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Abstract—RC4 is the most popular stream cipher in the domain of cryptology. In this paper, we present a systematic study of the

hardware implementation of RC4, and propose the fastest known architecture for the cipher. We combine the ideas of hardware

pipeline and loop unrolling to design an architecture that produces 2 RC4 keystream bytes per clock cycle. We have optimized and

implemented our proposed design using VHDL description, synthesized with 130, 90, and 65 nm fabrication technologies at clock

frequencies 625 MHz, 1.37 GHz, and 1.92 GHz, respectively, to obtain a final RC4 keystream throughput of 10, 21.92, and 30.72 Gbps

in the respective technologies.
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1 INTRODUCTION

STREAM Ciphers are broadly classified into two parts
depending on the platform most suited to their im-

plementation; namely software stream ciphers and hard-
ware stream ciphers. RC4 is one of the widely used stream
ciphers that is mostly implemented in software. This cipher
is used in network protocols such as SSL, TLS, WEP, and
WPA. The cipher also finds applications in Microsoft
Windows, Lotus Notes, Apple AOCE, Oracle Secure SQL,
etc. Though several other efficient and secure stream ciphers
have been discovered after RC4, it is still the most popular
stream cipher algorithm due to its simplicity, ease of
implementation, and speed. In spite of several cryptanalysis
attempts on RC4 (see [3], [4], [6], [13], [14], [15], [18], [19],
[20], [21], [24] and references therein), the cipher stands
secure if used properly.

In this paper, we study several aspects of the hardware
implementation of RC4, with respect to its efficient
implementation, and present two new hardware designs
which allow fast generation of RC4 keystream. The better of
the two is the fastest known hardware implementation of
the cipher till date. To motivate our contribution, we would
first like to discuss the basic framework of the cipher. A
short note on RC4 follows.

1.1 RC4 Stream Cipher

The RC4 stream cipher was designed by Ron Rivest for RSA
Data Security in 1987. It uses S-box S, an array of length N ,

where each location of S stores 1 byte (typically,N ¼ 256). A
secret key kof size lbytes is used to scramble this permutation

(typically, 5 � l � 16). Array K of length N holds the main

key, with secret key k repeated as K½y� ¼ k½ymod l�, for
0 � y � N � 1.

RC4 has two components, namely the Key Scheduling

Algorithm (KSA) and the Pseudo-Random Generation

Algorithm (PRGA). The KSA uses the key K to generate a
pseudorandom permutationS of f0; 1; . . . ; N � 1g and PRGA

uses this pseudorandom permutation to generate arbitrary

number of pseudorandom keystream bytes. The procedures
are as in Algorithms 1 and 2, respectively.

Algorithm 1. Key Scheduling Algorithm

1: procedure KSA (Secret Key K)

2: Initialize S  f0; 1; . . . ; N � 1g and j 0

3: for i ¼ 0; . . . ; N � 1 do

4: Increment: j jþ S½i� þK½i�
5: Swap: S½i� $ S½j�
6: end for

7: return S-box S

8: end procedure

Algorithm 2. Pseudo-Random Generation Algorithm

1: procedure PRGA (S-box S)

2: Initialize indices: i 0, j 0

3: while TRUE do

4: Increment: i iþ 1, j jþ S½i�
5: Swap: S½i� $ S½j�
6: output Z  S½S½i� þ S½j��
7: end while

8: end procedure

Any arithmetic addition used in context of RC4 is in
general “addition modulo N ,” unless specified otherwise.

The output keystream Z is XOR-ed with the plaintext (byte

per byte) to generate the ciphertext at the sender end
(C ¼M � Z), and is XOR-ed back with the ciphertext to get

back the plaintext at the receiver end (M ¼ C � Z).

730 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 4, APRIL 2013

. S. Sen Gupta and S. Maitra are with ASU, Indian Statistical Institute, 203
B T Road, Kolkata 700 108, India.
E-mail: sg.sourav@gmail.com, subho@isical.ac.in.

. A. Chattopadhyay is with MPSoC Architectures, UMIC Research Centre,
RWTH Aachen University, Mies-van-der-Rohe Str. 15, Aachen 52074,
Germany. E-mail: anupam@umic.rwth-aachen.de.

. K. Sinha is with the Hewlett Packard Labs, Bangalore 560 030, India.
E-mail: sinha_kou@yahoo.com.

. B.P. Sinha is with ACMU, Indian Statistical Institute, 203 B T Road,
Kolkata 700 108, India. E-mail: bhabani@isical.ac.in.

Manuscript received 24 Aug. 2011; revised 3 Jan. 2012; accepted 10 Jan. 2012;
published online 16 Jan. 2012.
Recommended for acceptance by G. Qu.
For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-2011-08-0571.
Digital Object Identifier no. 10.1109/TC.2012.19.

0018-9340/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society



1.2 Motivation

Efficiency in terms of “keystream throughput” has always
been a benchmarking parameter for stream ciphers. The
efficiency of the RC4 obviously depends on the efficiency of
KSA and PRGA. While the KSA invokes a fixed cost for
generating the initial pseudorandom stateS, the PRGA incurs
a variable cost in terms of the number of keystream bytes to be
generated. An efficient implementation of RC4 would aim to
minimize the cost for per round of KSA and PRGA to provide
better throughput. The software implementation of RC4 is
simple, and detailed comparison of the software performance
of eSTREAM portfolio and RC4 is given in [1].

In this paper, we focus on efficient hardware implemen-
tation of the cipher. The main motivation is to test the limits
to which RC4, the popular “software” stream cipher, can
compete in hardware performance with the state-of-the-art
hardware stream ciphers. If it can, we will have a stronger
case in support of this time-tested cipher. Furthermore,
systematic study of the exploitable fine-grained parallelism
aids software developers to attempt better performance in
modern parallel processors.

Though there are already a few attempts to propose
efficient hardware implementation [5], [9], [11] of RC4, the
basic issue remained ignored that the design motivation
should be initiated by the following question:

“In how many clock cycles can a keystream byte be generated at the
PRGA stage in an RC4 hardware?”

To the best of our knowledge, this line of thought has never
been studied and exercised in a disciplined manner in the
literature, which in fact, is quite surprising.

A 3-cycle-per-byte efficient implementation of RC4 on a
custom pipelined hardware was first proposed by Kitsos
et al. [10] in 2003. In the same year, a patent by Matthews Jr.
[16] was disclosed, which provided a similar three cycles
per byte architecture using hardware pipelining. After a
gap of 5 years, another patent by Matthews Jr. [17] was
disclosed in 2008, which proposed a new design for RC4
hardware using pipeline architecture. This could increase
the efficiency of the cipher to obtain 1-byte-per-cycle in RC4
PRGA. To the best of our knowledge, no further efficiency
improvement for RC4 hardware has been proposed in the
existing literature.

1.3 Our Contribution

We present two new designs for RC4 hardware targeted
toward improved efficiency in terms of its throughput.

