
Analysis and Implementation
of RC4 Stream Cipher

A thesis presented to Indian Statistical Institute
in fulfillment of the thesis requirement for the degree of

Doctor of Philosophy in Computer Science

by

Sourav Sen Gupta

under the supervision of

Professor Subhamoy Maitra

Applied Statistics Unit
INDIAN STATISTICAL INSTITUTE

Kolkata, West Bengal, India, 2013

To the virtually endless periods of
sweet procrastination

that kept me sane during the strenuous
one-night stands with my thesis.

i

ii

Abstract

RC4 has been the most popular stream cipher in the history of symmetric
key cryptography. Designed in 1987 by Ron Rivest, RC4 is the most widely
deployed commercial stream cipher, having applications in network protocols
such as SSL, WEP, WPA and in Microsoft Windows, Apple OCE, Secure SQL,
etc. The enigmatic appeal of the cipher has roots in its simple design, which
is undoubtedly the simplest for any practical cryptographic algorithm to date.
In this thesis, we focus on the analysis and implementation of RC4.

For the first time in RC4 literature, we report significant keystream bi-
ases depending on the length of RC4 secret key. In the process, we prove
two empirical biases that were experimentally reported and used in recent
attacks against WEP and WPA by Sepehrdad, Vaudenay and Vuagnoux in
EUROCRYPT 2011. In addition to this, we present a conclusive proof for
the extended keylength dependent biases in RC4, a follow-up problem to our
keylength dependent results, identified and partially solved by Isobe, Ohigashi,
Watanabe and Morii in FSE 2013.

In a recent result by AlFardan, Bernstein, Paterson, Poettering and
Schuldt, to appear in USENIX Security Symposium 2013, the authors ob-
served a bias of the first output byte towards 129. While attempting the proof
of this bias, we observed that the bias occurs prominently only for certain
lengths of the RC4 secret key. In addition, our findings revealed that this bias
may be related to the old and unsolved problem of ‘anomalies’ in the distribu-
tion of the state array S0, right after the Key Scheduling Algorithm. In this
connection, we prove the bias in (S0[128] = 127), a problem left open for more

iii

than a decade since the observation of anomaly pairs by Mantin in 2001.

Subsequently, we present theoretical proofs of some significant initial-round
empirical biases involving the state variables of RC4, observed by Sepehrdad,
Vaudenay and Vuagnoux in SAC 2010. We also study the non-random behavior
of index j and completely characterize the first two instances j1, j2 of the index.
In the same part of the thesis, we show that there are certain events in the
RC4 keystream that leak state information with probability 3/N , higher than
the best existing glimpse correlations identified by Jenkins in 1996.

We further study the short-term and long-term biases in RC4 keystream
bytes. In the process, we derive the complete probability distribution of the
first byte of RC4 keystream, a problem left open for a decade since the ob-
servation by Mironov in CRYPTO 2002. In addition to this, we contradict
a claim by Mantin and Shamir from FSE 2001 by proving that there exist
positive biases towards zero for all the initial bytes 3 to 255 of RC4.

In the recent work of AlFardan, Bernstein, Paterson, Poettering and
Schuldt, extensive computations were conducted to identify significant short-
term single-byte keystream biases of RC4, some of which already exist in the
current literature, and some of which are new. We prove (almost) all new,
unproved or partially proved significant biases observed in the aforesaid work.
We also investigate for long-term non-randomness in the keystream, and prove
a new long-term bias of RC4. Our proofs and observations in this thesis,
along with their connections to the contemporary and old results, provide a
comprehensive view on the state-of-the-art literature in RC4 cryptanalysis.

In the second part of this thesis, we systematically study the hardware
implementation of RC4, and propose the fastest known design for the cipher.
For the first time in the literature, we exploit the idea of loop unrolling in
RC4 hardware design, and subsequently combine hardware pipelining to loop
unrolling in a hybrid architecture that produces 2 bytes-per-cycle throughput
in RC4. This is better than the existing 3 cycles-per-byte design by Kitsos,
Kostopoulos, Sklavos and Koufopavlou, and the 3 cycles-per-byte and 1 cycle-
per-byte patents of Matthews Jr. We have optimized and implemented our
proposed designs using VHDL description, synthesized with 130 nm, 90 nm
and 65 nm fabrication technologies, for proper comparison with existing designs
in terms of keystream throughput and hardware footprint.

iv

Acknowledgments

You can’t connect the dots looking forward; you can only connect
them looking backwards. – Steve Jobs

Looking back at the last few years that I have spent at Indian Statistical
Institute as a doctoral student, I see several people who have significantly
influenced the course of my thesis, as well as my life. I take this opportunity
to offer my gratitude to all who stood beside me in the hardest of times.

First and foremost, I extend my heartfelt gratitude to my PhD supervisor,
Prof. Subhamoy Maitra, Indian Statistical Institute, Kolkata. The ease with
which Subhamoy-da converted our ‘student-supervisor’ relationship into a last-
ing friendship, will remain an eternal mystery to me. Every research problem
that we have discussed, debated upon and solved, has enriched my academic
outlook; and every morsel of experience that he has kindly shared with me will
continue to add value to my life. I will always be grateful to Subhamoy-da for
being my friend, philosopher and guide during the last few years; primarily
because he kept his sanity and sense of humor alive whenever I lost mine!

