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Abstract. The most popular public key cryptosystem to date has been
RSA, whose security primarily relies on the unfeasibility of factoring the
modulus, which is a product of two large primes, and on the secrecy of
certain RSA parameters. In 2009, the cold-boot attack by Halderman
et al presented an important cryptanalytic model where a portion of
the secret parameters may be exposed. In this direction, Heninger and
Shacham (Crypto 2009) introduced the problem of reconstructing RSA
private keys when few random bits from each are known. Later, He-
necka, May and Meurer (Crypto 2010) introduced the problem of error-
correction in the RSA private keys when all the bits are known with some
probability of error. Their approach attempted error-correction from the
least significant side of the parameters. In this paper we provide a novel
technique for error-correction that works from the most significant side
of the parameters. Representative experimental results are provided to
substantiate our claim.
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1 Introduction

RSA has been the most well known and commercially used public key cryp-
tosystem since its inception in 1978 by Rivest, Shamir and Adleman. One can
find a complete description of the RSA scheme in [17]. Let us briefly state the
algorithm, as follows.

Let N = pq where p and q are primes. By definition of the Euler totient
function, φ(N) = (p− 1)(q − 1).

– KeyGen: Choose e co-prime to φ(N). Find d such that ed ≡ 1 mod φ(N).
– KeyDist: Publish public key 〈N, e〉 and keep private key 〈N, d〉 secret.
– Encrypt: For plaintext M ∈ ZN , ciphertext C = Me mod N .
– Decrypt: For ciphertext C, plaintext M = Cd mod N .
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To accelerate the decryption process of RSA, one can use CRT-RSA [15], a
variant of the original scheme that uses Chinese Remainder Theorem (CRT). In
CRT-RSA, one uses dp = d mod (p− 1) and dq = d mod (q − 1), instead of d, for
the decryption process. Decryption becomes more efficient if one pre-calculates
the value of q−1 mod p. Thus, in PKCS [14] standard for the RSA cryptosystem,
it is recommended to store the RSA private keys as a tuple

PK = (p, q, d, dp, dq, q
−1 mod p),

which we shall henceforth refer to as the private key of RSA. Note that there
are other ways of speeding up RSA by choosing bit patterns in the primes (as a
non-exhaustive list, one may refer to [3, 10, 19] and the references therein), but
CRT-RSA is the most convenient and widely popular variant in practice.

RSA and CRT-RSA have been put through extensive cryptanalysis over the
last three decades. An important model of cryptanalysis is the side channel
attack, such as fault attacks, timing attacks, power analysis etc., by which an
adversary may obtain some information about the private key PK. In this paper,
we concentrate on the partial information about the private key PK retrieved
using side channel attacks, and how this information may be exploited to mount
an attack on RSA. This type of attacks on RSA or CRT-RSA, based on certain
‘partial information’ about the private keys, is popularly known as ‘partial key
exposure’ attacks.

1.1 Cold-boot attack on RSA

The cold-boot attack, a new paradigm of partial key exposure side-channel at-
tacks on cryptographic primitives, was introduced by Halderman et al [4] in 2009.
It is assumed that the attacker has physical access to the system, and he/she
can run a ‘cold reboot’ to restart the machine without destroying its memory
contents. The main idea of the attack thereafter is to exploit the data remanence
property of the memory, usually based on DRAM or SRAM technologies, to ex-
tract relevant information about the cryptosystem functioning on the machine.
In [4], it was experimentally verified that a generic computer memory retains a
considerable portion of its data even minutes after the cold-boot; thus allowing
the attacked to successfully recover sensitive information.

This technique was exploited in [4] to identify and extract fully-retained AES
and RSA keys from the memory, even after a few minutes of the cold-boot. The
method was further extended to attack practical disk encryption systems like
BitLocker, FileVault, TrueCrypt, dm-crypt and Loop-AES [4]. Detailed infor-
mation about the motivation and consequences of cold-boot attack is presented
by the authors of [4] at https://citp.princeton.edu/research/memory/.

Partial key exposure from cold-boot attack: Note that all the attacks in [4] exploit
the fact that identification and extraction of fully-retained keys are possible from
the computer memory. However, the attacker may not be as lucky; he/she may
only get a partial information about the secret keys from the memory. In fact, this



is the most practical case to assume, considering that the attacker may retrieve
the remanent information from the memory after a certain amount of time, and
some parts of the memory may have already decayed. In such a scenario, the
cold-boot attack motivates a side channel cryptanalysis on RSA where some
bits of PK are revealed but not the entire private key. This provides a natural
motivation for partial key exposure attack on RSA.

