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Introduction

Organization of the Thesis

There are 9 chapters, distributed over 2 major parts, in this thesis.

Chapter 1 – Preliminaries and Motivation

Part I – Analysis of RC4 Part II – Implementation of RC4

Chapter 2 – Overview of RC4 Analysis Chapter 6 – Overview of RC4 Designs

Chapter 3 – Keylength biases Chapter 7 – Design 1 (loop unrolling)

Chapter 4 – State-dependent biases Chapter 8 – Design 2 (pipelining)

Chapter 5 – Keystream biases

Chapter 9 – Conclusion and Open Problems

We deal with 10 research problems in this thesis.
We present 10 open problems in related research.
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Introduction

Organization of this Talk

Introduction
Stream Ciphers and RC4
Motivation of our work

Analysis of RC4 Stream Cipher
Non-randomness in the output keystream
Keylength dependent biases in RC4
Long-term biases in RC4
Biases related to the state-variables
Contributions in RC4 Analysis

Implementation of RC4 Stream Cipher
Design based on loop unrolling
Design based on hardware pipelining
Contributions in RC4 Implementation

Conclusion
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Introduction

Stream Ciphers and RC4
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Introduction

Stream Ciphers

Exploit the notion of perfect secrecy by Shannon, 1949.

Encrypted message reveals no
information about the plaintext
for a one-time-pad encryption.

random keystream

⊕
plaintext message

encrypted message

They aim at producing
long random keystream
from a short secret key.

secret key SC pseudo random keystream

But never produce a truly random keystream!

Shannon, Claude E. (October 1949). “Communication Theory of Secrecy Systems”.
Bell System Technical Journal (USA: AT&T Corporation) 28 (4):656–715.
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Introduction

RC4 Stream Cipher

� Designed by Ron Rivest in 1987

� Description public in 1994 (?)

Popularity

� Most used commercial cipher!

� Used in WEP, WPA, SSL/TLS.

� Numerous academic
publications and patents.

� Simplest cipher to describe!

Photo: http://people.csail.mit.edu/rivest/
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Introduction

RC4 Stream Cipher

Key Scheduling Algorithm Pseudo-Random Generation Algorithm

RC4secret key pseudo random keystream

pseudo random state pseudo random state

KSA PRGA

permutation of {0, 1, . . . , 255} permutation of {0, 1, . . . , 255}

1 byte per iteration256 bytes long
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Introduction

Key Scheduling Algorithm (KSA)

0 1 2 i j 254 255

· · · · · ·

Initialize index: j = 0;

for i = 0, . . . , 255 do
j = j + S [i ] + K [i ];
Swap S [i ]↔ S [j ];

end

Input: S-array initialized to
identity permutation, and key K

Output: Scrambled S-array
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Introduction

Pseudo-Random Generation Algorithm (PRGA)

0 1 2 S [i ] + S [j ] i j 254 255

· · · Z · · · · · ·

�

Initialize indices: i = j = 0;

while TRUE do
i = i + 1;
j = j + S [i ];
Swap S [i ]↔ S [j ];
Output Z = S [S [i ] + S [j ]];

end

Input: Scrambled S-array,
obtained as the KSA output

Output: Pseudo-random stream
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Introduction

RC4 toy example

KSA with N = 8

K = [3, 1, 5, 2, 7, 0, 6, 4]

S = [0, 1, 2, 3, 4, 5, 6, 7]

i = 0 , j = 3 S = [3, 1, 2, 0, 4, 5, 6, 7]

i = 1 , j = 5 S = [3, 5, 2, 0, 4, 1, 6, 7]

i = 2 , j = 4 S = [3, 5, 4, 0, 2, 1, 6, 7]

i = 3 , j = 6 S = [3, 5, 4, 6, 2, 1, 0, 7]

i = 4 , j = 7 S = [3, 5, 4, 6, 7, 1, 0, 2]

i = 5 , j = 0 S = [1, 5, 4, 6, 7, 3, 0, 2]

i = 6 , j = 6 S = [1, 5, 4, 6, 7, 3, 0, 2]

i = 7 , j = 4 S = [1, 5, 4, 6, 2, 3, 0, 7]
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Introduction