Design 1. We propose an RC4 architecture that produces
1 byte per cycle, that is the same throughput as in the design
by Matthews [17]. However, our model does not use
hardware pipeline approach to obtain this data rate. The
main contribution of our work is to take a new look at
RC4 hardware design and introduce the idea of loop

unrolling in this context. We combine consecutive pairs of
cycles in a pipelined fashion, and read off the values of one
state of the S-box from previous or later rounds of the
cipher. To the best of our knowledge, the idea of loop

unrolling in RC4 has never been exploited in designing an
efficient hardware. We present the comprehensive design
strategy and analysis of the circuit in Section 2.

Design 2. One may note that Design 1, based on loop
unrolling, is completely independent of the design idea of
hardware pipelining in case of RC4. Thus, we propose a
completely new design of RC4 hardware using efficient
hardware pipeline and loop unrolling simultaneously. This
model provides a throughput of 2 bytes per cycle in RC4
PRGA, without losing the clock performance. A detailed
account of the design strategy and circuit analysis is
presented in Section 3.

Implementation. The implementation of both the designs
have been done using VHDL description, synthesized with
90 and 65 nm technologies using Synopsys Design Compiler
in topographical mode. Design 2 has also been synthesized
with 130 nm technology, for comparison purpose. With strict
clock period constraints, we could device a model based on
Design 2 that offers the best throughput in hardware
implementation:

. 10 Gbps (i.e., 1.25 GBps) on 130 nm technology;

. 21.92 Gbps (i.e., 2.74 GBps) on 90 nm technology; and

. 30.72 Gbps (i.e., 3.84 GBps) on 65 nm technology.

The experimentation with clock period constraints and the
final architecture is described in Section 4.

The throughput of Design 2, our final design, is
approximately six times that of the designs proposed in
[10] and [16], and approximately twice that of the design
proposed in [17] in terms of cycles-per-byte for keystream
generation. The area could not be compared with [10] as it is
implemented on FPGA, and [16], [17] do not clearly
mention any area figures at all. Design 2 also stands quite
well in throughput comparison with modern hardware
stream ciphers like Grain128, MICKEY, and Trivium, but
consumes larger area in general.

1.4 Organization of the Paper

The main content of this paper is organized in the next four
sections, summarized as follows:

. Section 2 presents Design 1, a novel RC4 hardware
that provides a keystream throughput of 1 byte-per-
cycle using the idea of loop unrolling. We detail the
design in terms of its components, timing and
throughput analysis, and implementation ideas.

. Section 3 presents Design 2, the most efficient hard-
ware design for RC4 that provides a keystream data
rate of 2 bytes-per-cycle by combining the strategies of
hardware pipeline and loop unrolling. We present the
complete schematic and relevant implementation
details to prove the claimed efficiency.

. Section 4 presents the final implementation results
of Designs 1 and 2, including some intermediate
design points. The optimization includes experi-
mentations with strict clock period constraints, and
some restructuring of the original model. The final
architecture offers the best throughput.

. Section 5 discusses the scope for efficiency improve-
ment using further loop unrolling, and illustrates the
limitations regarding this approach. We also discuss
relevant issues with storage access in terms of
further hardware pipeline, and illustrate the condi-
tions and limitations thereof.

Finally, Section 6 concludes the paper.
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2 DESIGN 1: ONE BYTE PER CLOCK

We consider the generation of two consecutive values of Z
together, for the two consecutive plaintext bytes to be
encrypted. Assume that the initial values of the variables i,
j, and S are i0, j0, and S0, respectively. After the first
execution of the PRGA loop, these values will be i1, j1, and
S1, respectively, and the output byte is Z1, say. Similarly,
after the second execution of the PRGA loop, these will be
i2, j2, S2, and Z2, respectively. Thus, for the first two loops
of execution to complete, we have to perform the operations
shown in Table 1.

2.1 Design of Individual Components

To store S-array in hardware, we use a bank of 8-bit registers,
256 in total. The output lines of any one of these 256 registers
can be accessed through a 256 to 1 Multiplexer (MUX), with
its control lines set to the required address i1, j1, i2, or j2.
Thus, we need four such 256 to 1 MUX units to simulta-
neously read S½i1�, S½i2�, S½j1�, and S½j2�. Before that, let us
study how to compute the increments of i and j at each level.

Step 1: Calculation of i1 and i2. Incrementing i0 by 1
and 2 can be done by the same clock pulse applied to two
synchronous 8-bit counters. The counter for i1 is initially
loaded with 00000001 and the counter for i2 is loaded with
00000010, the initial states of these two indices. This serves
the purpose for the first two rounds of RC4, in both KSA
and PRGA.

Thereafter, in every other cycle, the clock pulse is applied
to all the flip-flops except the ones at the LSB position for
both the counters, as shown in Fig. 1. This will result in
proper increments of i1 that assumes only the odd values
1; 3; 5; . . . , and that of i2 assuming only the even values
2; 4; 6; . . . , as required in RC4. This is assured as the LSB of
i1 will always be 1 and that of i2 will always be 0, as shown
in Fig. 1.

Step 2: Calculation of j1 and j2. The values of j1 and j2

will be computed and stored in two 8-bit registers. To
compute j1, we need a 2-input parallel adder unit. It may be
one using a carry lookahead adder, or one using scan
operation as proposed by Sinha and Srimani [23], or one
using carry-lookahead-tree as proposed by Lynch and Swarz-
lander, Jr. [12]. For computing j2, there are two special cases:

j2 ¼ j0 þ S0½i1� þ S1½i2� ¼
j0 þ S0½i1� þ S0½i2� if i2 6¼ j1;
j0 þ S0½i1� þ S0½i1� if i2 ¼ j1:

�

The only change from S0 to S1 is the swap S0½i1� $ S0½j1�,
and hence we need to check if i2 is equal to either of i1 or j1.
Now, i2 cannot be equal to i1 as they differ only by 1
modulo 256. Therefore, S1½i2� ¼ S1½j1� ¼ S0½i1� if i2 ¼ j1, and
S1½i2� ¼ S0½i2� otherwise. In both the cases, three binary
numbers are to be added.

Let us denote the kth bit of j0; S0½i1�, and S1½i2� (either S0½i2�
or S0½i1�) by ak; bk, and ck, respectively, where 0 � k � 7. We
first construct two 9-bit vectors R and C, where the kth bits
(0 � k � 8) of R and C are given by

Rk ¼ XORðak; bk; ckÞ for 0 � k � 7; R8 ¼ 0; C0 ¼ 0;

Ck ¼ ak�1bk�1 þ bk�1ck�1 þ ck�1ak�1 for 1 � k � 8:

In RC4, all additions are done at modulo 256. Hence, we can
discard the 9th bit (k ¼ 8) of the vectors R;C while adding
them together, and carry out normal 8-bit parallel addition
considering 0 � k � 7. Therefore, one may add R and C by
a parallel full adder as used for j1. The circuit to compute j1

and j2 is as shown in Fig. 2.
Step 3: Swapping the S values. In Table 1, the two swap

operations in the third row results in one of the following
eight possible data transfer requirements among the
registers of the S-register bank, depending on the different
possible values of i1; j1; i2, and j2. We have to check if i2 and
j2 can be equal to i1 or j1 (we only know that i2 6¼ i1). All the
cases in this direction can be listed as in Table 2. A more
detailed explanation for each case is presented as follows:

Case 1: i2 6¼ j1 and j2 6¼ i1 and j2 6¼ j1.
These data transfers are symbolically represented by the

following permutation on data in S0

i2 j2

j2 i2

� �
� i1 j1

j1 i1

� �
:

This involves four simultaneous registers to register data

transfers, as follows: S0½i1� ! S0½j1�, S0½j1� ! S0½i1�, S0½i2� !
S0½j2� and S0½j2� ! S0½i2�.