Previous partial key exposure attacks on RSA: Rivest and Shamir [16] pioneered
partial key exposure attacks by factoring the RSA modulus N = pq given a
contiguous two-third fraction of the bits from the least significant side of one
of the primes p or q. Later, a seminal paper [2] by Coppersmith proved that
factorization of the RSA modulus can be achieved given half of the MSBs of a
factor. His method used LLL [11] lattice reduction technique to solve for small
solutions to modular equations. This method triggered a host of research in
the field of lattice based factorization, e.g., the works by Howgrave-Graham [8],
Jochemsz and May [9].

Note that these results require knowledge of contiguous blocks of bits of the
RSA private keys. However, in an actual practical scenario of cold-boot attacks,
it is more likely that an adversary will gain the knowledge of random bits of the
RSA parameters instead of contiguous blocks. In this model, the application of
the earlier factorization methods prove insufficient, and one requires a way to
extract more information out of the random bits obtained via the side channel
attacks. In [7], it has been shown how N can be factored with the knowledge
of a random subset of the bits (distributed over small contiguous blocks) in one
of the primes. But still, that did not address the case of partial random-bit key
exposure in case of cold-boot attacks; the following did.

Reconstruction of RSA private key from random bits. In Crypto 2009,
the cold-boot partial key exposure attack [4] was exploited for the first time
against RSA by Heninger and Shacham [6]. In this work, the random bits of
both the primes are considered unlike the earlier works (e.g., [2, 1, 7]) where
knowledge of the bits of a single prime have been exploited. The authors proved
that the attacker can factor N in time poly(e, log2N) if he/she has

δ ≥ 0.27 fraction of random bits of p, q, d, dp, dq, or
δ ≥ 0.42 fraction of random bits of p, q, d, or
δ ≥ 0.59 fraction of random bits of p, q.

The algorithm proposed in [6] exploits a modified brute force search of the un-
known bits in the RSA private keys with the help of smart pruning of wrong so-
lution paths in the search tree. This pruning is done using the partial knowledge
of the random bits in PK; hence the fraction of required known bits decreases
as we increase the number of parameters involved in the pruning process.

Error-correction of RSA private key. In Crypto 2010, Henecka et al [5]
studied the case when all the bits of PK were known, but with some probability



of error in each bit. One may consider that each bit of the parameters in PK is
flipped with some probability γ ∈ [0, 12 ). In [5], the authors proved that one can
correct the errors in key PK in time poly(e, log2N) when the error rate is

γ < 0.237 when p, q, d, dp, dq are known with error, or
γ < 0.160 when p, q, d are known with error, or
γ < 0.084 when p, q are known with error.

The algorithm proposed in [5] guesses the bits of one of the primes and uses
the reconstruction approach of [6] as a subroutine to get approximations of the
other parameters in PK. The verification of each guess is done by comparing
the Hamming distance of the guess with the erroneous version of PK obtained
through side-channel attacks. This is equivalent to pruning the search space
towards the correct solution, and hence more bit-error can be corrected if one
uses more parameters from PK during the pruning phase. A similar avenue was
followed in [13] to recover noisy RSA keys using coding-theoretic techniques.

Reconstruction versus error-correction of RSA secret keys: Note that the cold-
boot attack generally allows the attacker to extract remanent data from the
memory, but the attacker may never be sure of the authenticity of this data.
As the pattern of decay is quite unpredictable across the different parts of the
memory, it is more likely for the attacker to obtain a ‘noisy’ information about
the secret key, rather than a fragmented information without any noise. From
this practical consideration, one should focus more on error-correction of ‘noisy’
secret keys of RSA, compared to reconstruction from partially recovered random
bits. This issue has been highlighted earlier in [5, 13], and we follow the same
principle by paying more attention to error-correction of RSA secret keys, rather
than reconstruction of the same.

1.2 Motivation of this paper

Both reconstruction [6] and the error-correction [5] routines start from the least
significant side of the PK parameters and moves through the complete length
towards the most significant side. This is implicitly based on the assumption
that the density of the random bits available for reconstruction is the same
throughout the parameters and the error-rate for the bits are uniform over the
length of each PK entity.