RC4 toy example

PRGA with N = 8

K is no more required

S = [1, 5, 4, 6, 2, 3, 0, 7]

i = 1 , j = 5 S = [1, 3, 4, 6, 2, 5, 0, 7] , Z = 1

i = 2 , j = 1 S = [1, 4, 3, 6, 2, 5, 0, 7] , Z = 7

i = 3 , j = 7 S = [1, 4, 3, 7, 2, 5, 0, 6] , Z = 5

i = 4 , j = 1 S = [1, 2, 3, 7, 4, 5, 0, 6] , Z = 0

i = 5 , j = 6 S = [1, 2, 3, 7, 4, 0, 5, 6] , Z = 0

i = 6 , j = 3 S = [1, 2, 3, 5, 4, 0, 7, 6] , Z = 4

i = 7 , j = 1 S = [1, 6, 3, 5, 4, 0, 7, 2] , Z = 1

i = 8 , j = ... S = ...
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Introduction

How can a design so simple have

such enigmatic a flair?!

Used in three main protocols WEP, WPA, SSL/TLS
Numerous applications in Microsoft, Apple, SQL products

Prominent patents on hardware implementation

More than hundred papers in top-tier venues
Three Master’s theses, two PhD theses, one Book to date

One must cultivate this cipher!
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Analysis of RC4 Stream Cipher

Part I

Analysis of RC4
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Analysis of RC4 Stream Cipher

hidden layers

Mathematical Model – Random bytes from random perms

Cryptographic Primitive – Pseudo-random generator (PRG)

Security Protocols – Direct use, WEP, WPA, TLS, etc.

Software Implementation Hardware Implementation
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Analysis of RC4 Stream Cipher

PRG output should be indistinguishable from truly random bitstream!
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Analysis of RC4 Stream Cipher

Broadcast attack on RC4

Encryption using RC4 is typically E (k ,P) : C ← P ⊕ RC4(k)

C1 = P1 ⊕ Z1, C2 = P2 ⊕ Z2, C3 = P3 ⊕ Z3, . . .

Mantin-Shamir (2001): Pr(Z2 = 0) ≈ 2/N ⇒ Pr(C2 = P2) ≈ 2/N

Consider a ciphertext-only-attack where the same plaintext P is
encrypted by RC4 several times using independent random keys.

Plaintext recovery

� Gather multiple C and compute P2 = majority{C2}
� Attack will be successful if number of C is in Ω(N)
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Analysis of RC4 Stream Cipher

Non-randomness in initial bytes
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Analysis of RC4 Stream Cipher

Non-randomness in Z1

Pr(Z1 = v)
v = 0, 1, . . . , 255

Major biases

Sinusoidal distribution

Pr(Z1 = 0) ≈ 1
N −

1
N2

Pr(Z1 = 129) ≈ 1
N −

2
N2

Mironov, Crypto 2002
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Analysis of RC4 Stream Cipher

Negative bias in (Z1 = 0)

Theorem
Suppose the initial permutation of RC4 PRGA is a random
permutation of {0, 1, . . . ,N − 1}. Then Pr(Z1 = 0) ≈ 1/N − 1/N2.

X 0

0 1 X

i , j

0 X Z1 = S[X ]

i j

Pr(Z1 = 0) ≈ 0 · 1/N + 1/N · (1− 1/N) = 1/N − 1/N2
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Theorem
For regular RC4, the probability distribution of Z1 is as follows,

Pr(Z1 = v) = Qv +
∑
X∈Lv

∑
Y∈Tv,X

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S0[X + Y ] = v),

with Qv =


Pr(S0[1] = 1 ∧ S0[2] = 0), if v = 0;
Pr(S0[1] = 0 ∧ S0[0] = 1), if v = 1;
Pr(S0[1] = 1 ∧ S0[2] = v)

+ Pr(S0[1] = v ∧ S0[v ] = 0)
+ Pr(S0[1] = 1− v ∧ S0[1− v ] = v), otherwise.

where v ∈ {0, . . . ,N − 1}, Lv = {0, 1, . . . ,N − 1} \ {1, v},
Tv,X = {0, 1, . . . ,N − 1} \ {0,X , 1− X , v}.
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

One may write

Z1 = S1[S1[i1] + S1[j1]] = S1[S0[j1] + S0[i1]]

= S1[S0[S0[1]] + S0[1]] = S1[Y + X ], where X = S0[1],Y = S0[X ]

and thus compute

Pr(Z1 = v) =
N−1∑
X=0

N−1∑
Y=0

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S1[X +Y ] = v).
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

Pr(Z1 = v) =
N−1∑
X=0

N−1∑
Y=0

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S1[X +Y ] = v).