Case 2: i2 6¼ j1 and j2 6¼ i1 and j2 ¼ j1.
In this case, the data transfers are represented by

i2 j1

j1 i2

� �
� i1 j1

j1 i1

� �
:

732 IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 4, APRIL 2013

Fig. 2. [Circuit 2] Circuit to compute j1 and j2.
Fig. 1. [Circuit 1] Circuit to compute i1 and i2.

TABLE 1
Two Consecutive Loops of RC4 Stream Generation



This involves three data transfers: S0½i1� ! S0½i2�, S0½i2� !
S0½j1� ¼ S0½j2�, and S0½j1� ! S0½i1�.

Case 3: i2 6¼ j1 and j2 ¼ i1 and j2 6¼ j1.
In this case, the data transfers are represented by

i2 i1
i1 i2

� �
� i1 j1

j1 i1

� �
:

This involves three data transfers: S0½i1� ! S0½j1�, S0½i2� !
S0½i1� ¼ S0½j2� and S0½j1� ! S0½i2�.

Case 4: i2 6¼ j1 and j2 ¼ i1 and j2 ¼ j1.
In this case, the data transfers are represented by

i2 i1
i1 i2

� �
� i1 i1

i1 i1

� �
:

This involves two data transfers: S0½i1� ! S0½i2� and S0½i2� !
S0½i1� ¼ S0½j1� ¼ S0½j2�.

Case 5: i2 ¼ j1 and j2 6¼ i1 and j2 6¼ j1.
In this case, the data transfers are represented by

j1 j2

j2 j1

� �
� i1 j1

j1 i1

� �
:

This involves three data transfers: S0½i1� ! S0½j2�, S0½j2� !
S0½j1� ¼ S0½i2�, and S0½j1� ! S0½i1�.

Case 6: i2 ¼ j1 and j2 6¼ i1 and j2 ¼ j1.
In this case, the data transfers are represented by

j1 j1

j1 j1

� �
� i1 j1

j1 i1

� �
:

This involves two data transfers: S0½i1� ! S0½j1� ¼ S0½i2� ¼
S0½j2� and S0½j1� ! S0½i1�.

Case 7: i2 ¼ j1 and j2 ¼ i1 and j2 6¼ j1.
In this case, the data transfers are represented by

j1 i1
i1 j1

� �
� i1 j1

j1 i1

� �
:

This is the identity permutation, and hence it does not
involve any data transfer.

Case 8: i2 ¼ j1 and j2 ¼ i1 and j2 ¼ j1.
This case cannot occur, as it implies i1 ¼ i2, which is

impossible because i2 ¼ i0 þ 2 ¼ i1 þ 1.
After the swap operation is completed successfully, one

obtains S2 from S0. From the point of view of the receiving
registers (in the S-register bank) in case of the above-
mentioned register-to-register transfers, we can summarize
the cases as follows:

. S2½i1� receives data from S0½i1�; S0½j1� or S0½i2�,

. S2½j1� receives from S0½i1�; S0½j1�; S0½i2� or S0½j2�,

. S2½i2� receives from S0½i1�; S0½j1�; S0½i2� or S0½j2�,

. S2½j2� receives from S0½i1�; S0½i2� or S0½j2�.
In view of the above discussions, the input data (1 byte) for
each of the 256 registers in the S-register bank will be taken
from the output of an 8 to 1 MUX unit, whose data inputs
are taken from S0½i1�; S0½j1�; S0½i2�; S0½j2�, and the control
inputs are taken from the outputs of three comparators
comparing 1) i2 and j1, 2) j2 and i1, 3) j2 and j1. The circuit
to realize the swap is as shown in Fig. 3.

For the simultaneous register-to-register data transfer
during the swap operation, we propose the use of Master-
Slave JK flip-flops to construct the registers in the S-register
bank. This way, the read and write operations will respect
the required order of functioning, and the synchronization
can be performed at the end of each clock cycle to update
the S-state.

Step 4: Calculation of Z1 and Z2. The main idea to get
the most out of loop unrolling in RC4 is to completely
bypass the generation of S1, and move directly from S0 to
S2, as discussed right before. However, note that we require
the state S1 for computing the output byte Z1 ¼ S1½S0½j1� þ
S0½i1��. We apply the following trick of cross-loop look back
to resolve this issue.

In step 4 of Algorithm 2, we can rewrite the output Z1 ¼
S1½S1½i1� þ S1½j1�� ¼ S1½S0½j1� þ S0½i1�� as

Z1 ¼
S2½i2�; if S0½j1� þ S0½i1� ¼ j2;
S2½j2�; if S0½j1� þ S0½i1� ¼ i2;
S2½S0½j1� þ S0½i1��; otherwise:

8<
:

Computing Z1 involves adding S0½i1� and S0½j1� first, which
can be done using a 2-input parallel adder. The 256 to 1
MUX, which is used to extract appropriate data from S2,
will be controlled by another 4 to 1 MUX. This 4 to 1 MUX is
in turn controlled by the outputs of two comparators
comparing 1) S0½j1� þ S0½i1� and i2, and 2) S0½j1� þ S0½i1� and
j2, as illustrated in the circuit of Fig. 4.

Computation of Z2, however, involves adding S1½i2�;
S1½j2�, as in the following formula:

Z2 ¼ S2 S2½i2� þ S2½j2�½ � ¼ S2 S1½j2� þ S1½i2�½ �:

In this case, we unwrap one cycle of RC4 and gather the
values of S1½i2� and S1½j2� from the S0 state. S1½i2� and S1½j2�
receive the values from the appropriate registers of S0 as
given below, depending on the following conditions:

. i2 6¼ j1; j2 6¼ i1; j2 6¼ j1 : S1½i2� ¼ S0½i2�; S1½j2� ¼ S0½j2�,

. i2 6¼ j1; j2 6¼ i1; j2 ¼ j1 : S1½i2� ¼ S0½i2�; S1½j2� ¼ S0½i1�,

. i2 6¼ j1; j2 ¼ i1; j2 6¼ j1 : S1½i2� ¼ S0½i2�; S1½j2� ¼ S0½j1�,
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. i2 6¼ j1; j2 ¼ i1; j2 ¼ j1 : S1½i2� ¼ S0½i2�; S1½j2� ¼ S0½j1�,

. i2 ¼ j1; j2 6¼ i1; j2 6¼ j1 : S1½i2� ¼ S0½i1�; S1½j2� ¼ S0½j2�,

. i2 ¼ j1; j2 6¼ i1; j2 ¼ j1 : S1½i2� ¼ S0½i1�; S1½j2� ¼ S0½i1�,

. i2 ¼ j1; j2 ¼ i1; j2 6¼ j1 : S1½i2� ¼ S0½i1�; S1½j2� ¼ S0½j1�.
These conditions can be realized using an 8 to 1 MUX unit
controlled by the outputs of three comparators comparing
1) i2 and j1, 2) j2 and i1, 3) j2 and j1. We can use the same
control lines as in case of the swapping operation. The
circuit is as shown in Fig. 5.