We already have existing algorithms for factorization having either the least
significant half [1] or the most significant half of bits [2]. The existing works [6,
5] consider certain information about the bits through the complete length of
the secret parameters. For example, in [6], one requires the knowledge of certain
proportion of bits over the complete bit representation of the primes and the
target is to recover all the bits. The algorithm of [6] proceeds from the least
significant bits of the private keys and build them moving towards the most
significant side. In [12], we noted that the process can be terminated just after
recovering the least significant half of the primes, as after that we can indeed
use the existing strategy [1] to recover the remaining bits. That is the reason



we revisit the existing strategy [6] with the motivation of recovering only the
least significant half of the primes and in such a case, no information is required
from the most significant side of the private keys. Following the work of [6], we
revisited this idea in [12].

Given this, a natural question is how the respective algorithms perform when
we move from the most significant side and have some information from that por-
tion. In [18], we considered the idea for implementing brute-force reconstruction
and error-correction on the keys starting from the most significant side. This, in
general, seems to be difficult, as the “carries” from multiplication would seem
to interfere. Our strategy of [18] overcomes this difficulty by (i) bounding the
length of a carry chain and (ii) adopting an iterative approach where a fraction
of bits of the private key are guessed. Once the most significant half of a prime
is known, the factorization is immediate following the idea of [2].

1.3 Contribution of this paper

This is a follow-up work of [18], where we present further results towards error-
correction of RSA private key PK. While in [18], the reconstruction idea has
been studied in algorithmic form and detailed experimental results have been
presented, the idea of error-correction from MSB side was introduced only. De-
tailed algorithmic or experimental results had not been presented in [18].

In this paper, we present the complete algorithm for correcting the bit-errors
in RSA private key, starting from the MSB side of the parameters. Suppose that
all the bits of the private key PK are known, but with some probability of error
γ for each bit. Then using our technique, one can correct the errors in the private
key PK efficiently when the error rate is of the order of [5] where the problem
has been tackled for LSB side.

2 Background: Reconstruction from MSB side [12, 18]

In this section, we explain the existing ideas of reconstructing partially correct
RSA secret keys that are required for understanding our strategy.

2.1 Brief description of [12]

We first refer to [12, Section 4] that explains reconstructing the most significant
half of the primes p, q given the knowledge of some blocks of bits. Let us recall
at this point that, N = pq, and the primes p, q are of the same bitsize. We start
with the following.

Definition 1. Define X[i] to be the i-th most significant bit of X with X[0]
being the MSB. Also define Xi to be the partial approximation of X where Xi

shares the most significant bits 0 through i with X.



The idea for reconstruction. If one of the primes, p say, is completely avail-
able, one can easily obtain q = N/p. Now, if a few MSBs of p are known, then
one can get an approximation p′ of p. This allows us to construct an approxi-
mation q′ = dN/p′e of the other prime q as well. The idea is to use the known
blocks of bits of the primes in a systematic order to repeat this approximation
process until we recover half of one of the primes.

Outline of the idea. Suppose that the MSBs {0, . . . , a} of the prime p are
known. This gives an approximation pa of p, and hence an approximation q′ =
dN/pae of q. Let us consider that q′ matches q through MSBs {0, . . . , a− t− 1},
i.e., q′ = qa−t−1, with some probability depending on t.

Further, given the MSBs {a− t, . . . , 2a} of q, an improved approximation q2a
may be constructed using qa−t−1 and these known bits. Again, q2a facilitates the
construction of a updated approximation p′ = dN/q2ae, which may be expected
to satisfy p′ = p2a−t−1 with some probability depending on t.

With the knowledge of MSBs {2a− t, . . . , 3a} of p, it is once again possible
to obtain an improved approximation p3a of p. This process of constructing
approximations is recursed until one can recover the most significant half of one
of the primes. The reconstruction idea is illustrated in Fig. 1.

p0 pa

qa−t ≈ N/pa

q0 qa−t q2a

p2a−t ≈ N/q2a

p2a−t p3a

q3a−t ≈ N/p3a

q3a−t

Fig. 1. The feedback mechanism in MSB reconstruction.