We have a known distribution for S0[u] = v (Mantin, 2001).
Thus the goal is to reduce the term S1[X + Y ] to the state S0.

Note that

� S1 is different from S0 in at most two places, i1 = 1 and j1 = X .

� Special cases for X + Y = 1 and X + Y = X must be considered.
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

Special cases depending on X ,Y

� X + Y = 1 if and only if Y = 1− X , which implies

Z1 = S1[1] = S1[i1] = S0[j1] = S0[X ] = Y = 1− X

� X + Y = X if and only if Y = 0, which implies

Z1 = S1[X ] = S1[j1] = S0[i1] = S0[1] = X

� X = 1 if and only if Y = X , which implies

Z1 = S1[X + Y ] = S0[X + Y ] = S0[1 + 1] = S0[2]
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

0
0

255

255

Y

X

Special case X = 1

Special case Y = X

Special case Y = 1− X

Special case Y = 0

Special cases General cases Discarded
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

Pr(Z1 = v) =
N−1∑
X=0

Pr(S0[1] = X ∧ S0[X ] = 1− X ∧ 1− X = v)

+
N−1∑
X=0

Pr(S0[1] = X ∧ S0[X ] = 0 ∧ X = v)

+ Pr(S0[1] = 1 ∧ S0[2] = v)

+
∑
X 6=1

∑
Y 6=0,X ,1−X

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S0[X + Y ] = v).

The first summation term reduces to a single point
(X = 1− v ,Y = v), as we fix 1− X = v and Y = 1− X .
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

Pr(Z1 = v) = Pr(S0[1] = 1− v ∧ S0[1− v ] = v)

+
N−1∑
X=0

Pr(S0[1] = X ∧ S0[X ] = 0 ∧ X = v)

+ Pr(S0[1] = 1 ∧ S0[2] = v)

+
∑
X 6=1

∑
Y 6=0,X ,1−X

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S0[X + Y ] = v).

The second summation, similarly, reduces to point (X = v ,Y = 0).
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

Pr(Z1 = v) = Pr(S0[1] = 1− v ∧ S0[1− v ] = v)

+ Pr(S0[1] = v ∧ S0[v ] = 0)

+ Pr(S0[1] = 1 ∧ S0[2] = v)

+
∑
X 6=1

∑
Y 6=0,X ,1−X

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S0[X + Y ] = v).

Finally, we get two impossible conditions on the double summation:
(X = v ,Y 6= 0)⇒ (Z1 6= v) and (X 6= 1− v ,Y = v)⇒ (Z1 6= v).
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Idea for the proof.

Pr(Z1 = v) = Pr(S0[1] = 1− v ∧ S0[1− v ] = v)

+ Pr(S0[1] = v ∧ S0[v ] = 0)

+ Pr(S0[1] = 1 ∧ S0[2] = v)

+
∑
X 6=1,v

∑
Y 6=0,X ,1−X ,v

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S0[X + Y ] = v).

� v = 0 reduces the first three terms to Pr(S0[1] = 1 ∧ S0[2] = 0).

� v = 1 reduces the first three terms to Pr(S0[1] = 0 ∧ S0[0] = 1).

� v 6= 0, 1 keeps all the first three terms intact.
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

Hence the final expression

Pr(Z1 = v) = Qv +
∑
X∈Lv

∑
Y∈Tv,X

Pr(S0[1] = X ∧ S0[X ] = Y ∧ S0[X + Y ] = v),

with Qv =


Pr(S0[1] = 1 ∧ S0[2] = 0), if v = 0;
Pr(S0[1] = 0 ∧ S0[0] = 1), if v = 1;
Pr(S0[1] = 1 ∧ S0[2] = v)

+ Pr(S0[1] = v ∧ S0[v ] = 0)
+ Pr(S0[1] = 1− v ∧ S0[1− v ] = v), otherwise.

where v ∈ {0, . . . ,N − 1}, Lv = {0, 1, . . . ,N − 1} \ {1, v},
Tv,X = {0, 1, . . . ,N − 1} \ {0,X , 1− X , v}.
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Analysis of RC4 Stream Cipher

Complete distribution of Z1

0 32 64 96 128 160 192 224 255
Value v taken by the first output byte Z1  of RC4.