2.2 Timing Analysis

The timing analysis for the complete PRGA circuit (shown
in Fig. 6) is as shown in the three-stage pipeline diagram of
Fig. 7. We illustrate the first two iterations, and the rest
falls along similar lines. The combinational logics operate
between the clock pulses and all read, swap, and increment
operations are done at the trailing edges of the clock
pulses. The first two bytes Z1, Z2 are obtained at the end of
the third clock cycle and the next two bytes Z3, Z4 are
obtained at the fifth clock cycle. A detailed explanation
follows.

2.3 The Complete Circuit

The complete circuit diagram for the PRGA algorithm of
Design 1 is shown in Fig. 6. We shall henceforth denote the
clock by � and its cycles numbered as �1, �2, etc., where �0

refers to the clock pulse that initiates PRGA.
In Fig. 6,Li denote the latches operated by the trailing edge

of �2nþi, i.e., the ð2nþ iÞth cycle of the master clock � where

n � 0. For example, the latches labeled L1 (four of them) are

released at the trailing edge of �1; �3; �5; . . . and the latches

labeled L2 (eight of them) are released at the trailing edge of

�2; �4; �6; . . . etc. In the final implementation, these latches

have been replaced by edge-triggered flip-flops which

operate at the trailing edge of the clock. Now, we generalize

our previous observation to state the following.
Efficiency of PRGA in Design 1:

The hardware proposed for the PRGA stage of RC4 in Design 1, as
shown in Fig. 6, produces “one byte per clock” after an initial
delay of two clock cycles.

Let us call the stage of the PRGA circuit shown in Fig. 6 the

nth stage. This actually denotes the nth iteration of our

model, which produces the output bytes Znþ1 and Znþ2. The

first block (Circuit 1) operates at the trailing edge of �n, and

increments in to inþ1, inþ2. During cycle �nþ1, the combina-

tional part of Circuit 2 operates to produce jnþ1, jnþ2. The

trailing edge of �nþ1 releases the latches of type L1, and

activates the swap circuit (Circuit 3). The combinational logic

of the swap circuit functions during cycle �nþ2 and the actual

swap operation takes place at the trailing edge of �nþ2 to

produce Snþ2 from Sn. Simultaneously, the latch of type L2 is

released to activate the Circuits 4 and 5. The combinational

logic of these two circuits operate during �nþ3, and we get the

outputs Znþ1 and Znþ2 at the trailing edge of �nþ3.
This complete block of architecture performs in a

cascaded pipeline fashion, as the indices i2, j2 and the
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Fig. 4. [Circuit 4] Circuit to compute Z1. Fig. 5. [Circuit 5] Circuit to compute Z2.

Fig. 3. [Circuit 3] Circuit to swap S values. (Data lines shown only for a fixed k.)



state Snþ2 are fed back into the system at the end of �nþ2

(actually, inþ2 is fed back at the end of �nþ1 to allow for the

increments at the trailing edge of �nþ2). The operational

gap between two iterations (e.g., nth and ðnþ 2Þth) of the

system is thus two clock cycles (e.g., �n to �nþ2), and we

obtain two output bytes per iteration.
Hence, the PRGA architecture of Design 1, as shown in

Fig. 6, produces 2N bytes of output stream in N iterations,

over 2N clock cycles. Note that the initial clock pulse �0 is an

extra one, and the production of the output bytes lag the

feedback cycle by one clock pulse in every iteration (e.g., �nþ3

in case of nth iteration). Therefore, our model practically

produces 2N output bytes in 2N clock cycles, that is “one

byte per clock,” after an initial lag of two clock cycles.
Issues with KSA. Note that the general KSA routine

runs for 256 iterations to produce the initial permutation of

the S-box. Moreover, the steps of KSA are quite similar to

the steps of PRGA, apart from the following:

. Calculation of j involves key K along with S and i.

. Computing Z1; Z2 is neither required nor advised.

We propose the use of our loop-unrolled PRGA architecture

(Fig. 6) for the KSA as well, with some minor modifications,

as follows:

1. K-Register bank. Introduce a new register bank for
key K. It will contain l number of 8-bit registers,
where 8 � l � 15 in practice.

2. K-Register MUX. To read key values K½i1 mod l� and
K½i2 mod l� from the K-registers, we introduce two
16 to 1 multiplexer unit. The first l input lines of this
MUX will be fed data from registers K½0� to K½l� 1�,
and the rest ð16� lÞ inputs can be left floating (recall
that 8 � l � 15). The control lines of these MUX units
will be i1 mod l and i2 mod l, respectively, and hence
the floating inputs will never be selected.

3. Modular counters. To obtain modular indices i1 mod l
and i2 mod l, we incorporate two modular counters
(modulo l) for the indices. These are synchronous
counters and the one for i2 will have no clock input
for the LSB position, similar to Fig. 1.

4. Extra 2-Input parallel adders. Two 2-input parallel
adders are appended to Fig. 2 for adding K½i1 mod l�
and K½i2 mod l� to j1 and j2, respectively.

5. No outputs. Circuits of Figs. 4 and 5 are removed
from the overall structure, so that no output byte is
generated during KSA. If any such byte is generated,
the key K may be compromised.

Using this modified hardware configuration, one can
implement two rounds of KSA in two clock cycles, that is
“one round per clock,” after an initial lag of one cycle. Total
time required for KSA is 256þ 1 ¼ 257 clock cycles.

2.4 Implementation

We have implemented Design 1, the proposed structure for
RC4 stream cipher, using synthesizable VHDL description.
The S-register box and K-register box are implemented as
array of master-slave flip-flops, and are synthesized as
standard-cell memory architecture (register-based imple-
mentation). The entire VHDL code consists of approximately
1,500 lines.

A major area impact of the circuit originates from the
large number of accesses to the S-box and the K-box from
the KSA and PRGA circuit. Since the PRGA and KSA will
not run in parallel, we shared the read and write ports of
S-box and K-box between PRGA and KSA. From KSA, one
read access to K-box, two read accesses to S-box, and two
write accesses to S-box are needed. From PRGA, six read
accesses to S-box and four write accesses to S-box are
needed. The two read accesses correspond to simultaneous
generation of two Z values at the last step of PRGA. The

SEN GUPTA ET AL.: HIGH-PERFORMANCE HARDWARE IMPLEMENTATION FOR RC4 STREAM CIPHER 735

Fig. 6. Circuit for PRGA stage of the proposed RC4 architecture (Design 1).