It was a delight working with my collaborators and co-authors – Prof. Bha-
bani P Sinha of ISI Kolkata, Prof. Dr.-Ing. Anupam Chattopadhyay of RWTH
Aachen, Dr. Goutam Paul of Jadavpur University, Dr. Santanu Sarkar of CMI
Chennai and Dr. Koushik Sinha of HP Labs India. Their academic insight
and vision have taught me a lot over the last few years, and I look forward to
further collaborations with them in the future. I would like to specially thank
Goutam-da and Anupam-da for mentoring and supporting me in numerous
ways, academic and otherwise, during the course of this thesis.

I would like to express my sincerest gratitude to the esteemed anonymous
reviewers of my thesis for their invaluable comments, which helped me improve
the technical presentation and editorial quality of the thesis to a great extent.

v

I am thankful to Applied Statistics Unit, ISI Kolkata for supporting me
during the formative years of my doctoral studies; Centre of Excellence in
Cryptology, ISI Kolkata, funded by DRDO, Government of India, for support-
ing parts of my research; and MPSoC Architectures, UMIC Research Centre,
RWTH Aachen University, Germany, for hosting me during Summer 2011.

I have always idolized Prof. Bimal Roy, Director, Indian Statistical Insti-
tute, without whose active support and unparalleled vision, the field of Cryp-
tology would probably not exist in Indian academia in the first place. I extend
my sincerest gratitude to Bimal-da; it is because of him that I could get the
perfect academic ambiance at the Institute, and the coveted exposure in this
niche area that would otherwise remain only a distant dream for me.

I am indebted to Prof. Rana Barua, Prof. Palash Sarkar, Dr. Kishan Chand
Gupta and Dr. Mridul Nandi for several invaluable discussions during the
tenure of my PhD. I would also like to thank my past and present colleagues at
ISI Kolkata, Sibu-da, Mrinal-da, Somitra-da, Sumanta-da, Pinaki-da, Ashish-
da, Sushmita-di, Srimanta-da, Rishi-da, Sumit-da, Tapas-da, Indranil-da,
Subhadeep-da, Sanjay, Subhabrata, Somindu, Shashank, Samiran, Nilanjan,
Avik, Satrajit and Pratyay, for providing me with an adorable social support.
Special thanks to Rishi-da, as it was only through the uncountably many philo-
sophical and technical discussions with him that I could see myself through the
most arduous times during the last few years.

I humbly acknowledge the kind support of Cryptology Research Society of
India, and that of Mr. Amitabha Sinha (our beloved Amitabha-da), during
my stay at ISI Kolkata. I am also thankful to the Director’s office, the Dean’s
office, the ASU, BIRU and CoEC offices, and all administrative sectors of the
Institute, for their continuous support to make my life smooth at the Institute.

My family has always been the ‘happy place’ for me; even in the hardest
of times. This thesis could not be completed without the ardent support and
inspiration from my parents, Baapi and Maa, who made me what I am by
resting their unflinching faith in me at every step of my life. Undoubtedly the
most significant contribution towards this thesis has been made by Sananda
– my wife, who painstakingly accepted the thesis as her co-wife, night after
night, even during the first year of our marriage. Thank you Love!