The reconstruction algorithm. Let S = {0, . . . , T} denote the set of bit
indices from the most significant halves of the primes. Assume that k = bT/ac
is odd in this case. Consider U, V ⊆ S such that

U = {0, . . . , a} ∪ {2a− t, . . . , 3a} ∪ · · · ∪ {(k − 1)a− t, . . . , ka},
V = {a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , T}.

Further, consider that p[i]’s are available for i ∈ U and q[j]’s are also known for
j ∈ V . Then, Algorithm 1 can reconstruct T many contiguous most significant
bits of the prime q.

The subroutine Correct presented in Algorithm 1 takes as input a partial
approximation Y of X and a set of contiguous known bits, X[i] for i ∈ Σ, say. It
outputs an improved approximation Z of X by correcting the bits of the partial



Input: N,T and p[i], q[j] for all i ∈ U and j ∈ V
Output: Contiguous T many MSBs of q

Initialize: p0 := 2lp−1, q0 := 2lq−1;1

pa := Correct(p0, p[j] for j ∈ {1, . . . , a} ⊂ U);2

qa−t := d N
pa
e;3

for i from 2 to k − 1 in steps of 2 do4

qia := Correct(q(i−1)a−t, q[j] for j ∈ {(i− 1)a− t, . . . , ia} ⊂ V );5

pia−t−1 := d N
qia
e;6

p(i+1)a := Correct(pia−t−1, p[j] for j ∈ {ia− t, . . . , (i+ 1)a} ⊂ U);7

q(i+1)a−t−1 := d N
p(i+1)a

e;8

end

qT := Correct(qka−t−1, q[j] for j ∈ {ka− t, . . . , T} ⊂ V );9

Return qT ;10

Algorithm 1: MSB reconstruction algorithm using random blocks of bits
from p, q when k is odd [12].

Input: Y and X[i] for i ∈ Σ
Output: Z, the correction of Y

for j from 0 to lX do1

if j ∈ Σ then Z[j] = X[j]; // Correct j-th MSB if X[j] is known2

else Z[j] = Y [j]; // Keep j-th MSB as X[j] is not known

end

Return Z;3

Algorithm 2: Subroutine Correct used in Algorithm 1 [12].

approximation Y using the knowledge of the known bits. This subroutine works
as described is Algorithm 2.

In the case where k = bT/ac is even, Algorithm 1 needs to be tweaked a
little to work properly. One may use a slightly changed version of U, V ⊆ S
such that U = {0, . . . , a} ∪ {2a − t, . . . , 3a} ∪ · · · ∪ {ka − t, . . . , T} and V =
{a − t, . . . , 2a} ∪ {3a − t, . . . , 4a} ∪ · · · ∪ {(k − 1)a − t, . . . , ka}. As discussed
earlier, p[i]’s are known for i ∈ U and q[j]’s are known for j ∈ V .

The work in this section explains in detail the work of [12, Section 4]. The
idea is to reconstruct the primes from the MSB side where blocks of bits had to
be known. The question remains open whether one can reconstruct the private
keys from the MSB side if the random bits are known, but they are not available
as contiguous blocks. This problem has been tackled in [18] as we describe below.

2.2 Brief description of [18]

In this section we explain the algorithm RecPK from [18] that recovers the RSA
private key PK from its partial knowledge. It is assumed that some random bits



of PK are known through some side channel attack on the system. The goal is
to recover the top 1

2 log2 p many MSBs of prime p and then use the lattice based
approach of Coppersmith [2] to factor N .

It is clear if the attacker knows any one of {p, q, d, dp, dq}, he/she can easily
factor N . There are four RSA equations connecting these five variables:

N = pq, ed = 1 + kφ(N), edp = 1 + kp(p− 1), edq = 1 + kq(q − 1) (1)

Now when e is small (within the range of a brute force search), one can capture
k, kp, kq easily as each of these is smaller than e. One can write d = d1 + d2,
where d2 = d mod 2(log2N)/2 and d1 = d− d2. It is also well known that when e
is small, one can find around half of the MSBs of d, that is the portion d1 (see [1]
for details). Hence in Equation (1), there are five unknowns p, q, dp, dq and d2.

