally
explored for cryptographic designs, and to the best of our knowledge, this kind of a
hybrid approach has not yet been considered for integrated design of cryptographic
accelerators.

Contribution 1In this paper, we first take up the LTE Stream Ciphers (SNOW 3G
and ZUC) as a case study for our idea of integration. There has been a few academic
publications towards hardware implementation of the individual ciphers. Especially,
Kitsos et al [13] provide us with a high performance ASIC implementation of
SNOW 3G and recently Liu et al [14] have published an efficient FPGA based
implementation of ZUC. However, the state-of-the-art hardware implementation
of both the ciphers come from the commercial domain, especially from Elliptic
Technologies Inc. [5-10] and IP Cores Inc. [12], the established brands in the field
of hardware security solutions. In each of the above cases, the accelerators for
SNOW 3G and ZUC have been developed separately as individual cores, whereas
the ciphers are going to be used on the same platform. Moreover, the two ciphers

@ Springer

22 Cryptogr. Commun. (2013) 5:19-47

have significant structural similarities to facilitate an integrated design. This is the
driving factor behind our attempt to construct a unified accelerator that would
provide higher throughput compared to all existing designs.

We design an integrated high performance accelerator (henceforth called
HiPAcc-LTE) for SNOW 3G and ZUC (version 1.5, as in LTE Release 10), targeted
towards the 4G mobile broadband market. We merge the two ciphers within a
single core by sharing resources among them, thereby reducing the area overhead
compared to two independent implementations. HiPAcc-LTE provides almost twice
the throughput for both the ciphers compared to any existing architecture for the
individual algorithms. We also provide the user with the flexibility to choose the
‘area vs. throughput’ trade-off for a customized design. We provide a combined
fault detection and protection mechanism in HiPAcc-LTE. In case of SNOW 3G,
we provide tolerance against the known fault attack by Debraize and Corbella [3].
For ZUC, as there are no known fault attacks to date, we just leave the room for
future fault protection needs.

Furthermore in this paper, we put forward another case study of integrated accel-
erator design, considering the merger of RC4 and HC-128 at the algorithmic level as
well as in implementation. RC4 and HC-128 are both categorized as software stream
ciphers. To enhance performance of embedded systems executing such software
ciphers, custom instructions or dedicated accelerators are commonly deployed. We
propose the implementation of one such dedicated accelerator to execute both RC4
and HC-128. Our integration achieves high throughput with slight area reduction for
the accelerator compared to standalone implementations.'

Long term vision In the long run, this hardware integration approach for crypto-
graphic algorithms will probably result in a flexible core supporting multiple designs
including intermediate design points. This strategy will provide the developer to de-
sign a unified architecture with optimal performance for a number of cryptographic
primitives with similar structural and algorithmic construct. To the end user, the
integrated core presents a fast platform to design, validate and benchmark upcoming
cipher primitives as well.

Organization The technical content of this paper is organized as follows. Section 2
presents a brief overview of the ciphers SNOW 3G and ZUC. We also present some
initial observations regarding the structural similarities and dissimilarities of the two
that will help us later in their integration. Section 3 contains the first case study of our
hardware integration idea. We restructure the hardware designs of the two ciphers
SNOW 3G and ZUC to exploit the similarities to the fullest and design the combined
architecture HiPAcc-LTE. Section 4 deals with simulation, testing and synthesis of
HiPAcc-LTE. Furthermore, we provide a combined fault detection and correction
facility in HiPAcc-LTE, and present the details of our exploration towards increased
throughput using loop-unrolling in the ciphers. In Section 5, we discuss the structural

By a ‘standalone implementation’, we mean the design and analysis of a cipher when it is considered
not as a part of the integrated design. From an integrated architecture of ciphers X and Y, say, we
obtain a standalone implementation of X by removing all sequential and combinational components
that are unique to Y, and are not shared by X. Thereafter, we perform X-specific optimizations on
the rest of the architecture to get best performance for cipher X.

@ Springer

Cryptogr. Commun. (2013) 5:19-47 23

similarities of RC4 and HC-128, and construct the combined architecture IntAcc-
RCHC by restructuring the pipeline and sharing the resources between the two
ciphers. We also present the experimental results for IntAcc-RCHC in this section.
Finally, Section 6 concludes the paper by providing a future direction of research
oriented around the idea of hardware integration proposed in this paper.

2 Preliminaries

Before the main technical content of this paper, let us first recall the design of SNOW
3G, ZUC and RC4, HC-128.

2.1 Brief overview of SNOW 3G and ZUC

SNOW 3G [21] is an LFSR based stream cipher designed by ETSI-SAGE, largely
based on the cipher SNOW 2.0 [4] by Ekdahl and Johansson. The cipher generates a
keystream of 32-bit words using an LFSR of size 16 words, that is 16 x 32 = 512 bits.
The FSM of this design consists of three 32-bit registers which are updated based on
two different S-boxes S1, S2. The LFSR update function depends on a couple of field
operations (multiplication and division by field element «) and XOR combinations.
Alike most stream ciphers, SNOW 3G has two distinct modes of operation. During
the initialization mode, the LFSR is initiated using a 128-bit key and a 128-bit
initialization variable (IV), and the output of the FSM is XOR-ed with the LFSR
update function in the feedback loop for the first 32 iterations. Thereafter, in the
keystream generation mode, the output of the FSM is combined with the first LFSR
location sy to produce the output keystream word. The operation of the cipher in
keystream generation mode is shown in Fig. 1.

ZUC [22] is also an LFSR based word oriented stream cipher, designed by
the Data Assurance and Communication Security Research Center of the Chinese
Academy of Sciences (DACAS). This cipher produces a keystream of 32-bit words,
and is executed in two stages (initialization and keystream generation). The LFSR

—0—®
Q.

—0—®
”

S5 S | St | So

Fig.1 SNOW 3G cipher in keystream generation mode [21]

@ Springer

24 Cryptogr. Commun. (2013) 5:19-47

| <<< 16 |

Fig.2 ZUC cipher in keystream generation mode [22]

for ZUC consists of 16 blocks, each of length 31 bits, and the update function of
the LFSR is based on a series of modulo 23' — 1 (this is a prime) multiplications
and additions. The FSM takes as input 32-bit words constructed from the LFSR
(through a routine called Bit Reorganization or BR) and outputs a 32 bit word as
well. It consists of two 32-bit registers R1 and R2 which are updated using two
different linear functions L1, L2 and the same S-box S. The initial state of the LFSR is
constructed using a 128 bit key and a 128 bit I'V, and during the first 32 iterations, the
output of the FSM is added (modulo 23! — 1 addition after right shift by one place) to
the feedback loop for LFSR update. In the keystream generation mode, the output
of the FSM is combined with the word X3, constructed from the LFSR places sy and
s2, to produce the final output. The keystream generation mode of ZUC is illustrated
in Fig. 2.

2.2 Brief overview of RC4 and HC-128

RC4 was allegedly designed by Rivest in 1987, and it is the most widely used
commercial cipher to date. The design consists of two major components, the
Key Scheduling Algorithm (KSA) and the Pseudo-Random Generation Algorithm
(PRGA). The internal state of RC4 contains a permutation of size N = 256 words.

§ —» ROAKSA | o RC4 PRGA L,
(identity) (rounds = 256) (after KSA) (rounds = # bytes required)
i=it+1
K= =i+ s+ ki j =3+ 8l
i=0 —> Swap S[i < S[] i=0 —> Swap Sli] < S[j]
j=0 — 1T j=0 —s Z=5IS0+ sl

Fig. 3 Key-Scheduling Algo (KSA) and Pseudo-Random Generation Algo (PRGA) of RC4

@ Springer

Cryptogr. Commun. (2013) 5:19-47 25

P HC-128 KSA HC-128 PRGA)
,Q —> > P,Q —>) . > si
(rounds = 1024) (rounds = # bytes required)
(empty) (after KSA)
Build W using K, IV j =i mod 512
K — Populate P, Q using W If i < 512: update P, use S-box Q
IV —> Update P for 512 rounds 7 =0 —>»Ifi>512: update @Q, use S-box P
Update Q for 512 rounds i =1+ 1 mod 1024

Fig. 4 Key-Scheduling Algo (KSA) and Pseudo-Random Generation Algo (PRGA) of HC-128

The key K is of the same size 256 words as well. However, the original secret key is of
length typically between five to 32 words, and is repeated to form the expanded key
K. The KSA produces the initial pseudo-random permutation of RC4 by scrambling
an identity permutation using key K. The initial permutation S produced by the KSA
acts as an input to the next procedure PRGA that generates the output sequence. The
RC4 algorithms KSA and PRGA are as shown in Fig. 3 (all additions are modulo
256).