0.003885

0.003895

0.003905

0.003915

0.003925

0.003935

P
r 
(Z

1
=
v)
.

Experimental (with 256-byte keys)
Theoretical (with KSA-generated S0 )

Theoretical (with Random S0 )

Observed by Mironov in 2002. Proved by SMPS in 2013.
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Other initial bytes of RC4
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Analysis of RC4 Stream Cipher

Non-randomness in Z2

Pr(Z2 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z2 = 0) ≈ 2
N

Pr(Z2 = 129) ≈ 1
N −

2
N2

Pr(Z2 = 172) ≈ 1
N + 0.2

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z3

Pr(Z3 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z3 = 0) ≈ 1
N + 0.3

N2

Pr(Z3 = 3) ≈ 1
N + 0.3

N2

Pr(Z3 = 131) ≈ 1
N + 2

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z4

Pr(Z4 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z4 = 0) ≈ 1
N + 1

N2

Pr(Z4 = 4) ≈ 1
N + 1

N2

Pr(Z4 = 2) ≈ 1
N + 0.8

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z5

Pr(Z5 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z5 = 0) ≈ 1
N + 1

N2

Pr(Z5 = 5) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z6

Pr(Z6 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z6 = 0) ≈ 1
N + 1

N2

Pr(Z6 = 6) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z7

Pr(Z7 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z7 = 0) ≈ 1
N + 1

N2

Pr(Z7 = 7) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z8

Pr(Z8 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z8 = 0) ≈ 1
N + 1

N2

Pr(Z8 = 8) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z9

Pr(Z9 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z9 = 0) ≈ 1
N + 1

N2

Pr(Z9 = 9) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z10

Pr(Z10 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z10 = 0) ≈ 1
N + 1

N2

Pr(Z10 = 10) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z11

Pr(Z11 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z11 = 0) ≈ 1
N + 1

N2

Pr(Z11 = 11) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z12

Pr(Z12 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z12 = 0) ≈ 1
N + 1

N2

Pr(Z12 = 12) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z13

Pr(Z13 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z13 = 0) ≈ 1
N + 1

N2

Pr(Z13 = 13) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z14

Pr(Z14 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z14 = 0) ≈ 1
N + 1

N2

Pr(Z14 = 14) ≈ 1
N + 1

N2
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Analysis of RC4 Stream Cipher

Non-randomness in Z15

Pr(Z15 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z15 = 0) ≈ 1
N + 1

N2

Pr(Z15 = 15) ≈ 1
N + 1

N2
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Non-randomness in initial bytes

Pr(Zr = 0)
r = 1, 2, . . . , 255

Pr(Zr = r)
r = 1, 2, . . . , 255
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Zero-bias of initial bytes
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Analysis of RC4 Stream Cipher

Zero-bias of initial bytes

� Mantin-Shamir discovered and proved the (Z2 = 0) bias in 2001.

� They claimed there are no biases towards zero for bytes 3 to 255.

� We revisit their work and contradict this claim in 2011.

Theorem
In PRGA rounds 3 ≤ r ≤ N − 1, probability Pr(Zr = 0) is:

Pr(Zr = 0) ≈ 1

N
+

cr
N2

,

where cr =


N

N−1
(N · Pr(Sr−1[r ] = r)− 1)− N−2

N−1
, for r = 3;

N
N−1

(N · Pr(Sr−1[r ] = r)− 1) , otherwise.
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Analysis of RC4 Stream Cipher

Zero-bias of initial bytes

� Mantin-Shamir discovered and proved the (Z2 = 0) bias in 2001.

� They claimed there are no biases towards zero for bytes 3 to 255.

� We revisit their work and contradict this claim in 2011.

3 32 64 96 128 160 192 224 255
Index r of RC4 keystream bytes.

0.00390

0.00391

0.00392

0.00393

P
r 
(Z

r
=
0
).

Experimental (16 byte key)
Theoretical
Probability 1/N (ideal case)
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Analysis of RC4 Stream Cipher

Zero-bias after byte 255

Pr(Z256 = v)
v = 0, 1, . . . , 255

We proved

Pr(Z256 = 0) ≈ 1
N −

0.4
N2

We also proved

Pr(Z257 = 0) ≈ 1
N + 0.35

N2
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Analysis of RC4 Stream Cipher

Something weird happens

at the 16-th byte
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Analysis of RC4 Stream Cipher

Strange bias in (Z16 = 240)

Pr(Z16 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z16 = 0) ≈ 1
N + 1

N2

Pr(Z16 = 16) ≈ 1
N + 1

N2

Pr(Z16 = 240) ≈ 1
N + 9

N2

Why 16? 240 ≡ −16
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Strange bias in (Z16 = 240)

Pr(Z16 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z16 = 0) ≈ 1
N + 1

N2

Pr(Z16 = 16) ≈ 1
N + 1
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Pr(Z16 = 240) ≈ 1
N + 9

N2

Why 16?