vi

Contents

Abstract . iii

Contents . vii

List of Tables . xiii

List of Figures . xv

1 Preliminaries and Motivation 1

1.1 Scope of this Thesis . 2

1.2 Stream Ciphers . 3

1.2.1 One-Time Pad and Perfect Secrecy 3

1.2.2 Generic model for Stream Ciphers 4

1.2.3 Cryptanalysis of Stream Ciphers 7

1.2.4 Practical Designs . 11

1.3 Motivation of the Thesis . 13

1.3.1 Description of RC4 . 14

1.3.2 Choice of RC4 for analysis and implementation 15

1.3.3 Motivation for RC4 Analysis 19

1.3.4 Motivation for RC4 Implementation 22

1.4 Organization of the Thesis . 23

vii

I Analysis of RC4 Stream Cipher 27

2 Overview of RC4 Analysis 29

2.1 Weak keys and Key recovery from state 32

2.1.1 Weak keys . 32

2.1.2 Key collisions . 34

2.1.3 Key recovery from state 36

2.2 Key recovery from keystream 38

2.2.1 Attacks on WEP . 39

2.2.2 Attacks on WPA . 43

2.3 State recovery attacks . 44

2.4 Biases and Distinguishers . 46

2.4.1 Theory of biases and distinguishers 47

2.4.2 Biases related to the secret key 49

2.4.3 Biases related to state variables 51

2.4.4 Short-term biases in the keystream bytes 52

2.4.5 Long-term biases in the keystream bytes 58

2.4.6 Significance of proofs for RC4 biases 60

3 Biases Based on RC4 Keylength 65

3.1 Keylength dependent biases . 66

3.1.1 Technical results required to prove the biases 67

3.1.2 Proofs of the keylength dependent biases 71

3.1.3 Bias in (Zl = −l) and keylength prediction 76

3.2 Extended keylength dependent biases 79

3.2.1 Proofs of extended keylength dependent biases 80

3.2.2 Keylength dependent bias in (Zxl = −xl) 84

3.3 Keylength dependent bias in first byte 87

viii

3.3.1 Proof of anomaly in (S0[128] = 127) 88

3.3.2 Study of the bias in (Z1 = 129) 91

4 Biases Involving State Variables of RC4 93

4.1 Proof of biases involving state variables 93

4.1.1 Biases at specific initial rounds 95

4.1.2 Round-independent biases at all initial rounds 99

4.1.3 Round-dependent biases at all initial rounds 100

4.2 (Non-)Randomness of j at initial rounds 104

4.2.1 Non-randomness of j1 . 104

4.2.2 Non-randomness of j2 . 105

4.2.3 Randomness of jr for r ≥ 3 106

4.2.4 Correlation between Z2 and S2[2] 106

4.3 Long-term glimpse correlation in RC4 109

4.3.1 Proof of the long-term glimpse 110

4.3.2 Experimental results and discussion 114

5 Biases in Keystream Bytes of RC4 117

5.1 Probability distribution of first byte 118

5.1.1 Negative bias in Z1 towards zero 118

5.1.2 Complete distribution of Z1 119

5.1.3 Estimation of the joint probabilities 122

5.2 Biases of initial bytes towards zero 124

5.2.1 Proof of biases in (Zr = 0) for 3 ≤ r ≤ N − 1 125

5.2.2 Guessing state information using the bias in Zr 130

5.3 Proof of some isolated short-term biases 132

5.3.1 Proof of bias in (Z2 = 129) 132

5.3.2 Proof of bias in (Z2 = 172) 133

ix

5.3.3 Proof of bias in (Z4 = 2) 136

5.3.4 Proof of bias in (Z256 = 0) 138

5.3.5 Proof of bias in (Z257 = 0) 140

5.4 Periodic long-term bias in RC4 141

II Implementation of RC4 Stream Cipher 145

6 Overview of RC4 Implementation 147

6.1 Existing hardware implementations 147

6.1.1 Kitsos et al custom pipeline design [79] 148

6.1.2 Matthews Jr. multi-port memory units [106] 149

6.1.3 Matthews Jr. four-stage hardware pipeline [105] 150

6.2 New implementations of RC4 hardware 150

6.2.1 Sen Gupta et al loop unrolling approach [133] 150

6.2.2 Sen Gupta et al hybrid approach [129] 151

6.2.3 Comparison with earlier designs 151

7 Design 1 – One Byte per Clock 153

7.1 Individual components of Design 1 154

7.1.1 Step 1: Calculation of i1 and i2 154

7.1.2 Step 2: Calculation of j1 and j2 155

7.1.3 Step 3: Swapping the S values 156

7.1.4 Step 4: Calculation of Z1 and Z2 160

7.2 Complete architecture of Design 1 161

7.3 Timing analysis of Design 1 . 163

7.3.1 Throughput of PRGA in Design 1 164

7.3.2 Throughput of KSA in Design 1 165

7.4 Implementation of Design 1 . 166

x

7.5 Comparison with existing designs 167

7.5.1 Kitsos et al [79] and Matthews Jr. [106] 167

7.5.2 Comparison with the design of Matthews Jr. [105] 167

7.5.3 Study of the design by Matthews Jr. [105] 169

8 Design 2 – Two Bytes per Clock 171

8.1 Optimization of previous designs 171

8.1.1 Pipelined-B: Optimized version of Pipelined-A 172

8.1.2 Pipelined-C: Optimized version of Pipelined-A 172

8.2 Architecture for Design 2 . 173

8.2.1 Designing the pipeline structure 173

8.2.2 Designing the storage access 175

8.2.3 Structure of PRGA and KSA circuits 177

8.2.4 Implementation of Design 2 178

8.3 Implementation Results . 179

8.3.1 Hardware performance of our designs 179

8.3.2 Comparison with existing designs 182

8.3.3 Comparison with other stream ciphers 183

8.4 Further improvements in throughput 184

8.4.1 Unrolling three or more loops of RC4 184

8.4.2 Increasing depth of the pipeline 186

III Conclusion and Bibliography 187

9 Conclusion and Open Problems 189

9.1 Summary of the thesis . 189

9.1.1 Chapter 3 – RC4 biases based on keylength 190

9.1.2 Chapter 4 – RC4 biases involving state variables 193

xi

9.1.3 Chapter 5 – RC4 biases in keystream bytes 197

9.1.4 Chapter 7 – One byte per clock RC4 hardware 200

9.1.5 Chapter 8 – Two bytes per clock RC4 hardware 201

9.2 Contribution of our work . 202

9.2.1 Analysis of RC4 stream cipher 202

9.2.2 Implementation of RC4 stream cipher 207

9.3 Open problems in RC4 . 208

Bibliography 213

xii

List of Tables

1.1 The RC4 Algorithm: KSA and PRGA. 15

1.2 Structure of the Thesis . 25

2.1 Summary of WEP attacks in terms of packet complexity. 42

2.2 Identified and/or proved keystream biases of RC4. 63

4.1 Significant biases observed in [136] and proved in this chapter. . 94

4.2 Theoretical and observed biases at specific initial rounds of RC4
PRGA. 98

4.3 Experimental values and theoretical estimates of our results,
where A := (Sr[r + 1] = N − 1), B := (Zr+1 = Zr) and C :=
(Zr+1 = r + 2). 115