HC-128 [25] is also a state-based stream cipher, designed by Wu and later inducted
into the final eSTREAM portfolio [24]. Internally, it consists of two secret tables
(P and Q). Each table contains 512 number of 32-bit words. Initially, the 128-bit
key and 128-bit IV is used to populate these tables, and then the key-scheduling
routine is performed to update the initial states. For each state update one 32-bit
word in each table is updated using a non-linear update function. After 1024 steps
all elements of the tables have been updated. Thereafter in keystream generation
mode, the cipher generates one 32-bit word for each subsequent update step using a
32-bit to 32-bit mapping function. Finally a linear bit-masking function is applied to
generate an output word s;. The two message schedule functions in the hash function
SHA-256 [16] are used with the tables P and Q as S-boxes alternately. The main
components of operation, KSA and PRGA, are outlined in Fig. 4.

The individual overview of the ciphers SNOW 3G, ZUC and RC4, HC-128 helps
us identify the similarities and dissimilarities in their designs, which will lead to their
integration, as described in the next sections.

3 HiPAcc-LTE: integrated accelerator for SNOW 3G and ZUC

In this section, we present our main idea behind the architectural integration of
SNOW 3G and ZUC. First, we put the two ciphers side by side for a structural
comparison in the designs.

3.1 SNOW 3G and ZUC: structural comparison

Similarities The reader may easily spot the inherent structural similarity in the
designs of the two ciphers SNOW 3G and ZUC. This is mainly because both ciphers
are based on the same principle of combining an LFSR with an FSM, where the LFSR
feeds the next state of the FSM. In the initialization mode, the output of the FSM
contributes towards the feedback cycle of the LFSR, and in the keystream generation
mode, the FSM contributes towards the keystream.

@ Springer

26 Cryptogr. Commun. (2013) 5:19-47

Fig. 5 Top level structure of

both SNOW 3G and ZUC LFSR Update 1 LFSR Update

©— LFSR LFSR |

FSM FSM %—» z

Initialization Mode Keystream Generation Mode

A top level structure for both the ciphers can hence be represented as in Fig. 5.
The figure on the left indicates the initialization mode of operation while the figure
on the right demonstrates the operation during keystream generation. In Fig. 5,
the combination of the LFSR update and the FSM during initialization mode is
represented by C, which is either an XOR or a shift and addition modulo 23! — 1
for SNOW 3G and ZUC respectively. In the keystream generation mode, the
combination of the LFSR state with the FSM output is denoted as K, which is
an XOR for SNOW 3G and a bit reorganized XOR for ZUC. The operations are
individually presented in the previous subsections for the two ciphers. Z represents
the output keystream for both the ciphers.

The key point to observe in Fig. 5 is that we have a similar 3-layer structure
for both the ciphers SNOW 3G and ZUC. Note that we have not considered Bit
Reorganization of ZUC as a special stage, but have taken it as a part of the FSM,
thus exhibiting better structural similarity with SNOW 3G.

Dissimilarities As we probe deeper into the individual components of the design,
the dissimilarities start appearing one by one. Let us categorize the dissimilarities in
the two designs according to the main stages of the ciphers.

1. LFSR update routine is fundamentally different for the two ciphers. While
SNOW 3G relies on field multiplication/division along with XOR for the LFSR
feedback, ZUC employs addition modulo the prime p = 23! — 1. Another point
to note is that the new updated value ss is required for the next feedback in case
of ZUC, whereas SNOW 3G does not have this dependency. This creates a major
difference in designing the combined architecture.

2. The main LFSR is slightly different for the ciphers as well, although both SNOW
3G and ZUC output 32-bit words. SNOW 3G uses an LFSR of 16 words, each
of size 32 bits, whereas ZUC uses an LFSR of 16 words, each of size 31 bits.
However, the bit organization stage of ZUC builds 32 bit words from the LFSR
towards FSM update and output generation.

3. FSM operations of SNOW 3G and ZUC are quite different as well, though
they use similar resources. SNOW 3G has three registers R1, R2 and R3 where
the updation dependency Rl — R2 — R3 — RI1 is cyclic with the last edge
depending on the LFSR as well. In case of ZUC, there are only two registers
R1 and R2. The updation of each depends on its previous state as well as that of
the other register. And of course, the LFSR also feeds the state updation process,
as in the case of SNOW 3G.

In the next section, we will try to merge the designs of SNOW 3G and ZUC in such
a fashion that the similarities are exploited to the maximum extent, and the common

@ Springer

Cryptogr. Commun. (2013) 5:19-47 27

resources are shared. The dissimilarities that we have discussed above will be treated
specially for each of the ciphers. We will attempt this merger in three parts, each
corresponding to the major structural blocks of the two designs; namely, the main
LFSR, the LFSR update function and the FSM.

3.2 Integrating the main LFSR

Recall that the LFSR of SNOW 3G has 16 words of 32 bits each, while that of ZUC
has 16 words of 31 bits each. Our first goal is to share this resource among the two
ciphers. If we do a naive sharing by putting the 31 bit words of ZUC in the same
containers as those for the 32 bit words of SNOW 3G, 1 bit per word is left unused
in ZUC. Hence, our first target was to utilize this bit in such a way that reduces the
critical path in the overall implementation.

Motivation In Section 4, while discussing the pipeline structure, we will note that the
critical path flows through the output channel, that is, through the bit reorganization
for 515, 514 and sy, 59, and the FSM output of W. In fact, bit reorganization is also
required for the FSM register update process. Keeping this in mind, we tried to
remove the bit reorganization process from the FSM.

Restructuring the LFSR In this direction, we construct the LFSR as 32 registers of
16 bits each. The 32 bit words for SNOW 3G would be split in halves and stored
in the LFSR registers naturally. For ZUC, we split the 31 bit words in ‘top 16 bit’
and ‘bottom 16 bit’ pieces, and store them individually in the 16 bit LFSR registers.
The organization of bits is shown in the middle column of Fig. 6, where the two blocks
share the center-most bit of the 31 bit original word. Notice that we do not require the
bit reorganization any more in the FSM operation, as it reduces to simple read from
two separate registers in our construction. The modified bit reorganization model is
illustrated in Fig. 6.

However, note that the LFSR update function of ZUC uses the 31 bit words for
the modulo 23! — 1 addition. Thus, we have actually moved the bit reorganization
stage to the LFSR update stage instead of keeping it in the FSM. The effects of our
design choices will be discussed later in Remark 1.

3.3 Integrating the FSM

Although the FSM of the two ciphers do not operate the same way, they share
similar physical resources. Thus, our main goal for the integrated design is to share

Fig. 6 Modified bit

reorganization for ZUC after .] D:l Original LFSR Words | .D I:ID
LFSR integration — ;
[W |
(N W "I K L1 WL
W - [
Modified LFSR Words

Original BR Modified BR

@ Springer

28 Cryptogr. Commun. (2013) 5:19-47

all possible resources between them. Note that the bit reorganization stage is not
present in the ZUC FSM any more, due to our LFSR reconstruction.

Register sharing One can straight away spot the registers R1, R2 and R3 for
potential sharing. We share R1 and R2 between SNOW 3G and ZUC, while R3
is needed only for the former. If required, R3 can be utilized in ZUC for providing
additional buffer towards fault protection, discussed in Section 4.

Sharing the memory During the FSM register update process, both SNOW 3G and
ZUC use S-box lookup. In the software version of the ciphers, SNOW 3G [21] uses
Sk, Sp and ZUC [22] uses Sy, S;. However, for efficient hardware implementation
of SNOW 3G with memory access, we choose to use the tables S1_TO0, S1_T1, ...,
S2_T3, as prescribed in the specifications [21]. This saves a lot of computations after
the memory read, and hence reduces the critical path to a considerable extent. We
store the eight tables in a data memory of size 8§ KByte.

For ZUC, however, we can not bypass the lookup to Sy and S;. But one may
note that these tables are accessed four times each during the FSM update. So, to
parallelize the memory access, we store four copies of each table (thus eight in total)
in the same 8 KByte of data memory that we have allocated for SNOW 3G. Note that
we are not using the full capacity of the memory in ZUC, as we store 1 byte in each
location (as in Sy and S;) whereas it is capable of accommodating 4 bytes in each (as
in S1_T0, S1_T1, ..., S2_T3).