The idea for reconstruction. Consider the case when few random bits are
known from the upper halves of p, q, d2, dp, dq, and assume that we know the
first a many contiguous MSBs of p. According to the algorithm proposed in [12],
one can recover the first (a − t) many contiguous MSBs of q with probability
greater than 1− 1

2t .
The situation is, however, different than the one considered in [12]. Here,

we only know a few random bits of the RSA parameters from the MSB side,
not contiguous blocks. That is, in the parameters p, q, d, dp, dq, we know about δ
fraction of the bits at random (where 0 ≤ δ ≤ 1). One can further assume that
the known bits of the private keys are distributed uniformly at random, i.e., we
know δa many bits in each block of size a, and a(1− δ) bits are unknown.

The idea for reconstruction provides a two-part solution to this problem. One
can perform two steps iteratively over the bits of prime p, starting at the MSB:

– Guess the missing bits in a block (of size a, say) to obtain all possibilities.
– Filter using the known bits of q, d2, dp, dq to recover the correct option.

In the Guess routine, one considers all options for the unknown a(1−δ) many bits
in a specific block of p, and construct 2a(1−δ) possibilities for the block. Using
each of these options, one can mimic the reconstruction idea of [12] to find the
first (a − t) many MSBs of q, dp, dq, d2. In the Filter stage, one can utilize the
bits known from q, dp, dq, d2 to discard obvious wrong options.

Reconstruction illustrated using p and q. Suppose that we know δ fraction
of the bits of p and q each, distributed uniformly at random, as discussed. Now,
the reconstruction algorithm is as follows.

Step 0: In the Guess routine, one generates 2a(1−δ) options for the first a MSBs of
p, pads the remaining by 0’s, and stores in an array A, say. The Filter algorithm
is performed on A = {p̃1, p̃2, . . . , p̃k} where k = |A| = 2a(1−δ).

Step 1: For each option p̃i ∈ A, one reconstructs the first (a− t) MSBs of q using
the idea of [12], i.e., q̃i = bNp̃i c. Store these options in an array B. It is expected



that the first block of (a − t) MSBs of q̃i will correctly correspond to p̃i with
probability 1− 1

2t in each of these cases (t is the offset).

p̃i

q̃i

0 Guess Padding of 0’sa log2 p

0 a− t log2 q

Step 2: Match the known bits of q from this block (first (a−t) MSBs of q) with the
corresponding ones in each of these reconstructions q̃i. If for some 1 ≤ l ≤ a− t,
the bit q[l] is known but q[l] 6= q̃i[l], then there is a mismatch, and one can
discard q̃i from B, and hence p̃i from A. If all the known bits of q match with
those of q̃i, then only one retains p̃i in A. After this match-and-discard stage, the
number of remaining options in A = {p̃1, p̃2, . . . , p̃x} is x, which is considerably
lower than the initial number of options k = 2a(1−δ).

Step 3: Each remaining option has some correctly recovered block of MSBs. One
attempts to find the initial contiguous common portion out of the x options, i.e.,
to find the maximum value of c such that c many initial MSBs of all the options
are same. If there is only a single option left in A (i.e., x = 1), we evidently get
c = a.

p̃1

p̃2 ...
p̃x

p

ac

Iterate: Now, one can take the next block of a bits of p starting at the (c+ 1)-th
MSB, and repeat the Guess and Filter routines using the first (c+ a) MSBs of p.

0 c c+ a log2 pGuess Padding of 0’s

The last two steps above (Step 3 and Iterate) constitute the ‘sliding window’
technique that filters adaptively over the length of p. This process is continued
until half of p is recovered from the MSB side.

One may refer to [18] for detailed idea in this regard. We now present how
one can modify and refine these ideas for handling the case when each bit may
be erroneous with some probability.

3 Error-Correction from MSB side

In case of our second problem, instead of knowing a few bits, we consider the
situation where all the bits of the private key PK are known, but there is a
probability of error associated with each bit. This scenario was introduced in [5].



The authors proved that when error rate is less than 0.237, one can correct the
bit errors from the LSB side with expected polynomial time, if all the parameters
p, q, d, dp and dq are used in the process.

We consider the same problem of error-correction, but start from the MSB
side and correct the error in the top half of the RSA primes as pointed out
in [18]. Suppose that the upper halves of all RSA private keys p, q, d2, dp, dq are
given, but with some error probability γ associated with each bit. We call the
available values of the parameters p′, q′, d′2, d

′
p, d
′
q, each of which is erroneous to

some extent. We correct the errors from the MSB side using the following idea.

3.1 Idea for error-correction

Choose the parameters a (blocksize) and t (offset) for reconstruction, and further
choose a threshold Ta,t,γ (depending on the chosen parameters a, t and the error
rate γ) for error to be used in this approach.