5.1 Proved short-term single-byte keystream biases of RC4. 132

6.1 Pipeline stages for design proposed by Matthews Jr. [105, Table
1]. 150

6.2 Throughput comparison of RC4 hardware implementations. . . . 152

7.1 Two consecutive loops of RC4 Stream Generation 154

7.2 Cases for the Register-to-Register transfers in the swap operation.157

7.3 Pipeline stages for the design proposed in [105]. 168

7.4 Two consecutive loops of RC4 Key Scheduling. 170

xiii

8.1 Synthesis results for optimized designs with different target
technology libraries. 181

8.2 Timing comparison of Design 1 and Design 2 with existing designs.181

9.1 Significant biases observed in [136] and proved in Chapter 4. . . 195

9.2 Proved short-term single-byte keystream biases of RC4. 200

9.3 Throughput of Design 1 and Design 2. 202

9.4 Contributions of the thesis with respect to the time-line of re-
lated results in the literature of RC4 cryptanalysis. 205

9.5 Contributions of the thesis with respect to the time-line of re-
lated results in the literature of RC4 implementation. 207

xiv

List of Figures

1.1 The scope, range and structure of Cryptology 2

1.2 Generic Key-IV model of a stream cipher. 4

1.3 Stream cipher viewed as a finite state machine. 5

1.4 Description of RC4 stream cipher. 14

2.1 Chronological summary of RC4 cryptanalysis from 1995 to 2013. 31

2.2 The RC4 landscape of initial keystream bytes (data from [5,14]). 57

2.3 Prominent bias patterns in RC4 initial bytes (data from [5,14]). 58

2.4 Single-byte biases in Z2 and Z3 of RC4 (data from [5,14]). . . . 59

3.1 u, v dependent special cases and range of sums for evaluation of
Pr(S1[u] = v) in terms of S0. 69

3.2 Distribution of Pr(Zl = −l) for different lengths 5 ≤ l ≤ 32 of
the RC4 secret key. 77

3.3 Bias in (Zxl = −xl) for keylength l = 16 and x = 1, 2, . . . , 15. . . 84

3.4 Bias in (Zxl = −xl) for keylength l = 8 and x = 1, 2, . . . , 31. . . 85

3.5 Bias in (Zxl = −xl) for keylength l = 12 and x = 1, 2, . . . , 21. . . 85

3.6 Bias in (Zxl = −xl) for keylength l = 20 and x = 1, 2, . . . , 12. . . 85

3.7 Bias in (Zxl = −xl) for keylength l = 24 and x = 1, 2, . . . , 10. . . 86

3.8 Bias in (Zxl = −xl) for keylength l = 28 and x = 1, 2, . . . , 9. . . 86

xv

3.9 Bias in (Zxl = −xl) for keylength l = 32 and x = 1, 2, . . . , 7. . . 86

3.10 Bias in the event (Z1 = 129) for keylength 1 ≤ l ≤ 256. 88

3.11 Bias in the event (S0[128] = 127) for keylength 1 ≤ l ≤ 256. . . . 88

4.1 Distribution of Pr(Sr[jr] = ir) for initial rounds 3 ≤ r ≤ 255 of
RC4 PRGA. 101

4.2 Distributions of Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) for initial
rounds 3 ≤ r ≤ 255 of RC4 PRGA. 103

4.3 Probability distribution of jr for 1 ≤ r ≤ 3. 106

4.4 The scenario for (Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1). 111

5.1 X, Y dependent special cases and range of sums for evaluation
of Pr(Z1 = v) in terms of S0. 121

5.2 The probability distribution of the first output byte Z1. 123

5.3 Value of cr versus r during RC4 PRGA (N = 256 and 3 ≤ r ≤
255). 129

5.4 Pr(Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255). 130

5.5 Pr(Sr−1[r] = r | Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤
255). 131

5.6 First two rounds of PRGA when S0[2] = N/2 + 1 and S0[1] 6= 2. 134

5.7 The first two rounds of RC4 main cycle when S0[2] = 86, S0[1] 6=
2, 172 and S0[S0[1] + 86] = 172. 135

6.1 RC4 architecture proposed by Kitsos et al [79, Figure 3]. 148

6.2 RC4 architecture proposed by Matthews Jr. [106, Fig. 6]. 149

7.1 [Circuit 1] Circuit to compute i1 and i2. 155

7.2 [Circuit 2] Circuit to compute j1 and j2. 156

7.3 [Circuit 3] Circuit to swap S values (data lines for a fixed k). . . 159

7.4 [Circuit 4] Circuit to compute Z1. 160

7.5 [Circuit 5] Circuit to compute Z2. 161

xvi

7.6 Circuit for RC4 PRGA in the proposed architecture (Design 1). 162

7.7 Pipeline structure for the proposed Design 1. 163

7.8 Access sharing of KSA and PRGA in Design 1. 166

7.9 1 byte-per-cycle by Hardware Pipeline (Pipelined-A). 170

8.1 Pipeline structure for Design 2. 174

8.2 Read-write access sharing of KSA and PRGA. 176

8.3 Port-sharing of KSA and PRGA for S-box access. 176

8.4 PRGA circuit structure for Design 2. 177

8.5 KSA circuit structure for Design 2. 178

9.1 Keylength dependent bias in (Zl = −l) for 5 ≤ l ≤ 32. 191

9.2 Bias in (Zxl = −xl) for l = 16 and x = 1, 2, . . . , 15. 192

9.3 Bias in the event (Z1 = 129) for keylength 1 ≤ l ≤ 256. 193

9.4 Probability distribution of jr for 1 ≤ r ≤ 3. 196

9.5 The probability distribution of the first output byte Z1. 198

9.6 Pr(Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255). 199

xvii

xviii

Chapter 1
Preliminaries and Motivation

“I have grown to love secrecy. It seems to be the one thing that can
make modern life mysterious or marvelous to us. The commonest
thing is delightful if only one hides it.” – Oscar Wilde

Since the dawn of humanity, one of the strongest intrinsic characteristics
of the human mind has been its affinity towards secrecy. Be it in terms

of secret possessions or secret intentions, the human race has interacted and
evolved within the veils of secrecy – often regarded as the best form of security.