By duplicating the ZUC tables in the eight distinct memory locations, we have
restricted the memory read requests to one call per table in each cycle of FSM.
This makes possible the sharing of memory access between SNOW 3G and ZUC
as well. We use only a single port to read from each of the tables, and that too is
shared between the ciphers for efficient use of resources. This in turn reduces the
multiplexer logic and area of the overall architecture.

Pipeline based on memory access Now that we have memory lookup during the
FSM update, we partition the pipeline according to it. We simulate the memory by
a synchronous SRAM with single-cycle read latency. To optimize the efficiency with
an allowance for the latency in memory read, we split the pipeline in two stages,
keeping the memory read request and read operations in the middle. The structure
of our initial pipeline idea is shown in Fig. 7.

This pipeline is organized around the memory access, where we perform

— the memory read request and LFSR update in Stage 1, and
— the memory read and output computation in Stage 2.

Stage 1 Stage 2

mem
request

Computation
for Register

Computation
for Address
generation

Registers
Registers

updates

Fig. 7 Pipeline structure based on memory access

@ Springer

Cryptogr. Commun. (2013) 5:19-47 29

For SNOW 3G, the computation for memory address generation is a simple parti-
tioning of R1 and R2 values in bytes. The computation for register update however,
requires an XOR after the memory read. In case of ZUC, the computation for
address generation is complicated, and depends on the LFSR as well as R1 and R2.
However, the computation for register update is a simple concatenation of the values
read from memory.

Remark 1 So far, we have made a few design choices in integrating the two ciphers.
In a nutshell, the choices provide

— reduction in the critical path by reducing the memory and LFSR read times,
— reduced critical path by moving the bit reorganization away from FSM, and
— an efficient method for combined fault protection in both the ciphers.

The effect of these choices will be reflected in the critical path and fault tolerance
mechanism, discussed later in Section 4 of this paper.

Next, we deal with the integration of the most crucial part of the two ciphers:
the LFSR update and shift operations. The final structure of the pipeline will evolve
during this phase as we deal with the intricate details in the design.

3.4 Integrating the LFSR update function

The LFSR update function is primarily different for the two ciphers. The only thing
in common is the logic for LFSR update during initialization, and this poses a big
problem with our earlier pipeline idea based on memory access (Fig. 7).

Pipeline restructuring for key initialization In the initialization mode of the two
ciphers, the FSM output W is fed back to the LFSR update logic. The update of 55
takes place based on this feedback, and in turn, this controls the next output of the
FSM (note that W depends on R1, R2 and s;5 in both ciphers). This is not a problem
in the keystream mode as the LFSR update path is independent of the output of FSM.
However, during initialization, it creates a combinational loop from Stages 2 to 1 in
our earlier pipeline organization (Fig. 7). This combinational loop in memory access
due to dependencies prohibits us from keeping the memory access and memory
read in two different stages of the pipeline. Thus, we design a new structure as
follows:

— Stage 1: Initial computation for memory access and LFSR shift.
— Stage 2: Memory read, LFSR update and subsequent memory read request.

This new pipeline structure allows us to resolve the memory access dependencies
within a single stage and the independent shift of the LFSR occurs in the other. Now,
the main goal is to orient the LFSR update logic around this pipeline structure, or to
redesign the pipeline according to the LFSR update function.

Pipeline organization for LFSR update The LFSR update logic of SNOW 3G is

easier to deal with. The update depends upon the LFSR positions s¢, s, and sy,
and also on the FSM output W during key initialization. A part of sy and sy;

@ Springer

30 Cryptogr. Commun. (2013) 5:19-47

each undergoes a field operation (MUL, and DIV, respectively), and the other
part gets XOR-ed thereafter. To reduce the combinational logic of realizing the
field operations, two lookup tables are prescribed in the specifications [21]. For an
efficient implementation in hardware, we follow this idea and store the two tables
MULgpha and DIV ,jpph, in two 1 KByte memory locations. These are also read-only
memories with single-cycle read latency. Now, we can fit the update routine for
SNOW 3G within the two stage pipeline proposed earlier.

— Stage 1: Precompute the simple XOR involving sy, s and s,;, and generate the
addresses for memory read requests to tables MULgjpna and DIV gpha.

— Stage 2: Perform memory read and XOR with the previous XOR-ed values to
complete the LFSR feedback path, run the FSM and complete the LFSR update
of 515 depending on W.

Note that this pipeline structure works both for initialization as well as keystream
generation, as it takes into account all possible values required for the LFSR update.
Thus, in terms of SNOW 3G, we stick to our 2-stage pipeline.

In case of ZUC however, the LFSR update logic is quite complicated. This is
mostly because of the additions modulo the prime p = 23! — 1. Liu et al [14] had
proposed a single adder implementation of this addition modulo prime, and this logic
has also been included in the specifications [22]. We use the same for our hardware,
at least at this initial phase. In the same line, we first try a 5-stage pipeline, similar to
the one proposed in [14] for LFSR update of ZUC.

The initial idea for 5-stage pipeline is shown as Pipeline 1 in Fig. 8. All the
adders are modulo prime, similar to the ones in [14], and the variables a, b, ¢, d, e, f

=
@
=
°
e
o
o~
@
£
[_
& Addzkﬂ
,====== LFSR [¢=~u_
| " L
< g It f g
2 L
d g

Fig. 8 Pipeline structure reorganization for LFSR update of ZUC

@ Springer

Cryptogr. Commun. (2013) 5:19-47 31

represent g, 2859, 224, 221519, 27513, 213515 (modulo p = 23! — 1) respectively. Vari-
able g denotes the FSM output W, which is added with the cumulative LFSR
feedback, and is then fed back to s;5 in the LFSR itself.

However, Pipeline 1 creates a combinational loop between Stages 5 and 4 in the
key initialization phase. The final output in Stage 5 of the addition pipeline has to
be fed back to s;5 that controls the input f in Stage 4. This loop is shown by the
curvy solid line in Fig. 8, and it occurs due to mutual dependency of FSM and LFSR
update during initialization. The authors of [14] also observed this dependency, and
they proposed the 32 rounds of key initialization to be run in software in order to
achieve one-word-per-cycle using their structure.

Our challenge was to integrate this phase into the hardware without losing the
throughput. The main motivation is to restrain the use of an external aide for the
initialization mode. There are two direct ways of resolving this issue:

1. Allow a bypass logic for the f value across the stages
2. Restructure the pipeline to merge the last two stages

We choose the second one and reorganize the pipeline. As the dependency
discussed so far occurs in between the last two stages of the pipeline, we merge those
to resolve the inter-stage combinational loop. In this case, the output f’ of this stage
is written into the s;5 location of the LFSR, and read back as f at the next iteration.
This is shown as Pipeline 2 in Fig. 8.

The reader may note that we have two adders (modulo prime p) in series at the
last stage of Pipeline 2 (Fig. 8). So, we can put two adders in any other stage as
well, without affecting the critical path. We decide to merge Stages 1 and 2 to have
two adders in parallel followed by an adder in series in the first stage. This does not
increase the critical path, which still lies in the last stage due to the two adders and
some associated combinational logic. The final structure of the LFSR update pipeline
for ZUC is shown in Fig. 8 as Pipeline 3. In the next section, we design the integrated
pipeline structure combining all components.

3.5 Final design of the pipeline

In this section, we present the final pipeline structure for the integrated architecture.
In the previous sections, we have already partitioned the components into pipeline
stages as follows.

— FSM: Two stages—initial computations for address generation in the first stage,
and memory access and related computations in the second stage.

— LFSR Movement: Two stages—shift in first stage and s;5 write in second.

— LFSR Update: Two stages for SNOW 3G and three stages for ZUC.

Here, we combine all three components of SNOW 3G and ZUC and design the final
pipeline for our proposed hardware implementation, as shown in Fig. 9.

