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Abstract. In 1996, Jenkins pointed out a correlation between the hid-
den state and the output keystream of RC4, which is well known as the
Glimpse theorem. With a permutation of size N -bytes, the probability of
guessing one location by random association is 1/N , whereas the existing
correlations related to glimpse allow an adversary to guess a permuta-
tion location, using the knowledge of the keystream output bytes, with
probability 2/N . To date, this is the best known state-leakage based on
glimpse. For the first time in RC4 literature, we show that there are
certain events that leak state information with a probability of 3/N ,
considerably higher than the existing results. Further, the new glimpse
correlation that we observe is a long-term phenomenon; it remains valid
at any stage of the evolution of RC4 Pseudo Random Generation Algo-
rithm (PRGA). This new glimpse with a considerably higher probability
of state-leakage may potentially have serious ramifications towards state-
recovery attacks on RC4.

Keywords: stream cipher, RC4, glimpse, long-term, correlation

1 Introduction

Over the last three decades of research in stream ciphers, several designs have
been proposed and analyzed by the community. The RC4 stream cipher, ‘al-
legedly’ designed by Rivest in 1987, has sustained to be one of the most popular
ciphers in this category for more than 25 years. The cipher has continued gain-
ing its fabled popularity for its intriguing simplicity that has made it widely
accepted in the community for various software and web applications.

The cipher consists of two major components, the Key Scheduling Algorithm
(KSA) and the Pseudo-Random Generation Algorithm (PRGA). The internal
permutation of RC4 is of N bytes, and so is the key K. The original secret key
is of length typically between 5 to 32 bytes, and is repeated to form the final key
K. The KSA produces the initial permutation of RC4 by scrambling an identity
permutation using key K. The initial permutation S produced by the KSA acts
as an input to the next procedure PRGA that generates the output keystream.
The RC4 algorithm is as shown in Fig. 1.
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Fig. 1. Key-Scheduling Algorithm and Pseudo-Random Generation Algorithm of RC4.

1.1 Notation and Assumptions

For round r ≥ 1 of RC4 PRGA, we denote the indices by ir, jr, the output byte
by Zr, the index location of output Zr as tr, and the permutations before and
after the swap by Sr−1 and Sr respectively. Thus, round r of RC4 is defined by
the operations

ir = ir−1 + 1; jr = jr−1 + Sr−1[ir]; Swap Sr−1[ir]↔ Sr−1[jr];

tr = Sr[ir] + Sr[jr]; Zr = Sr[tr].

The initial permutation of PRGA is denoted by S0, and all arithmetic operations
in the context of RC4 are to be considered modulo N .

During the course of this paper, we shall assume uniform randomness of
certain events for the proofs. In most of these cases, the randomness assumption
will be based on natural pseudo-randomness assumptions of the RC4 stream
cipher, as appropriate. In some cases, we shall assume randomness based on
experimental evidences, run over atleast a billion trials of RC4 with random
keys. For all such assumptions, a random association probability 1/N will be
assumed if there is no significant bias, of the order 1/N or similar. Some of
these events may have prominent biases when treated conditionally with certain
other events, but we shall only treat them in their unconditional forms, where
they exhibit no significant biases. We shall state, and justify if required, the
randomness assumptions as and when required in this paper.

1.2 Motivation and Contribution

In 1996, Jenkins [4] pointed out that the RC4 keystream provides a glimpse
of the RC4 state as follows, which is known as Glimpse theorem or Jenkins’
correlation. We present the complete proof of the theorem for clarity.

Theorem 1 (Glimpse theorem). After the r-th round of RC4 PRGA, for
r ≥ 1, we have

Pr(Sr[jr] = ir − Zr) = Pr(Sr[ir] = jr − Zr) ≈ 2

N
.



Proof. To prove this result, one needs to use the paths ir = Sr[ir] + Sr[jr] and
jr = Sr[ir] + Sr[jr] respectively. Note that

ir = Sr[ir] + Sr[jr] ⇒ Zr = Sr[ir] = ir − Sr[jr], and

jr = Sr[ir] + Sr[jr] ⇒ Zr = Sr[jr] = jr − Sr[ir].