In the modern information age we live in, the notion of security often
translates to the idea of confidentiality of information; especially of digital
information utilized and transacted over various communication networks. It
is important to note that the requirement for confidentiality and security is in
fact entirely a social construct. If there was nobody in the universe interested
in the piece of information you hold so dear, you may never feel the need for
secure possession and transmission of information in the first place. In fact,
we still judge security qualitatively in terms of the eagerness and competence
of an adversary who may be interested in the information that is kept secure.

Cryptology – inherently a social science – refers to the art of bridging this
bizarre gap between an entirely social notion called ‘security’, and the logical
foundations of mathematics, computer science and allied domains.

1

Chapter 1: Preliminaries and Motivation

1.1 Scope of this Thesis

Borrowing the basic notions from mathematics and computer science, the sub-
ject of cryptology has spread wide enough to be considered an independent
discipline on its own. The structure of this subject is pictorially depicted in
Figure 1.1 (idea from [111]), with a taxonomy of main cryptographic primitives.

Cryptology

CryptanalysisCryptography

Security ProtocolsSecurity Primitives

Main Primitives

Asymmetric Key

Identification Primitives

Signatures

Public Key Ciphers

Symmetric Key

Identification Primitives

Keyed Hash Functions and MACs

Symmetric Key Ciphers (Block/Stream)

Not using Key

Random Sequences

Random Permutations

Unkeyed Hash Functions

Figure 1.1: The scope, range and structure of Cryptology

Figure 1.1 connects the relevant pieces within the structure of the subject,
although the list of primitives is not exhaustive. The reader may refer to [111,
142] for a detailed exposition of each topic. We consider the following path:

Security Primitives → Symmetric Key Ciphers → Stream Ciphers.

In this thesis, our focus is on the analysis and implementation of the most
popular commercial stream cipher to date – RC4 [124].

3 1.2 Stream Ciphers

1.2 Stream Ciphers

The domain of symmetric key cryptology contains two major cryptographic
primitives – block ciphers and stream ciphers. Naively speaking, a block cipher
encrypts block-by-block by applying a key dependent transformation on a block
of message bits at a time. Whereas, a stream cipher produces a pseudorandom
sequence of bits, called the keystream, and encryption is done by masking the
plaintext (considered as a sequence of bits) by the keystream; using a simple
XOR operation in general. The ciphertext thus obtained is also a sequence
of bits of the same length as that of the plaintext. To increase efficiency in
software applications, modern day stream ciphers are adopting a word-oriented
approach, where word-wise (size of the word depends on machine architecture)
operations are used instead of bitwise operations. However, the fundamental
philosophy remains the same.

1.2.1 One-Time Pad and Perfect Secrecy

The motivation behind stream ciphers came from One-Time Pad (OTP), also
called the Vernam cipher. OTP is a truly random bit-string of the same length
as that of the plaintext – unique for each plaintext – which is bitwise XOR-ed
with the plaintext to produce the ciphertext. Shannon [138] showed that OTP
is perfectly secure, i.e., even for an adversary with unbounded computational
power, it is impossible to derive any new information about the plaintext from
the ciphertext beyond what is possible via random guess. In formal terms, one
may define ‘perfect secrecy’ as follows (refer to [76] for details).

Definition 1.1. An encryption scheme is perfectly secret if for every probabil-
ity distribution over the message spaceM, every message m ∈ M, and every
ciphertext c ∈ C for which Pr[C = c] > 0, Pr[M = m | C = c] = Pr[M = m].

Intuitively, for a perfectly secret encryption, the ciphertext reveals no infor-
mation about the plaintext over prior knowledge. To achieve ideal information
theoretic ‘perfect secrecy’ in OTP, it is absolutely required that the masking
(bitwise XOR) is done using a unique sequence of bits for each plaintext; ow-
ing to the name one-time-pad. In reality however, the OTP scheme is not
practical, as we require to manage unique keys as large as the plaintexts.

Chapter 1: Preliminaries and Motivation

1.2.2 Generic model for Stream Ciphers

Stream ciphers provide a practical alternative to OTP by relaxing the re-
quirement of unconditional perfect-secrecy to its computational counterpart.
Instead of using a unique truly random bit-string as long as the plaintext, as
in the case of OTP, a stream cipher uses a short truly random string (called
key) to efficiently generate a long string that behaves like a random string to a
computationally bounded adversary. The generated string is not actually ran-
dom but looks like a random string to the computationally bounded adversary;
hence called a pseudorandom keystream. This serves the purpose of a truly
random string for all practical requirements.

A stream cipher can be viewed as an efficient, deterministic algorithm,
implementing a function E : {0, 1}l × {0, 1}s −→ {0, 1}n that maps an l-
bit secret key K = K1K2 . . . Kl and an s-bit public initialization vector IV =
IV1IV2 . . . IVs to an n-bit keystream Z = Z1Z2 . . . Zn. This keystream Z is then
bitwise XOR-ed with the plaintext P = P1P2 . . . Pn to produce the ciphertext
C = C1C2 . . . Cn. In order to be meaningful and practical, the length n of the
generated keystream is generally greater than the length l of the secret key K.
Figure 1.2 depicts this model of a stream cipher.