The stages of SNOW 3G and ZUC are different only in case of the LFSR update
routine, and we show these separately in the figure. The pipeline behavior of the
LFSR shift and write operations, as well the FSM precomputation and update
routines are almost same for both the ciphers, and hence we show single instances

@ Springer

32 Cryptogr. Commun. (2013) 5:19-47

Fig. 9 Final 3-stage pipeline

1 1
structure for the integrated I SNOWLFSR Update | SNOWLFSR Update
design 1 1
ZUCLFSRUpdate | | ZUCLFSRUpdate | | ZUCLFSR Update |
1 1
W eseshi sk wite ()
1 1
e ¥
Stage 1 I Stage 2 I Stage 3

of these in Fig. 9. In the next section, we discuss the practical issues with the final
ASIC implementation of our integrated hardware.

4 ASIC implementation of HiPAcc-LTE

In this work, we utilized the hardware generation environment and simulation frame-
work from LISA, the Language for Instruction-Set Architectures, for designing the
accelerator. The complete automatic generation environment is commercially avail-
able via Synopsys Processor Designer [23]. The accelerator in our case is designed
as a state machine. This allowed fast exploration of design alternatives and ease of
high level modeling for making pipelining and resource organization decisions. The
language allows full control over minute design decisions and preserves the overall
structural organization neatly in the generated hardware description [18]. This is
especially important for verifying the design costs (area, timing) and accordingly
modifying the design at high level. Such a capability of strong designer interaction
with the tool during high level synthesis is not common among automatic C to HDL
flows [17], thereby forcing designers to go through time consuming and error prone
low-level design iterations.

The gate-level synthesis was carried out using Synopsys Design Compiler Version
D-2010.03-SP4, using topographical mode for a 65 nm target technology library.
The area results are reported using equivalent 2-input NAND gates. The total lines
of LISA code for our best implementation is 1131, while the total lines of auto-
generated HDL code is 13440 for the same design. The modeling, implementation,
optimization and tests were completed over a span of two weeks.

In this section, we first discuss the issues with the critical path in our design, and
the optimizations thereof. This will be followed by a set of detailed implementation
results and comparisons with the existing designs.

4.1 Critical path

After the initial synthesis of our design using LISA modeling language, we identified
the critical path to occur in the key initialization phase of ZUC. Figure 10 depicts the
critical path using the curvy dashed line. To understand the individual components in
the critical path, let us first associate the pieces in Fig. 10 to the original initialization
routine of ZUC, as described in its specification [22]. Later, we shall perform a set of
optimizations on the design.

@ Springer

Cryptogr. Commun. (2013) 5:19-47 33

[Add 3 H Add 4 ﬁ r=t]
Add 2

W

Address

Register
Initial updates Gen.
Computation .
mem mem
. read Registers request

Stage 1 | Stage 2 ' Stage 3

Fig. 10 Critical path in the key initialization of ZUC (curvy dashed line)

ZUC key initialization routine The following is the key initialization routine of
ZUC, as per our notation and pipeline orientation. Note that the operation is the
same as in the LFSRWithInitialisationMode () function of [22].

LFSR _Key Initialization (W)

V= 215S15 + 217S13 + 221S]() + 2205‘4 + 28S0 + 509 (mod 231 — 1)
Y=v+W>» 1) (mod 23! — 1)

If Y=0, then set Y =231

Write Y to location s;5 of the LFSR

In Fig. 10, the first five adders Add one to Add five are part of the general LFSR
feedback loop in ZUC, and they compute the value

TR

v =215+ 27513 + 22510 + 2%, + 2850 + 50 (mod 23! — 1).

The LFSR is also accessed to run the FSM and the adder Add seven at the bottom
of Stage 3 computes the FSM output W = (X, @ R;) + R,, where this addition is
a normal 32-bit addition. The special operation in LFSR update of ZUC in its
initialization mode is to compute Y = v + (W > 1) (mod 23! + 1), realized by the
adder Add six on the top layer of Stage 3. If this sum Y =0, it is replaced by
Y = 23! — 1 in the ‘Check’ module of Fig. 10. Finally, this 31 bit value Y is written to
s15 of the LFSR, thus completing the LFSR update loop. The critical path, as shown
by the curvy dashed line in Fig. 10, is as follows:

LFSR Read — 32-bit Add — Modulo Add — Check — LFSR Write

In this section, we try all possible optimizations to reduce the critical path.

LFSR read optimization At first, we implemented the LFSR as a register array.
However, different locations of the LFSR are accessed at different stages of the
pipeline we have designed, and the LFSR read will be faster if we allow the individual
LFSR cells to be placed independently in the stages. This motivated us to implement
the LFSR as 32 distinct registers of size 16 bits each. Furthermore, we shadowed
the last two locations, i.e., s;5s of the LFSR, so that it can be read instantaneously
from both Stages 4 and 5. This led to a reduction in the critical path. Though this

@ Springer

34 Cryptogr. Commun. (2013) 5:19-47

optimization is targeted towards physical synthesis, the gate-level synthesis results
indicated strong improvement as well.

Modulo p adder optimization Initially, we designed the modulo p = 23' — I adder
as prescribed in [14]. This looks like the circuit on the left of Fig. 11. However, one
may bypass the multiplexer (MUX) by simply incrementing the sum by the value of
the carry bit. That is, if the carry bit is 1, the sum gets incremented by 1, and it remains
the same otherwise. The modified design (right side of Fig. 11) slightly reduces the
critical path and we replace all the modulo p adders in our design (except for Add 6)
by this modified circuit.

Check optimization The ‘Check’ block in the critical path actually has two checks
in series; one due to Add six where the increment is based on the carry bit, and the
second check is for the Y = 0 situation. We try to optimize as follows.

- Carry = 0: We just require to check if Y = 0. If so, set ¥ = 23! — 1.
— Carry = 1: We just require to set Y = Y + 1 without any further checks.

The first case is obvious, as the sum would remain unchanged if the carry is 0. In
the second case, note that the inputs v and (W > 1) to Add six are both less than or
equal to 23! — 1. Thus, the sum Y is bounded from above by 232 — 2. Even if the carry
is 1, the incremented value of sum will be bounded from above by 2°2 — 1, which can
never have the lower 31 bits all equal to 0. Thus, we do not even require the ‘Check’
block in this situation. This optimization simplifies the logic and reduces the critical
path considerably.

4.2 Performance results

After performing all the optimizations discussed in the previous section, we still
find the critical path flowing through the same components. We proceed for final
synthesis and performance results based on the current state of the design.

Table 1 presents all the architecture design points for HiPAcc-LTE that we have
implemented using the 65 nm technology. The area-time chart for the design points
of HiPAcc-LTE is shown in Fig. 12.

The maximum frequency we could achieve is 1090 MHz, which corresponds to a
critical path length of approximately 0.92 ns. This provides us with a net throughput
of 34.88 Gbps, with 1 keystream word per cycle. The total area is about 17 KGates
NAND equivalent and 10 KByte of data memory is required.

Carry Bit

Carry Bit
B

Original Adder Modified Adder

Fig. 11 Modulo p adder optimization for ZUC

@ Springer

Cryptogr. Commun. (2013) 5:19-47 35

Table 1 Synthesis results for

! : Frequency Area (equivalent NAND gates)
HiPAcc-LTE with 10 KByte - —
memory (MHz) Total Sequential Combinational

200 11699 5540 6159
500 13089 5540 7549
800 14102 5541 8561
1000 15696 5541 10155
1050 16055 5554 10501
1090 16886 5568 11318

Experiments with reduced data memory In the original HiPAcc-LTE design as
above, the static data for S-box and field operations have been stored in external data
memory. While SNOW 3G utilizes the complete 10 KByte memory, ZUC requires
only about 2 KByte of the allocated space. This motivated us to experiment with an
alternate design that requires less data memory.

In the alternate design, we use S-box tables Sg, Sp for SNOW 3G [21] instead
of the tables S1_T0, S1_T1, ..., S2_T3, as in the previous case. During the sharing of
memory, the ZUC tables Sy, S, fit exactly in the space for Sg, S¢ as they are of the
same size, 256 bytes each. There are exactly four calls to each table per cycle, and
we store two copies of each table in dual-port RAMs to get optimum throughput.
This amounts to a data memory of 2 x (256 + 256) bytes = 1 KByte. The MULgpha
and DIV, jpn, tables (size 1 KByte each) in case of SNOW 3G could not be avoided
due to the complicated combinational logic involved in these field operations. The
total data memory for this alternate design sums up to 3 KByte, and the details for
all design points are presented in Table 2.