240 ≡ −16
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Strange bias in (Z16 = 240)

Pr(Z16 = v)
v = 0, 1, . . . , 255

Major biases

Pr(Z16 = 0) ≈ 1
N + 1

N2

Pr(Z16 = 16) ≈ 1
N + 1

N2

Pr(Z16 = 240) ≈ 1
N + 9

N2

Why 16? 240 ≡ −16
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Analysis of RC4 Stream Cipher

hidden layers

Mathematical Model – Random bytes from random perms

Cryptographic Primitive – Pseudo-random generator (PRG)

Security Protocols – Direct use, WEP, WPA, TLS, etc.

Software Implementation Hardware Implementation
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RC4 in Practice
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Analysis of RC4 Stream Cipher

RC4 in practice

For the KSA step j = j + S [i ] + K [i ], we require 256-byte K array.
However in practice, the most typical key-size for RC4 is 128 bits.

Key expansion: K [i ] = RC4KEY[i mod l ] for i = 0, 1, 2, . . . , 255,
where l is the length (in bytes) of the secret key

· · · · · ·
0 15, 16 31, 32 47 240 255

Typical length of the secret key: l = 128 bits = 16 bytes

Intuition: This keylength of l = 16 may have reflected in the Z16 bias.
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Analysis of RC4 Stream Cipher

Discovery and proof of

keylength-dependent biases
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Analysis of RC4 Stream Cipher

Keylength-dependent distinguisher of RC4

Pr(Zl = −l) > 1
N + 1

N2 for all practical keylengths l = 5, 6, . . . , 30.

Theorem
Suppose that l is the length of the secret key of RC4. Then

Pr(Zl = −l) ≈ 1

N2
+

(
1− 1

N2

)
γl + (1− δl)

1

N
,

where γl = 1
N2

(
1− l+1

N

)∑N−1
x=l+1

(
1− 1

N

)x (
1− 2

N

)x−l (
1− 3

N

)N−x+2l−4
and

δl = Pr(S1[l ] = 0)
(
1− 1

N

)l−2
+
∑l−1

t=2

∑l−t
w=0

Pr(S1[t]=0)
w !·N

(
l−t−1

N

)w (
1− 1

N

)l−3−w
.
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Analysis of RC4 Stream Cipher

Keylength-dependent distinguisher of RC4

Pr(Zl = −l) > 1
N + 1

N2 for all practical keylengths l = 5, 6, . . . , 32.
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Analysis of RC4 Stream Cipher

Extended keylength-dependent biases

Pr(Zxl = −xl) > 1
N for l = 5, 6, . . . , 32 and x = 1, 2, . . . , bNl c

Example for l = 16
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Analysis of RC4 Stream Cipher

Extended keylength-dependent biases

Pr(Zxl = −xl) > 1
N for l = 5, 6, . . . , 32 and x = 1, 2, . . . , bNl c

Example for l = 20
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Analysis of RC4 Stream Cipher

Extended keylength-dependent biases

Pr(Zxl = −xl) > 1
N for l = 5, 6, . . . , 32 and x = 1, 2, . . . , bNl c

Example for l = 24
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Analysis of RC4 Stream Cipher

Extended keylength-dependent biases

Pr(Zxl = −xl) > 1
N for l = 5, 6, . . . , 32 and x = 1, 2, . . . , bNl c

Example for l = 28
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Analysis of RC4 Stream Cipher

Extended keylength-dependent biases

Pr(Zxl = −xl) > 1
N for l = 5, 6, . . . , 32 and x = 1, 2, . . . , bNl c

Example for l = 32
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Keylength-dependent biases for l = 16