E
(stream cipher)

K1
K [

Kl

IV1
IV [

IVs

...

...

Zn, . . . , Z2, Z1
⊕

Pn, . . . , P2, P1

Cn, . . . , C2, C1

Figure 1.2: Generic Key-IV model of a stream cipher.

The model of a stream cipher presented here is that of a binary additive
synchronous stream cipher and is not universally applicable. Although almost
all modern-day stream cipher designs incorporate initialization vector, there
are some classical stream ciphers that do not take IV as a default input. The
focus of this thesis, RC4 stream cipher, does not take IV as a default input,
but allows provision for it in practical protocols designed based on the cipher.
Thus, Figure 1.2 does not depict the basic RC4 cipher, but illustrates the model
of RC4-based designs that take IV as input, like WEP, WPA and SSL/TLS.

5 1.2 Stream Ciphers

In theoretical formalization, a classical stream cipher without IV is ideal-
ized as a pseudorandom generator (PRG), a function E : {0, 1}l −→ {0, 1}n

mapping (or stretching) a short l-bit truly random secret key K to a long n-bit
pseudorandom keystream Z (where n > l) that is computationally indistin-
guishable from a truly random string of the same length. However, a modern
stream cipher with IV can be viewed as a pseudorandom function (PRF), a
keyed function EK : {0, 1}s −→ {0, 1}n, mapping s-bit public initialization
vector IV to an n-bit keystream Z, where EK is computationally indistin-
guishable from a random function over the same domain and range where key
K is chosen uniformly at random from the key-space.

Stream Cipher viewed as a Finite State Machine

The functional structure of a generic stream cipher can be modeled as a finite
state machine (FSM), as shown in Figure 1.3. Private key K and public
initialization vector IV are used to generate the initial state S0 through the
Key-IV setup process. Subsequently, the r-th keystream bit (or word) Zr is
derived from the r-th state Sr through the output function fout, and the FSM
moves to the next state Sr+1, which is derived from the present state Sr through
a state-update function fupdate. The key K or the initialization vector IV are
generally not used after the generation of the initial state S0.

Key-IV
Setup

K

IV

Sr
(state)

S0

fupdate

fout Zr

Sr+1 = fupdate(Sr)
Zr = fout(Sr)

Figure 1.3: Stream cipher viewed as a finite state machine.

Note that the FSM has a finite number of states, and the state-update
function being deterministic, the states repeat in a periodic fashion. Since the
keystream output bits (words) Zr are derived from the corresponding states
through the deterministic function fout, keystream bits (words) also repeat in a

Chapter 1: Preliminaries and Motivation

periodic fashion. In case of stream ciphers considered for practical applications,
it is required that this period of keystream repetition is as large as possible, in
order to prevent certain attacks. Thus it is ensured during the design of the
algorithm that the period of the stream cipher is sufficiently large.

Synchronous and Self-Synchronizing Stream Ciphers

The model we have described so far suits the class of synchronous stream ci-
phers. These stream ciphers, although most prominently studied and used in
practice, have a practical drawback. Once the synchronization between the
sender and the receiver is compromised, decryption of the ciphertext does not
yield the corresponding plaintext at the receiver end. In such a case, the ciphers
at the sender and the receiver ends need to re-synchronize for subsequent oper-
ation. This requirement for re-synchronization poses practical problems while
operating a synchronous stream cipher over a noisy channel, where (burst)
noise may frequently destroy parts of the communicated ciphertexts.

There is another class of stream ciphers known as self-synchronizing stream
ciphers, where the r-th keystream bit (word) depends on the key as well as
on some predetermined number (t) of previous ciphertext bits (words). So,
the decryption works correctly if the previous t ciphertext bits (words) are
received properly, irrespective of earlier deletions. Hence, even if a part of
the communicated ciphertext is destroyed due to (burst) noise, only t sub-
sequent deciphered plaintext bits (words) are affected; beyond which the de-
cryption works correctly. Due to this self-synchronizing ability, the problem of
re-synchronization of stream ciphers in a noisy channel may be overcome.

Practical example of a modern self-synchronizing stream cipher is Mous-
tique [36], designed by Daemen and Kitsos in 2006. This is a Phase 3 candidate
of the eSTREAM [40] project; a tweaked version of the original Phase 1 sub-
mission called Mosquito [35]. The tweaks were considered while designing
Moustique in order to circumvent certain chosen ciphertext attacks [74] on the
original design. Apart from dedicated designs, a block cipher in cipher feed-
back (CFB) mode can also be considered a self-synchronizing stream cipher.
However in general, the class of self-synchronizing stream ciphers is difficult to
design, less studied in the literature, and less frequently used in practice.

7 1.2 Stream Ciphers

1.2.3 Cryptanalysis of Stream Ciphers

Instead of ‘perfect secrecy’, a computational notion of secrecy is ensured by the
pseudorandom output sequence (keystream) generated by a stream cipher. By
construction, any non-random event in the internal state or the keystream of
a stream cipher that can be computationally identified, is not desirable from a
cryptographic point of view. Thus it is imperative that a rigorous analysis of a
stream cipher is performed to identify the presence of any such non-randomness
in its design. There are some cryptanalytic attacks on stream ciphers which
are relatively general in nature and any new stream cipher should exhibit
sufficient immunity against these attacks. We present some attack models and
techniques before proceeding any further.