This alternate design retains the maximum frequency of 1090 MHz, which pro-
vides us with a net throughput of 34.88 Gbps, with 1 word per cycle. The area figure is
still about 17 KGates NAND equivalent, but only 3 KByte of external data memory
is required. It is interesting to note that the combinational area remained almost
similar even after introducing the computations for S-boxes. This is possibly due

18.00

g

0.92, 16.89

0.95, 16.06
1.00, 15.70
1.25, 14_10\\

g 8

Area(in NAND K Gates)
=
8

g
13.00 2.00, 13059
S
_‘___‘____‘_‘—\—_
—
12.00 —_—
5,00, 11.70-@

11.00
10.00

0.00 100 2.00 3.00 4.00 5.00

Clock Period (ns)

Fig. 12 Area-Time chart for HiPAcc-LTE (10 KByte memory) using 65 nm technology

@ Springer

36 Cryptogr. Commun. (2013) 5:19-47

Table 2 Synthesis results for

; Frequency Area (equivalent NAND gates)

alternate design of - —
HiPAcc-LTE with 3 KByte (MHz) Total Sequential Combinational
memory 200 10519 5548 4971

500 13090 5540 7550

800 14103 5541 8562

1000 15696 5541 10155

1090 16887 5568 11319

to the availability of high-speed, area-efficient library cells in our target technology
library and efficient design style.

With this alternate design of HiPAcc-LTE having 3 KByte of memory, the perfor-
mance of the individual ciphers SNOW 3G and ZUC are also tested in standalone
mode. The synthesis results in this direction are presented in Table 3.

4.3 Exploration of storage implementation

For the physical implementation of the storage, a number of alternatives are
explored. The choices are primarily limited by the constraints like read-only
configuration, number of access ports. For FPGA-based designs, while it is com-
monplace to exploit available RAM blocks, storage must be designed carefully
for ASIC implementation. We utilized Faraday Memory Compiler with 65 nm
technology library for exploring dual-port block RAMs and synchronous ROMs.
While block RAMs can be utilized for both SNOW and ZUC execution, the ROM
is not re-programmable and therefore, must hold the complete storage for both the
algorithms.

For SNOW 3G, the RAM requirement is higher due to additional tables for
MU Lapha and DIV ypn, computation. The synthesis results show approximately 43
KGates for SNOW 3G and 26.8 KGates for ZUC. The memory access time is slower
than the combinational path of the logical operations thereby, supporting the highest
achievable frequency.

For synchronous ROM, Faraday Memory Compiler supports a minimum size of
4096 bits with 1 read port, which is more than our requirement. For supporting the
parallel computation both SNOW 3G and ZUC requires 8 2048-bit ROM with 8-
bit word alignment and 1 read port access. With this forced redundancy of double
data capacity with limited port access, the ROM synthesizes to approximately 23.12
KGates for ZUC. Similar area i.e. total of 46.24 KGates will be required for SNOW
3G and ZUC even without storing the 2KB tables for MU Ljpna and DIVpha

Table 3 Synthesis results for standalone mode in HiPAcc-LTE with 3 KByte memory

Cipher Frequency Area (equivalent NAND gates)

(MHz) Total Sequential Combinational
SNOW 3G 500 6867 5061 1807

1000 7033 5062 1971
ZUcC 500 9555 4798 4757

1000 11412 4811 6601

@ Springer

Cryptogr. Commun. (2013) 5:19-47 37

computation. Clearly, with port access restrictions synchronous ROM is not a good
choice compared to RAM.

We finally attempted to manually code the tables in a switch-case statement and
directly synthesize that as hard macro for both SNOW 3G and ZUC. This resulted
in much less area compared to the RAM. The results are summarized in Table 4.
It must be noted that due to read-only nature of the hard macro, both SNOW 3G
and ZUC tables are encoded in the combined design. This also requires multiplexing
between alternative tables according to the actual algorithm being executed. As a
result, the throughput achievable in the combined design with hard macro is slightly
less compared to the design implementing ZUC standalone. A nice advantage of
storage implementation with hard macro is that it is less susceptible to physical
attacks like memory readout or fault injection. The hard macro is realized within the
combinational blocks, whereas RAM or ROM structures maintain a clear separation
from the logic and are easier to spot in a physical layout.

4.4 Comparison with existing designs

To put the performance of HiPAcc-LTE into perspective, we compare it with the
state-of-the-art architectures available in academia and the commercial sector.

Comparison with academic literature In the domain of published academic results,
we could not find an ASIC implementation of ZUC, and neither could we find a
65 nm technology implementation of SNOW 3G. The only hardware realizations for
ZUC have been done in FPGA [14] so far. Thus, we could not compare HiPAcc-LTE
to any academic results in terms of ZUC.

In case of SNOW 3G, the best academic publication is [13] that uses 130 nm
technology. To compare with this result, we synthesized our proposed design (with
10 KByte data memory) in 130 nm, and the comparison is as follows.

— SNOW 3G of [13]: 7.97 Gbps with 249 MHz max. freq. and 25 KGates area
— Our HiPAcc-LTE: 24.0 Gbps with 750 MHz max. freq. and 18 KGates area

Table 4 Comparison of HiPAcc-LTE with existing 65 nm commercial designs

Performance of Commercial Designs

Cipher Name of design Designer Max. freq. Throughput Total area
(MHz) (Gbps) (KGates)

SNOW 3G SNOW3G1 [12] IP Cores Inc. 943 7.5 8.9

ZUC CLP-410 [8] Elliptic Tech. 500 - 10-13

Performance of HiPAcc-LTE

Cipher Mode of design Memory Frequency Throughput Total area
for static tables (KGates) (MHz) (Gbps) (KGates)
SNOW 3G 43.0 1000 32.0 50.0
ZUC 3 KByte memory 26.8 1000 32.0 38.2
Both 43.0 1090 34.9 59.9
SNOW 3G - 1650 52.8 18.1
ZUC Hard macro - 920 29.4 20.6
Both - 900 28.8 27.4

@ Springer

38 Cryptogr. Commun. (2013) 5:19-47

Both designs use about 10 KByte of external data memory for look-up tables. It
is clear that we achieve surprisingly better throughput from HiPAcc-LTE due to
our careful pipeline design. Our integrated implementation for both the LTE stream
ciphers even outperforms the single standalone core in terms of area.

Comparison with commercial designs In the commercial arena, the best architec-
tures available for SNOW 3G and ZUC are from IP Cores Inc. [12] and Elliptic Tech
Inc. [8] respectively. Both provide standalone solutions for the individual stream
ciphers and match our technology of 65 nm. One tricky issue in the comparison is the
area required for the memory. It is not always clear from the product white-paper
whether additional memories have been used.

For the sake of fairness, we first compare our designs using 3 KB memory
with existing standalone ZUC and SNOW 3G implementations. The memory is
synthesized with Faraday Memory Compiler in 65 nm technology node. Further, we
replace the S-Box SRAM implementations with hard macros in the RTL design and
obtained the gate-level synthesis results. From the commercial designs, the designs
with best performance claims in 65 nm technology node are selected. We provide the
detailed comparison and analysis in Table 4.

Area comparison: Around an operating frequency of 200-500 MHz, if one uses the
two best cores separately, the combined area comes around 18-20 KGates. HiPAcc-
LTE synthesizes within 16-18 KGates in this frequency zone (using hard macros),
hence offering about 10 % reduction in area. Even with this reduced area figure,
HiPAcc-LTE offers the same throughput as CLP-410 [8] and more than double
throughput compared to SNOW3G1 [12].

Throughput comparison: The best throughput (1 word/cycle) is provided by the
CLP-410 ZUC core from Elliptic Tech. However, they just quote a figure of 6 Gbps
for 200 MHz [8]. A simple scaling to their maximum frequency of 500 MHz would
translate this to an estimate of 15 Gbps. Even in this case, the throughput 29.4 Gbps
of HiPAcc-LTE (in hard macro design) is almost double compared to any of the
commercial standalone implementations of the ciphers.

For a very rough estimate, if one wants to achieve a comparable throughput
(approx. 30 Gbps) using the existing standalone modules, then four parallel blocks
of SNOW3GT1 [12] and two parallel blocks of CLP-410 [8] would be required. This
amounts to a total area of roughly 56-62 KGates, while HiPAcc-LTE achieves the
same using only 27.4 KGates (at least 51 % reduction) for the hard macro based
design. For the sake of fairness, one may also note that we have a comparable area
figure of 59.9 KGates for an even higher throughput (34.9 Gbps) using 3 KByte
of external data memory. If the extreme throughput is not required for communi-
cation purpose, it may facilitate a scaling in frequency/voltage for reduced power
consumption.