Fig. 7. Pipeline structure for the proposed Design 1.



four read and write accesses correspond to the double swap
operation. While sharing the mutually exclusive accesses,
all the accesses from KSA can be merged among the PRGA
accesses. Therefore, the total number of read ports to
K-box is 1, the total number of read ports to S-box is 6, and
the total number of write ports to S-box is 4. This sharing
of storage access is as shown in Fig. 8.

The VHDL code is synthesized with 90 and 65 nm
fabrication technologies using Synopsys Design Compiler
in topographical mode. The detailed implementation results
are presented in Section 4.

2.5 Comparison with Existing Designs

Let us compare the proposed design with the ones that
existed for RC4 hardware till date. We only consider
existing designs that are focused toward improved through-
put, and not any other hardware considerations.

Kitsos et al. [10] and Matthews Jr. [16]. Combining our
KSA and PRGA architectures, we can obtain 2N output-
stream bytes in 2N þ 259 clock cycles, counting the initial
delay of 1 cycle for KSA and 2 cycles for PRGA. The
hardware implementation of RC4 described in [10] or [16]
provides an output of N bytes in 3N þ 768 clock cycles. A
formal comparison of the timings is shown in Table 6. One
can easily observe that for large N , the throughput of our
RC4 architecture is three times compared to that of the
designs proposed in [10] and [16].

In terms of the area, exact comparison with [10] is not
possible since, we do not have access to the FPGA board for
which the area figures of [10] is reported. Considering the
design idea, both [10] and [16] modeled their storage using
block RAMs. This implementation restricts the number of
port accesses per cycle. To overcome that, three 256-byte
dual-port RAM blocks are used in [10]. Even then, the
design requires three cycles to produce 1 byte of data. An
improved design is reported in [16] where only two 256-
byte dual-port RAM blocks are used. It may be noted that

we have utilized register-based storage for the S and
K arrays instead of RAM. This is because a RAM-based
storage would incorporate port-access restrictions and
latency issues, resulting in a compromise of throughput.
An alternative technique to maintain the high throughput
with RAM-based implementation may be partitioning the
arrays according to the accesses, and optimize accordingly.

Matthews Jr. [17]. This design proposes a 1-byte-per-
cycle design of RC4 hardware using a technique that is
different from our approach. It achieves the claimed
throughput by means of hardware pipeline, and instead
of two iterations per cycle, one iteration per cycle in PRGA
is performed. The pipeline design is as shown in Table 3
(same as [17, Table 1]). In terms of throughput, this design
provides 1-cycle-per-byte output in PRGA and completes
KSA in 256 cycles, with an initial lag of three cycles due to
the 4-stage pipeline structure (as in Table 3). Thus, N bytes
of output is produced in approximately N þ 259 clock
cycles, which is comparable to the performance of Design 1.
Detailed comparative results are presented in Table 6.

The obvious advantage of this design is its compactness.
It provides the same throughput without resorting to loop
unrolling. We have studied this design closely and have
implemented similar idea on our own to understand the
time and area constraints better. This is required since the
documentation in [17] does not report area or timing figures
corresponding to any technology node. Instead a figurative
summary of the logic structure is reported. We implemen-
ted a similar design (named Pipelined-A) which helps us
further to fuse the ideas of loop unrolling and hardware
pipelining to obtain a better design, as reported in Section 3.
It is obvious from the pipeline design proposed in [17] (as
shown in Table 3) that, at least three read and two write
accesses per cycle is required when the pipeline is full. This
is exactly what we achieve after optimization of storage
access in Pipelined-C, described in Section 3. However, [17]
does neither report the hardware implementation of KSA,
nor the port access sharing between PRGA and KSA.

Pipelined-A. Our first design motivated by hardware
pipelining is an architecture pipelined in two stages, as in
Fig. 9. While [17] proposed a deep pipelining with bypass
and data forwarding, our schemes allow a simpler 2-stage
pipelining with the same throughput of 1-byte-per-cycle and
similar memory port restrictions. The first pipeline stage is
devoted for calculation of j and performing the swap, the
second pipeline stage computes the value of Z. To minimize
the read and write accesses to S-box, the index to be used for
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TABLE 3
Pipeline Stages for the Design Proposed in [17]

Fig. 8. Access sharing of KSA and PRGA in Design 1.



second pipeline is computed at the first stage itself. Note that,
the index computation at first stage does not alter the result
as S½i� and S½j� are swapped, thus the addition result S½i� þ
S½j� remains intact.

With the aforementioned structure, the pipeline in PRGA
circuit is considerably simplified with respect to Design 1.
We further study the circuit in order to improve its area and
timing. To that effect, we first reorganized the KSA circuit
to merge two iterations of key generation in one cycle. The
benefit of this will be to have the S-box created in 128 cycles
instead of 256 cycles.

This is done in similar fashion to the unrolling of KSA
iterations as per the design discussed in Section 2. The logic
for the two consecutive KSA loops in shown in Table 4, and
the design idea follows that of Design 1. For this design, the
K-box is optimized away as it had constant reset inputs. In
the improvements discussed later, the K-box values are
controlled from external input. We synthesized the circuit
without port sharing, using 90 nm technology at a strict
clock frequency, and the synthesis results are as presented
in Section 4. The throughput is the same as that of Design 1.

One may prefer Pipelined-A over Design 1 because of its
obvious simplicity. However, we look into the possibility of
improving the architecture even further.

3 DESIGN 2: TWO BYTES PER CLOCK

In this section, we present a novel design for RC4 hardware
which provides the best throughput till date. We have
already proposed a design in Section 2 to obtain a throughput
of 1-byte-per-cycle. We have also designed and studied a
hardware pipeline architecture that provides the same. Now
we will analyze the two models from a more detailed
implementation point of view for potential improvement in
the design.

3.1 Area Optimization in Pipelined-A

Note that in the hardware pipeline-based Pipelined-A, as
discussed in the previous section (Fig. 9), we had fused the
idea of loop unrolling to merge two consecutive rounds of
KSA. As a result, the number of read accesses to K-box from
KSA grew to 2. The number of read and write accesses from
KSA to S-box are both 4 due to the double swap in one cycle.

Pipelined-B. We modified Pipelined-A to implement
access sharing (read/write) for S-box between KSA and
PRGA. In case of Pipelined-A, KSA contains four read, four

write accesses and PRGA contains three read and two write
accesses to the S-box. Naturally, all the accesses from PRGA
can be shared with accesses from KSA, resulting in total
four read and four write accesses. The synthesis indicated a
compact circuit with the same throughput.