Power of the Adversary

Cryptanalysis of cryptographic primitives are broadly classified under four ba-
sic models of security, each of which is based on a specific assumption on the
power of the adversary (refer to [111,142] for details).

• Ciphertext only attack: The adversary knows the ciphertexts of several
messages, encrypted using the same key or different keys, but does not
have the knowledge of the plaintext messages.

• Known plaintext attack: The adversary knows the plaintext-ciphertext
pairs for several messages, where the ciphertexts have been generated by
encrypting the plaintexts using the same key or different keys.

• Chosen plaintext attack: In this model, the adversary is given access to
an encryption oracle, which produces ciphertexts for messages chosen by
the adversary, under the same key or different keys.

• Known and Chosen IV attack: In this attack scenario, the adversary
either knows or chooses some initialization vectors and obtains the cor-
responding keystreams generated by the cipher under a fixed key or dif-
ferent keys. This attack model is also known as ‘re-synchronization at-
tack’, and it assumes an underlying ‘known plaintext model’ to obtain
the keystreams from the ciphertexts.

Chapter 1: Preliminaries and Motivation

• Chosen ciphertext attack: This is the strongest of the attack models,
where the adversary is given access to a decryption oracle that produces
plaintexts corresponding to ciphertexts chosen by the adversary.

Given a plaintext-ciphertext pair for a stream cipher, it is trivial to obtain the
keystream (Z = P ⊕C). Thus for known and chosen plaintext attack models,
the output keystream of the stream cipher is always available to the adversary.

Modes of attack on Stream Ciphers

Depending on the attack model and the power of the adversary, there may be
several modes of attacking a stream cipher. The common ones are as follows:

1. Brute force attack: This attack, also known as the exhaustive key search,
is the most general attack applicable against any cipher. The idea is to
search the key space exhaustively in order to find correct key [111,142].

2. Algebraic attack: This is a ‘known plaintext attack’ where the goal of the
adversary is to recover the key. Broadly speaking, the attack starts by
generating algebraic equations involving key bits and keystream bits, and
finally tries to solve the generated system of equations to get the values
of the unknown key bits from the known keystream bits (obtained from
plaintext-ciphertext pairs). Originally proposed for public key cryptanal-
ysis [78], the algebraic attacks have found strong relevance in analyzing
practical stream ciphers as well [6, 10,11,33,34,63].

3. Time-memory trade-off attack: This is a ‘chosen plaintext attack’, and in
the basic form, it aims to find a trade-off between brute force and dictio-
nary attacks for searching the key space [38, 66]. For brute force attack,
time complexity of the attack is of the order of the key space, while
space complexity is negligible. For dictionary attack, space complexity
is of the order of the key space, while time complexity is negligible. In
time-memory trade-off attack, the goal is to bring down both time and
space complexity in between these two extremes. Although the idea was
first proposed to attack DES block cipher [66], it later extended quite
successfully to cryptanalysis of stream ciphers as well [23,24,51,69,126].

9 1.2 Stream Ciphers

4. Differential attack: This is a ‘chosen plaintext attack’, although with
some sophisticated techniques it can be converted into a ‘known plaintext
attack’, or even to a ‘ciphertext only attack’. The idea is to observe
the differences in pairs of ciphertexts generated from pairs of plaintexts
chosen according to some fixed differences. If these two differences are
strongly related, then such an information can be exploited in various
ways, depending upon the context. The idea was first proposed for block
ciphers [20, 21], and was later extended to stream cipher analysis. To
date, the idea of differential cryptanalysis has been exploited against
several practical stream ciphers [17,44,73,151,152].

5. Linear or Correlation attack: This attack targets LFSR based stream ci-
phers, more specifically stream ciphers with a non-linear combiner, where
outputs of several LFSRs are combined using a non-linear boolean func-
tion to produce the final output. The goal is to recover the states of
the individual LFSRs from the given output keystream. A divide-and-
conquer approach is taken to reduce the time-complexity of brute force
search on the states of the LFSRs. There exist numerous correlation
attacks (and variants) on stream ciphers in the literature, and one may
refer to [29,32,49,50,55,56,71,72,90,109,110] for further details.

6. Statistical Distinguishing attack: Stream ciphers theoretically claim to be
pseudo-random generators (PRGs), capable of producing stream of bits
that is indistinguishable from a truly random bit-stream from the point
of view of a computationally bounded adversary. Thus, efficient distin-
guishing attacks based on statistical weaknesses can pose generic threat
against any stream cipher construction. A prime example of this class
of attacks is the linear statistical distinguisher, introduced by Golic [48]
in 1994. The attack linearly models an arbitrary binary keystream gen-
erator into a linear feedback shift register of bounded length. This in
turn exposes any generic design to subsequent structure-dependent and
initial-state-dependent statistical tests, potentially resulting in correla-
tion attacks. This strategy has proved to be quite effective against prac-
tical stream ciphers [52,53].