4.5 Power consumption/dissipation analysis
Power consumption and dissipation are serious design concerns in embedded sys-
tems, in particular for the cryptographic devices. Here we present a power estimation

of different design points, i.e., the standalone SNOW 3G implementation, standalone
ZUC implementation, and the combined design HiPAcc-LTE running individual

@ Springer

Cryptogr. Commun. (2013) 5:19-47 39

Table 5 Power estimation results for HiPAcc-LTE with hard macro storage

Cipher Frequency Power Energy

(MHz) (mW) (picoJoule/byte)
SNOW 3G standalone 1650 14.41 2.19
ZUC standalone 920 18.7 5.09
HiPAcc-LTE (SNOW 3G) 900 17.32 4.81
HiPAcc-LTE (ZUC) 900 16.83 4.67

applications. The operating condition of the target 65 nm technology library is set at
the best case scenario with a global operating voltage of 1.32 V and temperature —40
°C. The power consumption is estimated on a gate-level netlist by back-annotating
the switching activity and using Synopsys Power Compiler tool. The results are
presented in Table 5.

From Table 5 it can be observed that the standalone SNOW 3G implementation
is much more energy-efficient due to its significantly high clock frequency compared
to the standalone ZUC implementation. Higher power consumption for ZUC is
due to its higher computational complexity. For the combined architecture HiPAcc-
LTE, executing SNOW 3G is comparable in terms of energy-efficiency to executing
ZUC. The combined architecture is slightly more energy-efficient compared to
the standalone ZUC architecture. This is possibly due to the efficient technology
mapping for ZUC-specific data-path in the combined architecture.

Typical power optimizations like clock gating and operand isolation for sequential
and combinational logic respectively are attempted. This can be easily done by
modifying the synthesis script to search for power optimization options based on
the annotated switching activity. A minimum bit-width of six and maximum fan-
out of 64 is set for clock gating via the synthesis option set_clock_gating_style.
Adaptive mode of operand isolation is activated via the inbuilt synthesis option
set_operand_isolation_style. For none of the architectures, clock gating or operand
isolation could lower the power consumption. This is understandable from the fact
that all the computing blocks and sequential storage cells are active in every cycle.
Only a few registers, reserved for the computation of ZUC, are left out during the
execution of SNOW on the combined architecture. Clearly the clock gating logic
does contribute more than the power it potentially saves. Similarly for the operand
isolation, the addition operations are shared between SNOW 3G and ZUC data-path
in the combined architecture. This leaves no room for improving power via operand
isolation.

4.6 Towards increased throughput

A common technique for increasing throughput in LFSR-based stream ciphers is to
unroll and interleave multiple iterations. Experiments in this direction have been
attempted on HiPAcc-LTE, and we report the results here.

Unrolled SNOW 3G: Figure 13 shows the structure of SNOW 3G when two
consecutive iterations are executed simultaneously for the keystream generation. In
the initialization mode, the output is used for loading the word in LFSR. In our
proposed implementation, the leftmost word s;s is generated in the final pipeline

@ Springer

40 Cryptogr. Commun. (2013) 5:19-47

sl L] [s] [s]s

V4
fffffffffff e 4 T e
H Z
S S,
|Rl RZ R3
v v
————————— s of St
F

FSM

Fig. 13 Two iterations of SNOW 3G in keystream generation mode

stage to efficiently distribute the critical path. The final pipeline stage computes the
output Z based on the current values of R1, R2 and R3. Furthermore, the addresses
for accessing these tables are generated. For the unrolled structure, an additional
word, s is needed. Since s is to be produced in the same cycle, R1, R2 and
R3 needs to be accessed first for s;5 and then for s)¢. This is only possible with a
asynchronous storage structure for the tables. The hard macro storage style serves
this purpose. However, the overhead in timing is significant compared to single-
iteration SNOW implementation. Also, unrolling does not offer any area savings
since, all the computing blocks as well as the storage macros need to be duplicated.

Unrolled ZUC: The structure of ZUC stream cipher with two interleaved iterations
is presented in Fig. 14. Due to the LFSR populating via output during initialization,
exactly same issues as for SNOW is also present in ZUC. Moreover, the leftmost
LFSR word in ZUC contains a self-feedback loop worsening the clock timing. We
distributed the modulo adder operations of LFSR feedback loop in three pipeline
stages. However, the long timing-critical path via self-feedback loop of s;s, 516
remains in the final pipeline stage. This fact, in addition to the timing-critical path
via the R1 and R?2 tables, led to poor timing results for ZUC.

Performance: Synthesis results for standalone SNOW 3G and ZUC implemen-
tations, after unrolling and interleaving two rounds, are presented in Table 6. In
particular, for ZUC, the highest achievable frequency reduced more than two times.
As a result, no throughput increase in ZUC is offered. Significant throughput
increase is achievable for SNOW. However, a comparison with Table 4 reveals that
Area-Time product for the unrolled structure is worse compared to original HiPAcc-
LTE design.

4.7 Fault detection and protection in HiPAcc-LTE

To date, no significant fault attack has been mounted on ZUC, and the best fault
attack against SNOW 3G has been reported in [3]. In HiPAcc-LTE, we provide

@ Springer

Cryptogr. Commun. (2013) 5:19-47 41

-1 mod 2°! - | |
¥ A

i mod 271 - 1 i i |

PSR Gob Geb s

'
SIS|SI4|SIS|SI2|SII|SIO|59|58|S7|S6|SS|s4|53|s2|sl|SO|
- - - L - L - L
H 6 |x, [o6 |

fun)
o

<<< 16

Fig. 14 Two iterations of ZUC cipher in keystream generation mode

detection and protection against this fault attack of SNOW 3G, and provide room
for tolerance against future fault attacks on ZUC, if any.

In [3], the authors themselves propose a method to prevent their fault attack in
hardware. They have shown that if one shadows the five LFSR locations s, si, s2,
53, 84 continuously, the attack becomes impossible [3, Section X]. In the hardware
implementation of HiPAcc-LTE, we have additionally implemented this shadowing
mechanism as well. This is realized by keeping a buffer register of 5 x 32 = 160 bits
which continuously shadows the five LFSR locations by shifting the array by one
word in sync with the LFSR shift, and by recording the value of s5 in the array during
Stage 2 of the pipeline (note that this becomes the shadowed value of s, in Stage 3).
A fault is detected in this locations by comparing the values in the LFSR with the
shadowed values from the buffer array, and the keystream byte is not produced if a
fault is detected.

The fault tolerance mechanism does not affect the critical path, and HiPAcc-LTE
still achieves a maximum frequency of 1090 MHz. However, the area figures rise
slightly, as expected. Compared to the original HiPAcc-LTE, the new area figures
increase by approximately 1.5 KGates at 1090 MHZ in the 65 nm technology, when
the design is implemented using external data memory. The design automatically
provides a mechanism for 160 bit shadowing for ZUC, if required, and this is where
our earlier design choices for resource sharing (as mentioned in Remark 1) prove to
be effective.

Table 6 Performances of

; d lled cioh Cipher Frequency Total area Throughput
wo-rounds unrolled ciphers
SNOW 3G and ZUC (MHz) (KGates) (Gbps)
SNOW 3G 1000 29.63 64
ZUcC 425 27.69 27.2

@ Springer

42 Cryptogr. Commun. (2013) 5:19-47

So far, we have discussed the hardware integration of the 3GPP LTE-Advanced
stream cipher SNOW 3G and ZUC. In the next section, we focus on the integration
of RC4 and HC-128, the two most prominent stream ciphers of today.

5 IntAcc-RCHC: integrated accelerator for RC4 and HC-128

Though both HC-128 and RC4 are software stream ciphers, yet it is worthwhile
to investigate their hardware accelerator design for several reasons. First, for the
system designer the software or hardware design notion is not fixed. A custom
instruction-set for AES, when implemented in a general-purpose processor [11],
actually uses dedicated hardware components inside the processor pipeline. There,
the underlying implementation for a software cipher primitive is, actually hardware.
Second, custom accelerators are increasingly found in modern System-on-Chips
(SoCs). The increasing area capacity of a single chip can accommodate more and
more components. The key point there is to obtain runtime efficiency and thereby
reduce energy consumption. Area-driven design is replaced by energy-driven design
paradigm. To reduce energy, dedicated accelerators serve better purpose than a
general-purpose processor.