Thus, one may evaluate Pr(Sr[jr] = ir − Zr) as

Pr(Zr = ir − Sr[jr] | ir = Sr[ir] + Sr[jr]) · Pr(ir = Sr[ir] + Sr[jr])

+ Pr(Zr = ir − Sr[jr] | ir 6= Sr[ir] + Sr[jr]) · Pr(ir 6= Sr[ir] + Sr[jr])

≈ 1 · 1/N + 1/N · (1− 1/N) ≈ 2/N,

where it is assumed that the desired event (Sr[jr] = ir − Zr) occurs with the
probability of random association 1/N if ir 6= Sr[ir]+Sr[jr]. One may prove the
bias in (Sr[ir] = jr − Zr) similarly. ut

One may note that this glimpse correlation can be observed at any point of
the RC4 keystream. Later, in Asiacrypt 2005, Mantin [6] has also explored a
general set of similar events in this direction that leak state information with
probability more than that of random association. There exist several related
works that look only at the initial keystream bytes of RC4 to obtain information
regarding the state and eventually the secret keys (a few recent examples are
in [13]). However, these observations never work in the long term scenario.

The question that we ask here is:

“Can one discover a correlation between the RC4 keystream and the state
that offers a glimpse with a probability significantly more than 2/N in
long term evolution of the cipher?”

We answer to this question affirmatively. We prove the following: given that
two consecutive bytes Zr, Zr+1 of RC4 are equal to the specific value (r + 2)
during the consecutive two rounds r and r+ 1 (modulo N), the probability that
the (r+ 1)-th location of the state array during round r (denoted as Sr[r+ 1] as
per our notation) will be equal to (N − 1) is 3/N , significantly higher than the
probability of random association 1/N . The result is presented in Section 2.

2 Long-term glimpse of RC4

We start with our most important observation which we made while trying to
obtain the scenario where the S array comes back to the same permutation after
two consecutive rounds.

2.1 The main observation motivating our result

As one may note in Fig. 2, if in the r-th round, jr = ir + 1 and Sr[jr] = N − 1,
then the two places swapped in round (r + 1) will be restored in round (r + 2).
That is, we shall have Sr+2 identical to Sr in such a case. This motivated our
first result, as in Theorem 2.



Theorem 2. After the r-th round (r ≥ 1) of RC4 PRGA, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr) ≈ 2

N
.

Proof. We shall first prove Pr(Zr+1 = Zr | Sr[r + 1] = N − 1) ≈ 2/N , and then
apply Bayes’ theorem to get the desired result. The condition Sr[r+ 1] = N − 1,
and the path jr = r + 1 results in jr+1 = jr + Sr[r + 1] = r + 1 + N − 1 = r,
which eventually gives

tr+1 = Sr+1[ir+1] + Sr+1[jr+1]

= Sr[jr+1] + Sr[ir+1]

= Sr[r] + Sr[r + 1]

= Sr[ir] + Sr[jr] = tr.

Thus, Zr+1 = Sr+1[tr+1] = Sr+1[tr] is equal to Zr = Sr[tr] in almost all cases,
except when tr equals either ir+1 or jr+1, the only two locations that get swapped
in transition from Sr to Sr+1. Thus,

Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1) ≈ 1.

This scenario is as illustrated in Fig. 2.

Sr X N − 1 Zr = Sr[X − 1]

i j

Sr+1 N − 1 X Zr+1 = Sr+1[X − 1]

j i

Sr+2 X N − 1 Sr+2 identical to Sr

Fig. 2. The scenario for (Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1).

We may now evaluate Pr(Zr+1 = Zr | Sr[r + 1] = N − 1) as

Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1) · Pr(jr = r + 1)

+ Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr 6= r + 1) · Pr(jr 6= r + 1)

≈ 1 · 1/N + 1/N · (1− 1/N) ≈ 2/N.



Applying Bayes’ theorem to the above result, we obtain

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr) · Pr(Zr+1 = Zr)

= Pr(Zr+1 = Zr | Sr[r + 1] = N − 1) · Pr(Sr[r + 1] = N − 1)

≈ 2/N · 1/N.

Assuming pseudo-randomness of RC4 keystream bytes, we may write Pr(Zr+1 =
Zr) ≈ 1/N (experimentally verified over a billion trials). This gives Pr(Sr[r+1] =
N − 1 | Zr+1 = Zr) ≈ 2/N . ut

Thus the event (Zr+1 = Zr) leaks the information of a single permutation
location with probability twice that of random association.

2.2 Corollary of the Glimpse theorem from [4]

Before proceeding further, we would like to point out a simple corollary of the
Glimpse theorem (Theorem 1) that leaks the information of a permutation lo-
cation with the same probability.

Corollary 1. After the r-th round of RC4 PRGA, for r ≥ 1, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = r + 2) ≈ 2

N
.