Step 0: In the Guess routine, we generate 2a (all possible) options for the first a
MSBs of p, pad the remaining portion by 0’s, and store in an array A, say.

Step 1: For each p̃i ∈ A, we reconstruct first a MSBs of other parameters:

q̃i =

⌊
N

p̃i

⌋
, d̃2i =

⌊
k(N − p̃i − q̃i)

e

⌋
, d̃pi =

⌊
kpp̃i
e

⌋
, d̃qi =

⌊
kq q̃i
e

⌋
Step 2: For each i, find the Hamming distance of p̃i, q̃i, d̃2i, d̃pi, d̃qi with the avail-
able values p′, q′, d′2, d

′
p, d
′
q and calculate the sum of all these Hamming distances.

The Hamming distance is calculated only for the concerned block of size a in all
the parameters, and the sum is considered to be a measure for error. If this sum
is less than the predefined threshold Ta,t,γ we retain p̃i in A, and otherwise we
discard p̃i from A to reduce the number of options.

Step 3: Suppose that there are x options remaining in array A after the threshold
based filtering has been performed. Find the maximum value of c such that c
many initial MSBs of all the options are same. As we have chosen the common
bits of all possibilities, these c bits of p are correctly recovered.

p̃1

p̃2 ...
p̃x

p

ac

Iterate: We take the next block of a bits of p starting at the (c+ 1− t)-th MSB,
and repeat the Guess and Filter routines using the first (c+ a− t) MSBs of p.

0 c− t c+ a− t log2 pGuess Padding of 0’s



The Guess and Filter processes are continued until half of p is error-free from
the MSB side. After this, one can factorize N using the lattice based idea of
Coppersmith [2], as it is done in case of reconstruction as well. The next section
presents the formal algorithm for error-correction using all parameters of PK.

3.2 The general error-correction algorithm

In this section, we present the complete algorithm for error-correction of RSA
private keys p, q, d, dp, dq. Suppose that all bits of PK are known, but each one
has a probability γ of being correct. In other words, there is an error probability
γ associated with each bit in PK. In such a scenario, Algorithm 3 recovers the
top half of the RSA prime p using the idea described above.

Input: N, e, k, kp, kq, the erroneous approximations p′, q′, d′2, d
′
p, d
′
q, , and the

percentage of error γ.
Output: Top half of the MSBs of p, corrected.

Choose parameters a, t, b = 0, cold = 1;1

Choose threshold Ta,t,γ depending on a, t, γ;2

while b < lN
2

do3

For first (a+ b) MSBs of p, choose all possible options p̃ and store in an4

array A;

A = Filter(N, p′, q′, d′2, d
′
p, d
′
q, A, a, t, b, γ, Ta,t,γ);5

If the array A remains unaltered, increase a and go to Step 4;6

if |A| = 1 then7

Set first (a+ b− t) MSBs of p̃ = A[1] as those of prime p;8

Set b = a+ b− t and cold = a+ b− t;9

end
else10

Find c ≤ a+ b such that the first c MSBs of all members of A are same;11

If c remains unaltered (c = cold), decrease Ta,t,γ and go to Step 4;12

Set b = c− t and cold = c− t;13

end

end

Algorithm 3: CorPK: MSB error-correction algorithm using p, q, d2, dp, dq.

Choice of threshold: One may note that in Step 2 of Algorithm 3, we need to
choose a threshold Ta,t,γ based on a, t and γ. Theoretically, in case with all five
RSA parameters p, q, d, dp, dq, one should have a threshold Ta,t,γ ≥ 5(a− t)γ to
accommodate for the correct values to be within the search range. However, as
we use the Hamming distance for 5a bits for filtering, the threshold should be
increased to Ta,t,γ ≥ 5aγ.



Input: N , the erroneous approximations p′, q′, d′2, d
′
p, d
′
q, array A, parameters

a, t, b, and the percentage of error γ.
Output: Modified array A of bit strings.

for i = 1 to |A| do1

p̃ = A[i];2

Calculate q̃ = bN
p̃
c, d̃2 = b k(N−p̃−q̃)

e
c, d̃p = b kpp̃

e
c, d̃q = b kq q̃

e
c;3

Calculate the Hamming distance of block of MSBs [b, (a+ b)] of p′ with p̃,4

q′ with q̃, d′2 with d̃2, d′p with d̃p, and d′q with d̃q respectively;
If the sum of all Hamming distances is more than threshold Ta,t,γ , discard5

corresponding p̃ from A;
end

Return A;6

Algorithm 4: Subroutine Filter used in CorPK algorithm.