Recall the structure of RC4 and HC-128 from Section 2. Given the structural
similarity of HC-128 and RC4, there is a possibility of a shared design, where either of
the ciphers can be run by dedicated configurations. From the algorithmic viewpoint,
following resources can be shared readily between the two ciphers.

— Counter: Both HC-128 and RC4 uses iterators, which can be easily shared.

— Temporal Distribution of Operations: Similar to HiPAcc-LTE, we attempt to
obtain similar pipeline structures for the two algorithms while distributing the
operations in different stages of the pipeline. We need to also respect the SRAM
port access restrictions.

— Storage: Given the large storage size of HC-128 and both the read and write
operation requirement, block SRAM is only possible option. For HC-128, the
arrays P, Q and W needs to be stored in SRAM with total 9 KB memory
requirement. RC4 requires much less memory for its S and K arrays. However,
we show later that by re-using the complete structure of HC-128, we can actually
benefit for RC4 design.

Now that we have identified potential spots for integration, we start by con-
structing the pipeline for the combined design IntAcc-RCHC. As HC-128 contains
computationally more demanding key generation kernel as well as larger storage
requirements, we focus on the HC-128 structure first.

5.1 Restructuring HC-128 pipeline for integration

Memory access: In the PRGA stage of the cipher, there is a high number of storage
accesses for the arrays P and Q. Thus we use a 2-read, 1-write dual-port SRAM block
for P, Q arrays. The number of accesses directly influences the pipeline design for the
combinational path and hence, the throughput. The storage accesses of key stream
generation algorithm are distributed in the 4-stage pipeline structure (as shown in

@ Springer

Cryptogr. Commun. (2013) 5:19-47 43

Stage 1 Stage 2 Stage 3 Stage 4
. request P[i] read P[i]
request P[i-10] request Q[x(?)] read Q[x9]

t P[i-12
request P[i-12] request Q[256+x@)] read Q[256+x(2)]

request P[i-3] .
P[i-
request P[i-511] :2:3 P{;—i]ll] read P[i-10] process hl, add
read P[i-12]
write P[i]
process gl
process gl generate output

Fig. 15 HC-128 pipeline (PRGA) for integrated design IntAcc-RCHC

Fig. 15) in a manner that the RAM access restrictions are not violated if only one
pipeline stage is active at any given cycle.

Computation: Efficient distribution of computation in the pipeline stages is impor-
tant for achieving a low critical path, i.e., a high clock frequency. To that effect, the
computation is triggered from the innermost kernel of functions gl or g2, i.e., the
rotate operation followed by the XOR is computed as soon as the data is available
in pipeline Stage 2. In Stage 3, further processing of gl is done and the addresses
for accessing Q array is computed. In the same stage, the read requests for Q array
are placed. In the final stage (Stage 4), the remaining computations for key stream
generation and updating the P array are performed. Subsequently, a write request to
P array is made.

Throughput: Note that, because of this write request, a new iteration of key stream
generation cannot be started until the next cycle. This means, every iteration of key
stream generation occupies the complete pipeline for 4 cycles, thereby providing a
key stream generation speed of 1 word per 4 cycles or 1 byte/cycle.

Key initialization: The initialization module of HC-128 is also included in the
design. The initialization part of HC-128 is distributed into four phases. The first
three phases perform a given set of operations using P, Q and auxiliary array W. The
last phase essentially runs the key stream generation step 1024 times, where instead
of generating the final key stream, the arrays are updated with the final result at each
step.

5.2 Restructuring RC4 pipeline for integration

Using dual-port SRAM, 1 byte per 3 cycle performance from an RC4 structure is
suggested in the literature [15]. It is also suggested that increasing the number of
ports can increase the throughput. However, with block RAMs, the number of ports
are almost always limited by 2. Few commercial offerings with 4-port SRAMs are
available though at a high area and timing overhead compared to the dual-port
SRAM.

Memory access: We propose a novel pipeline distribution (as shown in Fig. 16)
of the data-path and re-use both P and Q memories of HC-128 to obtain / byte

@ Springer

44 Cryptogr. Commun. (2013) 5:19-47

Stage 1 Stage 2 Stage 3 Stage 4
read P[i] read P[j]
j=Joq + Pl idx = P[i]+P[j]
request P[i] write P[j 4] write P[i] read Q[idx]
write Q[j] write Q[i]
request P[j] request Q[idx]
K Mem (W)

Fig. 16 RC4 pipeline (PRGA) for integrated design IntAcc-RCHC

per 2 cycle throughput. In our design, both P and Q memories store the S-box.
This requires write update to the both the memories when the S[i] and S[j] values
are exchanged. For reading the data for swap or output generation, both P and QO
memories are used. It can be noted that by inserting a dummy operation between
every two successive keystream generation calls, either Stages 1 and 3 or Stages 2 and
4 are simultaneously active. This ensures that the memory port access restrictions are
not violated.

Computation: 1In order to maintain the data coherency, bypass paths are suggested
in the RAM structure of [15]. Noting that it affects critical path, we avoid any
bypass logic in this configuration. We use multiple copies of the same, i.e., replicated
memory system. In RC4, this leads to two situations where data access conflicts might
result.

— First, P[j] write is requested before P[j] is read in Stage 3. Since both read
and write are synchronous, the read and write accesses will actually take place
simultaneously. To ensure correct operation, P memory should be configured to
no access conflict. This is achieved by writing the P[jyq]. This can lead to wrong
value of P[i] in the following iteration, which can be checked by comparing i and
Jold-

— Second situation might arise in Stage 4 if idx is equal to i and P[i] or Q[i] write
needs to occur before the read. This can be easily checked by comparing i and
idx values in pipeline Stage 3.

The pipeline described above for RC4 leads to a seamless integration of the
cipher within an existing 4-stage pipeline implementation of HC-128. All the memory
resources of HC-128 are shared by RC4, thus reducing the area overhead compared
to two individual instances of the ciphers. We study the performance of our combined
design IntAcc-RCHC in the next section.

5.3 Implementation and performance of IntAcc-RCHC
The experimental setup for IntAcc-RCHC is the same as that for HiPAcc-LTE,

as described in Section 4. The gate-level synthesis was carried out using Synopsys
Design Compiler Version D-2010.03-SP4, using topographical mode for a 65 nm

@ Springer

Cryptogr. Commun. (2013) 5:19-47 45

Table 7 Performance of IntAcc-RCHC compared to RC4 and HC-128 in standalone mode

Cipher Area (KGates) Frequency Cycles Throughput
Seq. Comb. Total (GHz) per Byte (Gbps)
RC4 standalone 0.93 1.56 2.49 2.33 2 9.3
HC-128 standalone 1.95 7.47 9.42 1.67 1 13.36
IntAcc-RCHC 222 9.16 11.38 1.67 - -
-RC4 - - - - 2 6.68
-HC-128 - - - - 1 13.36

target technology library. The area results are reported using equivalent 2-input
NAND gates. The performance of IntAcc-RCHC is presented in Table 7, which
shows the data for both standalone performance of the ciphers as well as within the
combined framework.

Throughput comparison: In the current literature, the best existing design for RC4
hardware using block RAM is by Matthews [15]. This uses two 256-byte dual-port
RAM blocks for the storage and offers a throughput of 1 byte per 3 cycles. In com-
parison, our design IntAcc-RCHC performs 1.5 times better in terms of throughput—
1 byte per 2 cycles. For HC-128, there is no RAM based hardware implementation
in the literature. Thus, we compare our results with the software performance of
the cipher, as calculated from the data reported [20] in the eSTREAM portfolio:
4.43 Gbps on Intel Pentium M, 5.96 Gbps on Intel Pentium 4, and 6.15 Gbps on
AMD Athlon 64 X2 4200+ platform. In comparison, our proposed integrated design
IntAcc-RCHC provides a net throughput of 13.36 Gbps, which is at least 2 times
faster than general purpose processors.

Area comparison: The sequential area of the combined design IntAcc-RCHC is
less than the sum of RC4 and HC-128 individual designs as we could share the
pipeline registers and the counter. The combinational blocks, e.g., the adder and
logical operators could not be shared. In principle sharing the adder is possible at
a loss of speed. On the other hand, the configuration decoding for the combined
design is marginally more complex due to more number of configuration settings.
As a result, combinational area increased slightly. The total core area still reports a
reduction when compared to the sum of the standalone implementations.