Proof. In RC4 transition between rounds r and r + 1, we have ir+1 = r + 1,
and Sr+1[jr+1] = Sr[ir+1] = Sr[r + 1], due to the swap in round r. Thus, by the
Glimpse theorem (Theorem 1), we have

Pr(Sr[r + 1] = r + 1− Zr+1) ≈ 2/N.

In case of Zr+1 = r + 2, we get the desired conditional result. ut

2.3 The main result of this paper

In the scenarios presented in Theorem 2 and Corollary 1, we find two different
cases that leak the value of a specific location in the S array, namely Sr[r + 1],
with probability 2/N in each case. Moreover, the two events seem to be unrelated,
or atleast not completely dependent. Thus, it is quite natural to expect that
considering the events together, one may have better confidence about the value
in that specific location Sr[r + 1]. In this direction, we present our main result
of this paper in the form of Theorem 3.

Theorem 3. After the r-th round (r ≥ 1) of RC4 PRGA, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr ∧ Zr+1 = r + 2) ≈ 3

N
.



Proof. Let us define the main events as follows:

A := (Sr[r + 1] = N − 1), B := (Zr+1 = Zr), C := (Zr+1 = r + 2).

The result requires Pr(A|B∧C), and it seems that a naive composition of Theo-
rem 2 (which gives Pr(A|B)) and Theorem 1 (which gives Pr(A|C)) will produce
the desired result. However, this is not the case. If we try to compute Pr(A∧B∧C)
as Pr(B ∧ C|A) Pr(A), then the first part is not easily computable as events B
and C, conditional to event A, are not independent (verified experimentally over
a billion trials). Hence we try the following route.

Pr(A ∧B ∧ C) = Pr(C|B ∧A) · Pr(B|A) · Pr(A).

Still there remains a problem with the first part, as event C occurs simultane-
ously with the occurrence of Zr+1 in event B. This is easy to observe experi-
mentally, but not so easy to prove in theory.

To avoid the aforesaid problem in computing Pr(C|B ∧ A), we rewrite the
problem definition slightly, and try to prove

Pr(Sr[r + 1] = N − 1 | Zr = r + 2 ∧ Zr+1 = r + 2) ≈ 3/N.

We compute this as Pr(A ∧ B′ ∧ C) = Pr(C|B′ ∧ A) · Pr(B′|A) · Pr(A), where
A := (Sr[r+ 1] = N −1), C := (Zr+1 = r+ 2) as before, and B′ := (Zr = r+ 2).
Now we may compute Pr(C|B′ ∧ A) easily, as event C occurs after completion
of both the events A and B′.

Computing Pr(C|B′ ∧ A): Note that event A := (Sr[r + 1] = N − 1) implies
Zr+1 = Sr+1[Sr+1[r + 1] + Sr[r + 1]] = Sr+1[Sr+1[r + 1] − 1]. And of course,
event B′ := (Zr = r + 2) implies Zr = Sr[tr] = r + 2. We consider the following
paths for the proof.

– Case I: (Sr+1[r + 1] = r + 2). In case of this path, we shall have Zr+1 =
Sr+1[(r + 2)− 1] = Sr+1[r + 1] = r + 2, with probability of occurrence 1.

– Case II: (Sr+1[r + 1] = tr + 1). In case of this path, we shall have Zr+1 =
Sr+1[(tr + 1)− 1] = Sr+1[tr] = Sr[tr] = r+ 2, with probability of occurrence
approximately 1, disregarding the two cases when tr may be equal to either
ir+1 or jr+1.

In almost all other cases, we may assume that C := (Zr+1 = r+2) happens with
probability of random association 1/N (verified experimentally over a billion
trials). We compute Pr(C|B′ ∧A) as

Pr(C|B′ ∧A ∧ (Sr+1[r + 1] = r + 2)) · Pr(Sr+1[r + 1] = r + 2)

+ Pr(C|B′ ∧A ∧ (Sr+1[r + 1] = r + 2)) · Pr(Sr+1[r + 1] = tr + 1)

+
∑

X 6=r+2
X 6=tr+1

Pr(C|B′ ∧A ∧ (Sr+1[r + 1] = X)) · Pr(Sr+1[r + 1] = X)

≈ 1 · 1/N + 1 · 1/N + (1− 2/N) · 1/N ≈ 3/N.



Computing Pr(A|B′∧C): As no glimpse-like connection has been found between
Sr[r + 1] and Zr in the literature to date, we may assume Pr(B′|A) ≈ 1/N
(verified experimentally over a billion trials), and we may of course take Pr(A) ≈
1/N as per natural pseudo-randomness assumptions of RC4. Thus,

Pr(A ∧B′ ∧ C) = Pr(C|B′ ∧A) · Pr(B′|A) · Pr(A) ≈ 3/N · 1/N · 1/N.