Pr(Zr = −r)
r = 1, . . . , 255

Major biases

Pr(Z16 = 240) ≈ 1
N + 9

N2

Pr(Z32 = 224) ≈ 1
N + 6

N2

Pr(Z48 = 208) ≈ 1
N + 4

N2

Pr(Z64 = 192) ≈ 1
N + 3

N2

Pr(Z80 = 176) ≈ 1
N + 2

N2
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Keylength affects Z1 too
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Analysis of RC4 Stream Cipher

Keylength-dependence in Z1

Pr(Z1 = v)
v = 0, 1, . . . , 255

Major biases

Sinusoidal distribution

Pr(Z1 = 0) ≈ 1
N −

1
N2

Pr(Z1 = 129) ≈ 1
N −

2
N2

For l = 16, not for l = 256
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Keylength-dependence in Z1

Pr(Z1 = v)
v = 0, 1, . . . , 255
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Analysis of RC4 Stream Cipher

Keylength-dependence in Z1

Bias at (Z1 = 129) is present only for l = 2, 4, 8, 16, 32, 64, 128
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Analysis of RC4 Stream Cipher

Keylength-dependence in S0

Bias at (S0[128] = 127) is present only for l = 2, 4, 8, 16, 32, 64, 128
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Analysis of RC4 Stream Cipher

Keylength-dependence in S0

(S0[128] = 127) bias for l = 16 was known as an anomaly since 2001.
We prove the general result in this direction in 2013.

Theorem
In practical RC4 with N = 256,

Pr(S0[128] = 127) ≈ 0.63/N,

if and only if l is a non-trivial factor of N = 256.

Intuition for the proof: The calculation for Pr(S0[128] = 127) behaves
differently if K [128] = K [0] after key expansion; this happens with
certainty if and only if l = 2, 4, 8, 16, 32, 64, 128.
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Analysis of RC4 Stream Cipher

Practical implication

of initial-byte biases
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Analysis of RC4 Stream Cipher

RC4 becomes weak against broadcast attack on initial plaintext bytes!
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Analysis of RC4 Stream Cipher

Recent plaintext-recovery attacks

Our result on biases in (Zr = 0) first opened the possibility for
recovery of plaintext bytes other than the second one.

MPS 2011: Recovery of P3,P4, . . . ,P255 from Ω(N3) ciphertexts.

Isobe et al., 2013

� Recovery of all initial bytes using a chosen set of biases.

AlFardan et al., 2013

� Recovery of all initial bytes using all initial byte biases.

� Broadcast attack on TLS using the same technique.
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Analysis of RC4 Stream Cipher

Discard all problematic

initial output bytes!
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Analysis of RC4 Stream Cipher

Long-term bias in RC4

Golic proved a bitwise correlation between Zr and Zr+2 in 1997.
We prove a new periodic bytewise correlation between Zr and Zr+2.

Theorem
Suppose that the permutation SwN is truly random, then for w > 0,

Pr(ZwN+2 = 0 ∧ ZwN = 0) ≈ 1

N2
+

1

N3
.

This is the first long-term byte-wise correlation (periodic) to be
observed between two non-consecutive bytes.
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Analysis of RC4 Stream Cipher

Biases related to

the state-variables
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Analysis of RC4 Stream Cipher

State-dependent biases

Observed by SVV in 2010, proved by SMPS in 2011.

Type of Bias Label by SVV’10 Biases proved

“New 004” j2 + S2[j2] = S2[i2] + Z2

Specific “New noz 007” j2 + S2[j2] = 6

Initial Rounds “New noz 009” j2 + S2[j2] = S2[i2]

“New noz 014” j1 + S1[i1] = 2

All Rounds “New noz 001” jr + Sr [ir ] = ir + Sr [jr ]

(r -independent) “New noz 002” jr + Sr [jr ] = ir + Sr [ir ]

All Initial “New 000” Sr [tr ] = tr

Rounds “New noz 004” Sr [ir ] = jr

(r -dependent) “New noz 006” Sr [jr ] = ir
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Analysis of RC4 Stream Cipher

Non-randomness of index j

We characterized the non-randomness in index j
and in the process, discovered a new bias in (j2 = 4).

0 4 32 64 96 128 160 192 224 255
0.0025

0.0039

0.005

0.0075

0.01

Value v, from 0 to 255.

P
r(

 j
 r =

 v
 )

.

 

 

Distribution of j
1

Distribution of j
2

Distribution of j
3

Index j behaves random from onwards j3.
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Analysis of RC4 Stream Cipher

Glimpse in RC4

We exploited the bias in (j2 = 4) to get a short-term glimpse.