Pipelined-C. Another idea, exploited to reduce the
circuit size further, is to perform only one iteration of
KSA per cycle. In this approach, KSA will require 256 cycles
to initialize the S-box. However, the number of both read
and write accesses to S-box will become 2 per cycle. By
applying access sharing on top of that, total number of read
and write accesses to S-box is reduced to 3 and 2,
respectively. Furthermore, the number of read accesses to
K-box also dropped to 1. The synthesis of this circuit also
indicated a more compact design.

We observed a sharp reduction in S-box and KSA areas
for Pipelined-C, in comparison with the previous designs.
The reduction in the area for S-box is most prominent as
Pipelined-C directly reduces the area requirements for the
address decoders and multiplexers, due to less number of
S-box access ports. However, the reduction in K-box
access ports costs us 256 cycles for KSA, instead of 128 as
in the previous two designs. Later, we shall present final
synthesis results for all the designs to compare the mutual
pros and cons.

Next, we extend our analysis on the area and timing
improvements of hardware pipelining to propose a com-
pletely new and considerably improved design.

3.2 Design Idea for 2 Bytes-Per-Cycle

Recall the design based on the hardware pipeline approach
(Pipelined-A) as shown in Fig. 9, and also the main idea of
Section 2 (Design 1) where a completely new approach to
RC4 hardware design gave rise to a one-byte-per-clock
architecture based on the technique of loop unrolling. In
case of hardware pipeline, we used the idea of pipeline
registers to control the read-after-write sequence during
S-box swaps, and that resulted in a natural two stage
pipeline model for RC4 PRGA. In case of loop unrolling,
this idea of pipeline registers was not used at all, but the
same throughput was obtained by merging two consecutive
rounds of RC4 PRGA. Two obvious questions in this
direction are:

. Can these two techniques be combined?

. Will that provide any better result at all?

This was the main motivation behind the next design,
where we answer both the questions in affirmative.

We fused the idea of 2-stage hardware pipeline with that
of loop unrolling to generate an RC4 circuit with maximum
speed/throughput till date. This is obtained for the case
with 2-stage PRGA pipeline and KSA circuit with double
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TABLE 4
Two Consecutive Loops of RC4 Key Scheduling

Fig. 9. 1-byte/cycle by Hardware Pipeline (Pipelined-A).



iterations per cycle in each case. In this case, 128 cycles for
S-box preparation is needed at the KSA stage, and then
onward after a gap of one cycle, 2 bytes per cycle are
generated for encryption purposes. This shows significant
improvements over the previously published RC4 imple-
mentations in the literature.

3.3 Pipeline Structure

For an intuitive pipeline architecture and timing analysis of
this new design, one needs to recall the pipeline structures
of the individual designs based on loop unrolling and
hardware pipelining. Notice that the loop unrolling
approach of Design 1 used a 3-stage pipeline, as in Fig. 7:

1. Increment of indices i and j.
2. Swap operation in the S-register.
3. Read output byte Z from S-register.

Alternatively, the hardware pipeline idea of Pipelined-A, as
in Fig. 9, achieved the same using a 2-stage pipeline:

1. Increment of i; j, and Swap in the S-register.
2. Read output byte Z from S-register.

In the design for 2 bytes per clock cycle throughput, we
propose a fusion of the two ideas, to generate a 2-stage
pipeline architecture, as shown in Fig. 10.

The double swap operation starts at Stage 1 in this case,
and takes the help of pipeline registers to maintain the read-
after-write ordering during the swap operations. This part of
the operation is same as in the hardware pipelined approach
for one-byte-per-clock design (Pipelined-A/B/C). The
Z values are read from the S-registers after the completion
of the double-swap, and using the loop unrolling logic from
the first one-byte-per-clock design. That is, two consecutive
values of the output byte Z are read from the same state S by
using some suitable combinational logic. Similarly, the
increment of two consecutive i and j values are done
simultaneously using the combinational logic of the original
one-byte-per-clock design.

This design obviously provides two output bytes per
clock cycle, after an initial lag of one cycle, as is evident

from Fig. 10. Thus, for the generation of 2N keystream bytes
in RC4 PRGA, the circuit has to operate for just N þ 1 clock
cycles, thereby producing an asymptotic throughput of
2-bytes-per-clock. In KSA, we simply omit Stage 2 of the
pipeline structure, and obtain a speed of two KSA rounds
per clock cycle. Thus, KSA is completed within 128 cycles in
this design. In Section 5, we will discuss about the issues
with further pipelining to obtain better throughput using a
similar architecture.

3.4 Designing the Storage Access

Since the PRGA and KSA will not run in parallel, we shared
the read and write ports of S-box and K-box between
PRGA and KSA. From KSA, two read accesses to K-box are
required as two loops are merged per cycle. Further, four
read and four write accesses to S-box are needed for the
double swap operation. From PRGA, six read accesses to
S-box and four write accesses to S-box are required. The
two read accesses correspond to simultaneous generation of
two Z values at the last stage of PRGA, while the four read
and four write accesses correspond to the double swap
operation. While sharing the mutually exclusive accesses,
all the accesses from KSA can be merged among the PRGA
accesses. Therefore, the total number of read ports to K-box
is 2, the total number of read ports to S-box is 6 and the total
number of write ports to S-box is 4. This port-sharing logic
is as shown in Fig. 11.

The port-sharing logic reduces the multiplexer area
significantly. It should be noted that the multiplexer logic
to the register banks claims the major share of area. The
port-sharing logic, as shown in Fig. 11, reduces a major
share of this combinational area in our design. In Fig. 12, we
illustrate the circuit structure for the port-sharing logic that
operates with the S-box during KSA and PRGA. Note that
K-box accesses are only made by KSA, and there is no
question of port sharing in that context. In Fig. 12, we
illustrate the port-sharing logic, using just one read and one
write port for simplicity.
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Fig. 10. Pipeline structure for 2-byte-per-clock design.

Fig. 11. Read-Write access sharing of KSA and PRGA.

Fig. 12. Port-sharing of KSA and PRGA for S-box access.



The main storage for the RC4 hardware, as before, is

centered around the S-register array and the K-register

array. The S-register box comprises of 8 bit registers made of

edge-triggered master-slave flip-flops, with a total of 256

such registers to maintain the RC4 states. To accommodate

the read and write accesses to the S-box, we use write-access

decoders and read-access decoders which in turn control

256-to-1 multiplexer units associated to each location of the

state array. TheK-register box, that holds the RC4 key, is also

designed in a similar fashion, but with the exception that no

write accesses are required for the K-registers.

3.5 Structure of PRGA and KSA Circuits

The schematic diagrams for PRGA and KSA circuits in the

proposed design are shown in Figs. 13 and 14, respectively.
The PRGA circuit operates as per the 2-stage pipeline

structure, where the increment of indices take place in the

first stage, and so does the double-swap operation for the

S-box. In the same stage, the addresses for the two

consecutive output bytes Zn and Znþ1 are calculated as the

swap does not change the outcomes of the additions S½in� þ
S½jn� or S½inþ1� þ S½jnþ1�. In the second stage of the pipeline,

the output addresses zn addr and znþ1 addr are used to read the

appropriate keystream bytes from the updated S-box.
The circuit for KSA operates similarly, but has no

pipeline feature as the operation happens in a single stage.