In practice, we start with a very high value of the threshold Ta,t,γ ≈ 5a(0.5+
γ), and gradually decrease it during runtime in each step where the sliding-
window approach does not provide a new pivot point c (as in Step 12 of Al-
gorithm 3). Similarly, we choose Ta,t,γ ≈ 2a(0.5 + γ) in the p, q case, and
Ta,t,γ ≈ 3a(0.5 + γ) in the p, q, d case. The initial choices of Ta,t,γ are verified
and finalized through extensive experimentation.

3.3 Experimental results for error-correction

We support our claim with the help of some representative cases of practical
reconstructions. The average performance of the algorithm over 100 runs in each
of the representative cases is presented in Table 1.

We have implemented using C programming language (with GMP library for
processing large integers) on Linux Ubuntu 11.04. The hardware platform is an
HP Z800 workstation with 3GHz Intel(R) Xeon(R) CPU. In these experiments,
we have taken 1024 bit N , and e = 216 +1 in all cases. The average performance
of the algorithm over 100 runs in each case is presented in Table 1.

In case of practical experiments with our idea for error-correction, we have
successfully corrected approximately 6% bit error in the p, q case, 11% bit error
in the p, q, d case, and 18% bit error in the case with all the PK parameters
p, q, d, dp, dq. In the last case, 18% error could be corrected using a = 16, offset
t = 3 and an initial threshold Ta,t,γ = 54.

Comparison with previous works: Note that our result is competitive with the
results published in [5] where the experimental values were 8%, 14% and 20%
in the three respective cases where the algorithms proceeded from the least
significant side of the secret parameters. Further, our work is the first in studying
the scenario from the most significant side and the algorithms are completely
different from that of [5].



Table 1. Experimental data for error-correction algorithm CorPK.

Erroneous approximations of p and q known

a t Threshold Ta,t,γ Error γ (%) Success probability Time T (sec)

12 3 12 3 0.34 4.0

12 4 0.15 4.2

14 3 14 3 0.39 12.2

15 4 0.22 12.4

16 3 0.59 38.5

16 3 17 4 0.41 42.8

17 5 0.11 43.2

19 3 0.74 216.3

18 3 19 4 0.42 224.8

19 5 0.24 231.2

19 6 0.10 235.6

Erroneous approximations of p, q and d known

a t Threshold Ta,t,γ Error γ (%) Success probability Time T (sec)

12 3 20 7 0.23 7.9

20 8 0.10 8.4

23 7 0.48 20.1

14 3 24 8 0.26 21.1

24 9 0.20 21.9

25 10 0.10 22.4

27 7 0.66 62.2

27 8 0.58 62.6

16 3 28 9 0.31 62.8

28 10 0.17 59.0

29 11 0.10 59.9

Erroneous approximations of p, q, d, dp and dq known

a t Threshold Ta,t,γ Error γ (%) Success probability Time T (sec)

12 3 38 14 0.28 21.8

39 15 0.13 21.8

44 14 0.44 60.7

14 3 45 15 0.32 57.1

46 16 0.15 58.3

46 17 0.10 53.5

51 14 0.69 167.0

52 15 0.46 165.5

16 3 52 16 0.29 168.1

53 17 0.19 162.6

54 18 0.12 163.1



4 Conclusion

In this paper, we study error-correction in RSA private key PK when all the
bits are known with some probability of error. We propose a new strategy for
correcting the bit-errors in RSA private key, starting from the MSB side of the
parameters. Suppose that all the bits of the private key PK are known, but with
some probability of error γ for each bit. Our experimental results show that one
can correct the errors in the private key PK efficiently when the error rate is

– γ ≤ 0.18 when p, q, d, dp, dq are known with error, or
– γ ≤ 0.11 when p, q, d are known with error, or
– γ ≤ 0.06 when p, q are known with error.

Future scope: As a future direction of research, it will be nice to look into the
theory behind reconstruction and error-correction. Improved algorithms, both
from least and most significant side of the secret parameters, will be of interest
to the community.
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