We may assume Pr(B′∧C) = Pr(B′)·Pr(C) ≈ 1/N ·1/N (verified experimentally
over a billion trials), and this produces the desired conditional result Pr(A|B ∧
C) = Pr(A|B′ ∧ C) ≈ 3/N . ut

2.4 Experimental results

We have performed extensive experiments to obtain accurate practical estimates
of each of the results presented in this paper. Each correlation reported in this
paper is of order 1/N with respect to a base event of probability 1/N . Thus,
O(N3) trials are sufficient to identify the biases with considerable probability of
success (refer to [5, 9] for detailed explanation on the complexity).

The experimental results presented in this section are based on an average
of N4 trials of RC4, in each case, with keys chosen uniformly at random. The
experiments were carried out using GCC-compiled C-code on a Unix machine
with 3.34 GHz processor and 8 GB of memory. Table 2.4 lists the theoretical
estimates against the experimental values for each of the results presented in
Section 2.

Table 1. Experimental values and theoretical estimates pertaining to our results, where
A := (Sr[r + 1] = N − 1), B := (Zr+1 = Zr) and C := (Zr+1 = r + 2).

Biased Event Probability Probability Result

(experimental value) (theoretical estimate) (as in Section 2)

(A | B) 0.0077881670 2/N = 0.0078125 Theorem 2

(A | C) 0.0078166422 2/N = 0.0078125 Corollary 1

(A | B ∧ C) 0.0117323766 3/N = 0.01171875 Theorem 3

The values presented in Table 2.4 testify that our theoretical estimates for
the higher-order glimpse correlation and associated results closely match their
respective experimental values. Slight deviations, if any, are due to marginal
gaps of order 1/N2 or less, which we have purposefully disregarded in case of
the theoretical results.

2.5 Discussion of our results

The glimpse correlations have been quite well studied in RC4 literature, as they
provide practical leaks into the state permutation of the cipher from the knowl-
edge of the output keystream. Glimpse correlations can be exploited towards



state-recovery and key-recovery attacks on RC4. One may find some important
results in state-recovery attacks on RC4 in [7, 3], and a few attacks along the
lines of RC4 key-recovery from the permutation in [8, 2, 1].

Although glimpse biases provide practical cryptanalytic tools against RC4,
not many have been identified over the last two decades of analysis. Jenkins [4]
was the first to report a glimpse into RC4 state from the keystream with prob-
ability 2/N , and it has since been the best one that persists in the long-term
evolution of the PRGA. Later in 2001 and 2005, Mantin [5, 6] generalized the
glimpse correlations into ‘useful states’ of RC4, which included Jenkins’ correla-
tions as a special case. These biases were again of magnitude 2/N , and persisted
in the long-term evolution of PRGA. In recent times, several correlations between
the state permutation and keystream have been observed, mainly by Sepehrdad
et al [12, 13], and later proved by Sen Gupta et al [10, 11]. Although these corre-
lations are larger in magnitude, none persist in the long-term evolution of RC4
PRGA, and only pertain to the initial bytes of the output.

Our result in this paper provides the following.

Strong long-term glimpse correlation: It provides a long-term glimpse correla-
tion of magnitude 3/N , the best to date. It is interesting to note that no
long-term glimpse bias of magnitude more than 2/N has been reported in
the literature over the last 15 years, since the first one [4] in 1996.

Guessing single permutation location using two output bytes: The long-term
glimpse correlations reported in the literature to date generally relate a
keystream output byte to a single location of the state permutation, typ-
ically at a specific round of RC4. Thus, simultaneous knowledge of two or
more keystream bytes may help in guessing two or more permutation loca-
tions, but does not always provide additional benefits in guessing a single
location of the permutation over any one of them. Our result combines the
knowledge of two consecutive output bytes Zr, Zr+1 to obtain a significant
advantage in guessing a single permutation location Sr[r+ 1]. To the best of
our knowledge, such a correlation has never been proposed in the literature.

3 Conclusion

In this paper we have shown that there exist long term correlations during the
evolution of RC4 PRGA, even with a higher magnitude compared to the existing
Jenkins’ correlations [4], leaking information (providing a glimpse) about certain
locations in the S array from the knowledge of the keystream output bytes.

The new glimpse association that we prove occurs with a probability of 3/N ,
which is considerably higher than the probability of random association 1/N ,
as well as higher in magnitude compared to the best known existing glimpse
correlation probability 2/N , as in the current literature [4].
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