Pr (S2[2] = 4− Z2) ≈ 1

N
+

4/3

N2
.

The best existing long-term glimpse was by Jenkins in 1996.

Pr(Sr [jr ] = ir − Zr ) = Pr(Sr [ir ] = jr − Zr ) ≈ 2

N

We identified the proved a new long-term glimpse in 2013.

Pr(Sr [r + 1] = N − 1 | Zr+1 = Zr ∧ Zr+1 = r + 2) ≈ 3

N
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Analysis of RC4 Stream Cipher

Contributions in

RC4 Analysis
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Analysis of RC4 Stream Cipher

Contributions in RC4 Analysis

Settling long-standing open problems Ref.

1. Keylength dependent anomaly Mantin, 2001

2. Long-term conditional glimpse Jenkins, 1996

3. Distribution of Z1 Mironov, 2002

4. Zero-bias of bytes Z3, . . . ,Z255 MS, 2001

5. Long-term bias in non-consecutive bytes Golic, 1997
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Analysis of RC4 Stream Cipher

Contributions in RC4 Analysis

Providing theoretical validation of practical attacks Ref.

1. Proving biases used in WEP and WPA attacks SVV, 2010

2. Proving biases used in recent TLS attacks ABPPS, 2013

Initiating new directions in RC4 analysis Ref.

1. Keylength-dependent biases in RC4 SMPS, 2013

2. Keylength-dependence in Z1 bias SSPM, 2013
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Implementation of RC4 Stream Cipher

Part II

Implementation of RC4
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Implementation of RC4 Stream Cipher

Motivation for this Work

“In how many clocks a byte can be generated in RC4 PRGA?”

Most common approach

� 1 cycle for increment/computation of indices i , j

� 1 cycle for swapping the values S [i ] and S [j ]

� 1 cycle for reading the Z value from S-array

Motivation: Can we get a better throughput?
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Implementation of RC4 Stream Cipher

Design 1 – Loop unrolling

“One Byte per Clock throughput for RC4 PRGA”

3 1−→

� N bytes of output in N + 2 clock cycles

� Completion of RC4 KSA in 257 clock cycles

� Asymptotically ‘one byte per clock cycle’
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Implementation of RC4 Stream Cipher

Design 1 – Loop unrolling

“Combine two rounds of RC4 PRGA”

Steps First Loop Second Loop

1 i1 = i0 + 1 i2 = i1 + 1 = i0 + 2

2 j1 = j0 + S0[i1] j2 = j1 + S1[i2] = j0 + S0[i1] + S1[i2]

3 Swap S0[i1]↔ S0[j1] Swap S1[i2]↔ S1[j2]

4 Z1 = S1[S0[i1] + S0[j1]] Z2 = S2[S1[i2] + S1[j2]]

� What if the indices overlap? (e.g., j1 = i2)

� What about the ordering of Swap and Output?
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Implementation of RC4 Stream Cipher

Design 1 – Loop unrolling

i1 = i0 + 1; 
j1 = j0 + S0[i1]; 
i2 = i1 + 1; 
j2 = j1 + S1[i2]; 

Z1 = S1[S1[i1] + S1[j1]] 
Z2 = S2[S2[i2] + S2[j2]] 

i3 = i2 + 1; 
j3 = j2 + S2[i3]; 
i4 = i3 + 1; 
j4 = j3 + S3[i4]; 

Cycle 1 

Cycle 2 

Cycle 3 

Stage 1 Stage 2 

Swap S0[i1], S0[j1]; 
Swap S1[i2], S1[j2]; 

Swap S2[i3], S2[j3]; 
Swap S3[i4], S3[j4]; 

Z3 = S3[S3[i3] + S3[j3]] 
Z4 = S4[S4[i4] + S4[j4]] 

Cycle 4 

Stage 3 

Cycle 5 
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Implementation of RC4 Stream Cipher

Design 1.5 – Simple hardware pipeline

i1 = i0 + 1; 
j1 = j0 + S0[i1]; 
Swap S0[i1], S0[j1] 

Z1 = S1[S0[i1] + S0[j1]] 
i2 = i1 + 1; 
j2 = j1 + S1[i2]; 
Swap S1[i2], S1[j2]; 

Z2 = S2[S1[i2] + S1[j2]] 