Regarding the performance evaluation of IntAcc-RCHC, the overall area reduc-
tion should also take into account the complete sharing of SRAM by the two designs.
Therefore, an accelerator design of HC-128, by employing a little area overhead
(20.86 %) and without any runtime performance loss, is capable of accommodating
RC4.

6 Conclusion

In this paper, we propose a novel idea for unified cryptographic hardware accelerator
design based on the algorithmic and structural similarities between the ciphers to be
implemented. As practical case studies of our proposal, we present HiPAcc-LTE,
an integrated high performance hardware accelerator for 3GPP LTE stream ciphers
SNOW 3G and ZUC, and IntAcc-RCHC, an integrated accelerator designed for

@ Springer

46 Cryptogr. Commun. (2013) 5:19-47

RC4 and HC-128, two of the most popular stream ciphers today. Through a careful
design of the pipeline structure and storage organization, we achieve significant
advantages in terms of area as well as at least 1.5 to 2 times better throughput compared
to the state-of-the-art implementations, both in case of HiPAcc-LTE and IntAcc-
RCHC.

The design principle applied to the case studies performed in this paper can be
exploited towards several similar hardware designs in the domain of cryptography.
In particular, we would also like to explore the application of our approach towards
an integrated accelerator for block ciphers and hash functions with structural simi-
larities.

References

1. 3GPP TS 33.401 v11.0.1. 3rd Generation Partnership Project, Technical Specification Group Ser-
vices and Systems Aspects. 3GPP System Architecture Evolution (SAE): Security Architecture.
Release 11, June 2011

2. 3rd Generation Partnership Project: Long Term Evaluation Release 10 and beyond (LTE-
Advanced). Proposed to ITU at 3GPP TSG RAN Meeting, Spain (2009)

3. Debraize, B., Corbella, I.M.: Fault analysis of the stream cipher Snow 3G. In: Fault Diagnosis
and Tolerance in Cryptography (FDTC09), September (2009)

4. Ekdahl, P., Johansson, T.: A new version of the stream cipher SNOW. In: Selected Areas in
Cryptography (SAC’02), LNCS, vol. 2595, pp. 47-61. Springer, Heidelberg (2003)

5. Elliptic Technologies Inc. CLP-41: SNOW 3G flow through core. http://www.elliptictech.com/
en/products-a-solutions/hardware/cryptographic-engines/clp-41. Accessed 5 Aug 2011

6. Elliptic Technologies Inc. CLP-400: SNOW 3G key stream generator. http://www.elliptictech.
com/en/products-a-solutions/hardware/cryptographic-engines/clp-400. Accessed 5 Aug 2011

7. Elliptic Technologies Inc. CLP-403: SNOW 3G look aside core. http://www.elliptictech.com/en/
products-a-solutions/hardware/cryptographic-engines/clp-403. Accessed 5 Aug 2011

8. Elliptic Technologies Inc. CLP-410: ZUC key stream generator. http://www.elliptictech.com/en/
products-a-solutions/hardware/cryptographic-engines/clp-410. Accessed 5 Aug 2011

9. Elliptic Technologies Inc. CLP-411: ZUC look aside core. http://www.elliptictech.com/en/
products-a-solutions/hardware/cryptographic-engines/clp-411. Accessed 5 Aug 2011

10. Elliptic Technologies Inc. CLP-412: ZUC flow through core. http://www.elliptictech.com/en/
products-a-solutions/hardware/cryptographic-engines/clp-412. Accessed 5 Aug 2011

11. Intel Corporation: Intel advanced encryption standard instructions (AES-NI). http:/software.
intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/. Accessed 5 Aug
2011

12. IP Cores Inc: SNOW 3G encryption core. http:/ipcores.com/Snow3G.htm. Accessed 5 Aug 2011

13. Kitsos, P., Selimis, G., Koufopavlou, O.: High performance ASIC implementation of the SNOW
3G stream cipher. In: IFIP/IEEE VLSI-SOC’08—International Conference on Very Large Scale
Integration, Greece (2008)

14. Liu, Z., Zhang, L., Jing, J., Pan, W.: Efficient pipelined stream cipher ZUC algorithm in FPGA.
In: First Int’l Workshop on ZUC Algorithm, China (2010)

15. Matthews, D.P., Jr.: System and method for a fast hardware implementation of RC4. US Patent
Number 6549622, Campbell, CA, April. http://www.freepatentsonline.com/6549622.html (2003).
Accessed 5 Aug 2011

16. National Institute of Standards and Technology. Secure Hash Standard (SHS): Federal
information processing standards publication (FIPS) 180-2. http://csrc.nist.gov/publications/
PubsFIPS.html. Accessed 5 Aug 2011

17. Schaumont, P.R., Kuo, H., Verbauwhede, I.M.: Unlocking the design secrets of a 2.29 Gb/s
Rijndael processor. In: Design Automation Conf. (DAC’02), USA (2002)

18. Schliebusch, O., Chattopadhyay, A., Steinert, M., Braun, G., Nohl, A., Leupers, R., Ascheid, G.,
Meyr, H.: RTL processor synthesis for architecture exploration and implementation. In: Design,
Automation & Test in Europe (DATE’04)—Designers Forum, Paris, France (2004)

@ Springer

http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-41
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-41
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-400
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-400
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-403
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-403
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-410
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-410
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-411
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-411
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-412
http://www.elliptictech.com/en/products-a-solutions/hardware/cryptographic-engines/clp-412
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://software.intel.com/en-us/articles/intel-advanced-encryption-standard-instructions-aes-ni/
http://ipcores.com/Snow3G.htm
http://www.freepatentsonline.com/6549622.html
http://csrc.nist.gov/publications/PubsFIPS.html
http://csrc.nist.gov/publications/PubsFIPS.html

Cryptogr. Commun. (2013) 5:19-47 47

19.

20.

21.

22.

23.
24.

25.

Sen, S., Gupta, Chattopadhyay, A., Khalid, A.: HiPAcc-LTE: an integrated high performance
accelerator for 3GPP LTE stream ciphers. In: INDOCRYPT’11, LNCS, vol. 7107, pp. 196-215.
Springer, Heidelberg (2011)

Software performance results from the eSSTREAM Project. eSTREAM, the ECRYPT stream
cipher project. http://www.ecrypt.eu.org/stream/perf/#results. Accessed S Aug 2011
Specification of the 3GPP Confidentiality and Integrity Algorithms UEA2 & UIA2. Document
2: SNOW 3G specification. ETSI/SAGE Specification, Version: 1.1, 6 September 2006
Specification of the 3GPP Confidentiality and Integrity Algorithms 128-EEA3 & 128-EIA3.
Document 2: ZUC Specification. ETSI/SAGE Specification, Version: 1.5, 4 January 2011
Synopsys Processor Designer: Synopsys Inc. http://www.synopsys.com/. Accessed 5 Aug 2011
The current eSTREAM Portfolio. eSTREAM, the ECRYPT stream cipher project.
http://www.ecrypt.eu.org/stream/index.html. Accessed 5 Aug 2011

Wu, H.: The stream cipher HC-128. The current portfolio of eSTREAM, the ECRYPT stream
cipher project. http://www.ecrypt.eu.org/stream/hcpf.html. Accessed 5 Aug 2011

@ Springer

http://www.ecrypt.eu.org/stream/perf/#results
http://www.synopsys.com/
http://www.ecrypt.eu.org/stream/index.html
http://www.ecrypt.eu.org/stream/hcpf.html

	Designing integrated accelerator for stream ciphers with structural similarities
	Abstract
	Introduction
	Preliminaries
	Brief overview of SNOW 3G and ZUC
	Brief overview of RC4 and HC-128

	HiPAcc-LTE: integrated accelerator for SNOW 3G and ZUC
	SNOW 3G and ZUC: structural comparison
	Integrating the main LFSR
	Integrating the FSM
	Integrating the LFSR update function
	Final design of the pipeline

	ASIC implementation of HiPAcc-LTE
	Critical path
	Performance results
	Exploration of storage implementation
	Comparison with existing designs
	Power consumption/dissipation analysis
	Towards increased throughput
	Fault detection and protection in HiPAcc-LTE

	IntAcc-RCHC: integrated accelerator for RC4 and HC-128
	Restructuring HC-128 pipeline for integration
	Restructuring RC4 pipeline for integration
	Implementation and performance of IntAcc-RCHC

	Conclusion
	References