Here, the increment of indices and swap are done for two

consecutive rounds of KSA in a single clock cycle, thereby

producing a speed of 2-rounds-per-cycle.
Based on this schematic diagram for the circuits, and the

port-sharing logic described earlier, we now attempt the

hardware implementation of our new design.

3.6 Implementation

We have implemented the proposed structure for RC4 stream

cipher using synthesizable VHDL description. The S-register

box and K-register box are implemented as array of master-

slave flip-flops, as discussed earlier, and are synthesized as

standard-cell memory architecture. The VHDL code is

synthesized with 130, 90, and 65 nm fabrication technologies

using Synopsys Design Compiler in topographical mode. The

synthesis results are presented in Section 4.

4 IMPLEMENTATION RESULTS

In this section, we describe our attempts to optimize our
designs and obtain the best throughput in implementation.
The gate-level synthesis was carried out using Synopsys
Design Compiler Version D-2010.03-SP4, using topographi-
cal mode for 130, 90, and 65 nm target technology libraries.
The area results are reported using equivalent 2 input
NAND gates.

4.1 Hardware Performance of Our Designs

90 nm technology. We experimented with the synthesis of
designs in the following order:

. 1-byte/clock design using loop unrolling (Design 1),

. 1-byte/clock by hardware pipelining (Pipelined-A),

. 1-byte/clock by hardware pipelining (Pipelined-B),

. 1-byte/clock by hardware pipelining (Pipelined-C),

. 2-bytes/clock design combining the two (Design 2).

In order to get the best throughput out of our proposed
designs, we performed a few experiments with varying
clock speed. This included running of all synthesis at 90 nm
with strict clock period constraints until no further
improvement was possible. The synthesis results are shown
in Table 5. The clock period in Pipelined-B is higher than
that for Pipelined-A, due to the port-sharing logic that we
introduced in Pipelined-B.

Critical path for design 2. After the initial implementa-
tions of the designs, we found that the critical path for
Design 2 is through the KSA read access of the S-array,
followed by the additions for updating j values in the first
stage of Fig. 10.

We tried two mechanisms to reduce this critical path.
First, we attempted reduced port sharing, as port sharing
puts longer delay in the multiplexers. Second, we attempted
a modified design with three pipeline stages; the first stage
to load the S and K values and put those in pipeline
registers, the second stage to perform the additions for
j update, and the last one for the swap in KSA. This not only
made the design 3-stage pipelined instead of 2-stages, but
also required additional bypass logic, which did not help to
reduce the critical path. So, we finally kept the 2-stage
pipeline as in Fig. 10, and avoided some port sharing along
the critical path. This shifted the critical path to the S-box
write access from KSA. By removing the port sharing, the
clock frequency could be improved even further.
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Fig. 13. PRGA circuit structure for proposed architecture. Fig. 14. KSA circuit structure for proposed architecture.



Currently, the critical path is in the S-box read access
from PRGA. That could also be improved by removing
some port sharing, but only by causing a heavy increase in
area. Therefore, we chose to avoid it.

65 nm technology. We used the same designs which
yielded best clock frequencies in 90 nm, and mainly focused
at the following three designs:

. 1-byte/clock design using loop unrolling (Design 1),

. 1-byte/clock by hardware pipelining (Pipelined-C),
and

. 2-bytes/clock design combining the two (Design 2).

The synthesis results provide us the best throughput for
these three designs, obtained by using strict clock period
constraints during the implementation, until no further
improvement could be made, i.e., until the point that it
could generate a valid gate-level netlist. The synthesis
results are presented in Table 5.

130 nm technology. In order to benchmark against
comparable technology libraries, we have synthesized using
130 nm fabrication technology since, several stream ciphers
from eSTREAM project [2] have reported their performance
in 130 nm and 250 nm technologies [7], [8]. We used the same
designs which yielded best clock frequencies in 65 nm and
90 nm design, and have just implemented our best proposal:
Design 2. The synthesis results are presented in Table 5.

Best Throughput. To summarize, the optimized synth-
esis offers us the best throughput (in gigabits per second)
for hardware implementation of RC4 cipher till date.

Design 1 (one-byte-per-clock):

. 9.76 Gbps in 90 nm technology,

. 14.8 Gbps in 65 nm technology.

Design 2 (two-bytes-per-clock):

. 10 Gbps in 130 nm technology,

. 21.92 Gbps in 90 nm technology, and

. 30.72 Gbps in 65 nm technology.

4.2 Comparison with Existing Designs

We compare our proposed designs, Design 1 and Design 2
with the ones that existed for RC4 hardware till date. We
only consider existing designs that are focused toward
improved throughput, and not any other hardware con-
siderations.

Throughput comparison. In Section 2, we have already
seen the main RC4 designs proposed in the literature:
3-cycles-per-byte designs of [10] and [16] and 1-byte-per-
cycle design of [17]. Section 2 presents our 1-byte-per-cycle
architecture Design 1, and in Section 3 we propose the first
2-bytes-per-cycle RC4 architecture Design 2. It requires
257 cycles to complete KSA and generates 2-bytes-per-
cycle in PRGA, with an initial lag of two cycles. Thus,
Design 2 produces N keystream bytes in approximately
257þ ðN=2þ 2Þ ¼ N=2þ 259 clock cycles. For large N , this
is twice in comparison with Design 1 and the hardware
proposed in [17]. Detailed comparison of throughput is
presented in Table 6.

Area comparison. As discussed earlier in Section 2, a
precise comparison of area requirements with [10] could not
be made due to mismatch in implementation platforms, and
[16] does not specify any area figures at all. However, [16]
uses two 256-byte dual-port RAM blocks for the storage,
and for the purpose of comparison we synthesized the RAM
using 65 nm technology. This resulted in approximately
11.3 KGates of storage area (without considering the
associated circuitry), which is comparable to the total
sequential area (approximately 13.5-14.0 KGates for Design 1
and Design 2 in 65 nm technology, as shown in Table 5) of
our designs with register-based storage. Fair comparison
with [17] could not be done due to lack of relevant area
figures.
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Synthesis Results for Optimized Designs with Different Target Technology Libraries



To put our results in perspective, we surveyed the
throughputs of a few popular hardware stream ciphers. The
current eSTREAM portfolio of hardware stream ciphers
contains three ciphers: Grain_v1, MICKEY_v2, and Tri-

vium. According to a hardware performance evaluation of
the ciphers (as in [7] and [8]), these ciphers achieve the
following throughputs, with maximum possible optimiza-
tion and parallelization:

. Grain128: 14.48 Gbps (130 nm), 4.475 Gbps (250 nm),

. MICKEY: 0.413 Gbps (130 nm), 0.287 Gbps (250 nm),
and

. Trivium: 22.3 Gbps (130 nm), 18.568 Gbps (250 nm).

In the data above, the current version Grain128_v1 is tested
on 130 nm technology, whereas the result for 250 nm
technology is with Grain128_v0, as mentioned in [8].