Cycle 1 

Cycle 2 

Cycle 3 

Stage 1 Stage 2 

This approach is independent of the loop unrolling.
Is it possible to merge the two approaches?
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Implementation of RC4 Stream Cipher

Design 2 – Hybrid approach

i1 = i0 + 1; 
j1 = j0 + S0[i1]; 
i2 = i1 + 1; 
j2 = j1 + S1[i2]; 
Swap S0[i1], S0[j1]; 
Swap S1[i2], S1[j2]; 

Z1 = S1[S1[i1] + S1[j1]] 
Z2 = S2[S2[i2] + S2[j2]] 

i3 = i2 + 1; 
j3 = j2 + S2[i3]; 
i4 = i3 + 1; 
j4 = j3 + S3[i4]; 
Swap S2[i3], S2[j3]; 
Swap S3[i4], S3[j4]; 

Cycle 1 

Cycle 2 

Cycle 3 

Stage 1 Stage 2 

Z3 = S3[S3[i3] + S3[j3]] 
Z4 = S4[S4[i4] + S4[j4]] 
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Implementation of RC4 Stream Cipher

Design 2 – Hybrid approach

“Two Bytes per Clock throughput for RC4 PRGA”

1 0.5−→

� 2N bytes of output in N + 1 clock cycles

� Completion of RC4 KSA in 129 clock cycles

� Asymptotically ‘two bytes per clock cycle’
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Implementation of RC4 Stream Cipher

Contributions in RC4 Implementation

Improved the throughputs of common RC4 designs in literature.
Matched the best throughput 1-byte-per-cycle from industry patents.
Provided the best throughput 2-bytes-per-cycle design for RC4.

Year Result in RC4 implementation Ref.

2003 3 cycles-per-byte design based on custom pipeline Kitsos

2003 3 cycles-per-byte design based on multi-port memory Matthews

2008 1 cycle-per-byte design based on hardware pipelining Matthews

2010 1 byte-per-cycle design based on loop unrolling SSMS

2013 2 bytes-per-cycle design based on hardware pipelining com-
bined with loop unrolling in a hybrid model

SCSMS
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Conclusion

Open problems in RC4

Key collisions

� Theoretical construction of short colliding key-pairs.

� Search for collision with 16-byte key-pairs in RC4.

Key recovery

� Narrow the gap of theory and practice in terms of key recovery
attacks on WEP and WPA.

Anomaly pairs

� Characterization of all anomalies in RC4.

� Identify and prove all anomaly-dependent biases.
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Conclusion

Open problems in RC4

State recovery

� Analysis and improvement of existing results in state recovery.

Short cycles

� Find lower bound on the length of ‘possible’ cycles in RC4.

� Explicitly find a short cycle in RC4 cipher evolution.

Keystream biases

� Search for all significant biases of the form (Zr ? Zr+x = v).

Hardware implementation

� Area optimization by distributing S-array over memory banks.
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Conclusion

Publications from the Thesis

RC4 Analysis

1. Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar.
(Non–)random sequences from (non–)random permutations – analysis of RC4
stream cipher. Journal of Cryptology, 2013.

2. Santanu Sarkar, Sourav Sen Gupta, Goutam Paul, and Subhamoy Maitra.
Proving TLS-attack related open biases of RC4. IACR ePrint, 2013.

3. Subhamoy Maitra and Sourav Sen Gupta. New long-term glimpse of RC4
stream cipher. In ICISS. Springer LNCS, 2013.

4. Subhamoy Maitra, Goutam Paul, and Sourav Sen Gupta. Attack on broadcast
RC4 revisited. In FSE. Springer LNCS, 2011.

5. Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu Sarkar.
Proof of empirical RC4 biases and new key correlations. In Selected Areas in
Cryptography. Springer LNCS, 2011.
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Conclusion

Publications from the Thesis

RC4 Implementation

1. Sourav Sen Gupta, Anupam Chattopadhyay, Koushik Sinha, Subhamoy Maitra,
and Bhabani P. Sinha. High-performance hardware implementation for RC4
stream cipher. IEEE Transactions on Computers, 2013.

2. Sourav Sen Gupta, Koushik Sinha, Subhamoy Maitra, and Bhabani P. Sinha.
One byte per clock: A novel RC4 hardware. In INDOCRYPT. Springer LNCS,
2010.

Total: 2 journal papers, 4 conference papers, 1 ePrint report.
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Conclusion

Thank You
for your kind attention
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