One may observe that in context of the eSTREAM
hardware stream ciphers, the optimized implementation

of RC4 that we provide fares quite well in terms of
throughput (10 Gbps), although RC4 is never claimed to
be a hardware cipher. It should also be noted that the area
requirements for the proposed RC4 designs (50-60 KGates
for Designs 1 and 2) are fairly high compared to those in

case of the aforementioned eSTREAM ciphers, as evaluated
in [7] (3.2 KGates for Grain128, 5.0 KGates for MICKEY, and
4.9 KGates for Trivium). However, compared to processors
or coprocessors in embedded systems, this area is quite

reasonable, and is small enough to be integrated in modern
embedded processors. The optimization is between the
efficiency requirement and the area constraint on the user
end. If high throughput is required for the time-tested and

widely accepted stream cipher RC4, the user may go for a
slightly high-area implementation as we have proposed in
this paper, and if the area constraints are stricter, the user
may go for the RAM-based implementation proposed in [5],
or choose the new lightweight stream ciphers over RC4.

5 ISSUES WITH FURTHER IMPROVEMENTS

Based on Design 2, the fastest known hardware implemen-
tation of RC4 till date, one may be tempted to push the
architecture even further so as to increase its throughput.
We tried to venture in this direction as well, and noticed
that a better throughput can be obtained via one of the two
following avenues:

1. Unroll more loops of the algorithm.
2. Increase the pipeline depth.

First, we shall take a look at issues with further loop

unrolling, starting with the idea of Design 1.

5.1 Unrolling Three or More Loops of RC4

In hardware design, the idea of loop unrolling proves to be
most effective when the parameters involved in each of the
loops are independent. In case of KSA or PRGA in RC4
stream cipher, we are not quite so lucky. The interdepen-

dencies between consecutive loops of RC4 originate from
the following ordering of steps:

Update indices ! Swap S-values ! Output Z:

This order has to be obeyed at all circumstances to maintain

the correctness of the cipher.
Recall Design 1 (Section 2) where we first introduce the

concept of loop unrolling in case of RC4. To implement this

idea, we had to take into account all dependencies between

two consecutive loops. As the Swap and Output stages

depend directly upon the indices i and j, we only needed to

consider the interplay between the indices of the two rounds,

i.e., i1, i2 and j1, j2. We had a total of ð42Þ ¼ 6 pairs to deal with,

but the equality or inequality of 3 of these (i1; i2; i1; j1; i2; j2)

did not matter, as they were either impossible to occur, or

were anyway expected in the RC4 algorithm. So, we had to

worry about the comparison between three pairs of indices

ði1; j2Þ and ði2; j1Þ and ðj1; j2Þ

in case of S-box swaps as well as the computations for Z1

and Z2. These three pairs gave rise to 23 ¼ 8 choices in each

case, and that in turn contributed to the large area for the

combinational logic in our architecture.
Now, if we try to unroll another loop of RC4, i.e., three

consecutive rounds of the cipher at a time, we will have to

deal with six indices i1, i2, i3, and j1, j2, j3. There are ð62Þ ¼
15 pairs, out of which we will have to consider nine pairs

for comparison

ði1; j2Þ; ði1; j3Þ; ði2; j1Þ; ði2; j3Þ; ði3; j1Þ; ði3; j2Þ and

ðj1; j2Þ; ðj2; j3Þ; ðj1; j3Þ:

These pairs will give rise to 29 ¼ 512 choices in each case of

S-box swaps and output computation, and will require

combinational logic to take care of the choices.
In the hardware implementation of Design 1 and Design 2,

one may observe that the combinational area already figures

quite high. With three loops unrolled, it will be impossible to

manage as the logic requirement grows exponentially (eight

choices for two loops to 512 choices for three loops). Hence,

the idea of further loop unrolling in RC4 do not seem feasible,

and we drop the idea.

5.2 Increasing Depth of the Pipeline

In this case, the motivation was to check if deeper hardware

pipelining can further improve the throughput for our RC4

architecture. During our experiments with the design, we

observed that the critical path in the architecture is due to

S-box access, which cannot be improved by whatever deep

pipelining one may design.
The only way to reduce the critical path in S-box access

logic is to explore either of the following choices:

. Hand-optimizing the multiplexer logic.

. Partitioned S-box to reduce multiplexing logic.

The first option is hard to perform from the RTL and the

multiplexer logic is anyway highly optimized by the

synthesis tools. One may however investigate the second

option further, but most likely such a structure will require

predictable access pattern for different partitions of the

S-box. This “predictable access pattern” might lead to

compromising the cryptographic security, which is not

desirable at all.
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6 CONCLUSION AND OUTLOOK

The alleged RC4 has been dominant in the arena of stream
ciphers since its advent in 1987, and has earned its
reputation as the most popular stream cipher till date. Be
it academics or the industry, RC4 has been used in
numerous forms and shapes in a majority of cryptographic
solutions based on stream ciphers. The algorithm for the
cipher is intriguingly simple, and one can easily implement
it within a few lines of code. This has further promoted RC4
as a natural choice for a software-based stream cipher.

It is rumored in the cryptographic community that an
efficient RC4 software implementation can produce the
keystream bytes at a rate of three cycles per byte. However,
we could not find any documented evidence to this claim.
The best software performance of RC4 stated in the
literature till date is available at [1], and it provides an
account of 7 to 15 cycles per byte of RC4 keystream,
depending on the processor and the clock-speed the cipher
was tested on.

We take a look at the other side of the coin; the hardware

implementation of RC4. There have been a few RC4

hardware designs proposed in the literature, but none

provided a complete analysis of the problem. In this paper,

we have presented a thorough study of RC4 hardware

designing problem from the point of view of throughput,

measured in gigabits per second output of the RC4

keystream. We have discussed the issues of loop unrolling

and hardware pipelining in RC4 architecture to obtain

better throughput, and have experimented extensively to

optimize area and performance.
In the process, we have proposed two new designs for

RC4 hardware. The first one produces one keystream byte
per cycle using the idea of loop unrolling, that has never
been exploited in case of RC4 hardware implementation.
Our second design tops the first one by combining the idea
of loop unrolling with that of efficient hardware pipelining
to obtain two keystream bytes per cycle. This is the fastest
known RC4 hardware architecture till date, providing a
keystream throughput of 30.72 Gbps in its optimized form,
using 65 nm technology.

We have also studied the obvious scopes for further

improvement in throughput, using more loop unrolling or

better pipelining, and have shown that these tweaks are

either not feasible or not optimum in terms of area and speed.
In the future, we will have further look into the

hardware architecture for optimizing the area without
compromising the runtime performance. It is also an
interesting research to look into a flexible hardware
platform, which can support multiple fast stream ciphers.
Even within the context of RC4, several security enhance-
ments are proposed. While this study concentrated on the
basic RC4 implementation, it remains an open, interesting
problem to study the security-performance tradeoffs for
different RC4 variants.
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