Chapter 1: Preliminaries and Motivation

7. Side-channel attack: In contrast to the previous ones, this attack does
not target the actual algorithmic description of a cipher; but targets its
implementation in hardware and software [141]. Any implementation of
a cipher leaks out information in terms of operating parameters such
as power consumption, electromagnetic radiation, timing for operations,
etc. These additional sources of information are known as ‘side-channels’.
Some common variants of side-channel attacks are as follows:

a) Timing analysis – The adversary measures the time required to per-
form certain operations of the cipher; especially in software. This pattern
in time requirements is observed and exploited in timing attacks [82] –
quite applicable towards certain modern stream ciphers [88,153].

b) Power analysis – The adversary measures the power consumed dur-
ing certain cipher operations; especially in hardware implementations,
namely RFID tags or smart cards. The idea is to guess a few bits of the
key by observing any pattern in power consumption or dissipation [83].
The idea is well exploited against certain stream ciphers [43,87].

c) Fault attack – The adversary can inject some faults into the data during
the operation cycle of a cipher, and can exploit the variations resulting
from the fault. Faults may be injected into the hardware (sometimes
software) implementation of a cipher by various means, and the effects
of the fault may be monitored at the output to extract information about
the internal operating state of the cipher [22, 27]. Fault attacks are fre-
quently mounted on stream ciphers in practice [7, 8, 18, 67,68].

Goals of the Adversary

Whatever be the model or technique of the attack, general goals of an adversary
mounting an attack on a stream cipher can be summarized as follows:

Key recovery – This is the dream goal of the adversary, and it is the strongest
form of attack against stream ciphers, or any other primitive in general.

State recovery – This can be an intermediate goal of the adversary. Once
the internal state of a stream cipher is recovered at any stage of pseudo-
random generation, it is possible to generate subsequent keystream bits

11 1.2 Stream Ciphers

(words) using the known output function and the state-update function.
In the case where the key-generation and key-scheduling functions are
reversible (one-to-one), it is also possible to extend a state recovery at-
tack to a key recovery attack on the cipher. This is the case for the Grain
family of stream ciphers [64, 65]. For RC4 however, the key-scheduling
is not one-to-one, and thus extending a state recovery attack to a key
recovery attack on RC4 becomes a probabilistic process [117].

Distinguishing attack – The goal of a distinguishing attack on a stream ci-
pher is to distinguish the generated keystream of the cipher from a truly
random bit-stream with non-negligible probability. Although it may not
lead to either state or key recovery, a distinguishing attack challenges
the basic claim of a stream cipher, that is, pseudorandom generation.

Key correlation – In this case, the attacker aims at finding ‘leaks’ of the secret
key in the output keystream. If any part of the secret key is correlated to
the output keystream, it may be possible to trace back and recover that
part of the secret key with probability more than that of random guess.
In such a case, the attacker may identify and exploit the key correlations
towards a potential key recovery attack on the cipher.

Our focus for analysis of stream ciphers in this thesis is on distinguishing
attacks and key correlations, discussed later in Chapter 2. First we take a look
at some practical designs of stream ciphers from the literature.

1.2.4 Practical Designs

The most important and cryptographically significant goal of a stream cipher
is to produce a pseudorandom sequence of bits or words using a fixed length
secret key, often paired with a fixed length public initialization vector. Over the
last three decades of research and development in stream ciphers, a number
of designs have been proposed and analyzed by the cryptology community.
We briefly discuss a few major stream ciphers, relevant in terms of practical
application and cutting-edge design, as follows.

Chapter 1: Preliminaries and Motivation

RC4 Stream Cipher

RC4, also known as Alleged RC4 or ARC4, is the most widely deployed com-
mercial stream cipher, having applications in network protocols such as SSL,
WEP, WPA and in Microsoft Windows, Apple OCE, Secure SQL, etc. It was
designed in 1987 by Ron Rivest for RSA Data Security (now RSA Security).
The design was a trade secret since then, and was anonymously posted on the
web in 1994. Later, the public description was verified by comparing the out-
puts of the leaked design with those of the licensed systems using proprietary
versions of the original cipher. Although the public design has never been
officially approved or claimed by RSA Security to be the original cipher, this
note [124] confirms that the leaked code is indeed RC4. The cipher has gained
immense popularity for its intriguing simplicity, which has also made it widely
accepted for numerous software and web applications.

BluetoothTM Stream Cipher

BluetoothTM is one of the major modern technologies for wireless communica-
tion, prevalent in an array of practical devices. The technology was developed
by the Bluetooth Special Interest Group (SIG), formed in 1998. The technology
has been embraced by all companies in the communication business ever since.
For confidentiality in Bluetooth transmission, the E0 stream cipher is used
as the pseudorandom keystream generator [26]. The cipher follows the stan-
dard design model of a combiner generator using linear feedback shift registers,
where the keylength is typically 128 bits. Several attacks have been mounted
on E0 since 1999, resulting in practical and near-practical breaches [90–93].

GSM Stream Ciphers

A5/1 and A5/2 stream ciphers, designed around late 1980’s, are used to pro-
vide privacy in the GSM cellular network. A5/2 is a (deliberately) weakened
version of A5/1, created for certain export regions. Both the ciphers A5/1 and
A5/2, initially kept secret, became public in 1994 through leaks and reverse
engineering [28]. After several minor and major attacks [9,16,24,39,47,51] on
A5/1 and A5/2 published during 1994–2006, the GSM Association mandated

13 1.3 Motivation of the Thesis

that the GSM phones will not support A5/2 any more, and usage of A5/1
was mandated by the 3GPP association. Later in the 3G cellular systems, the
keystream generation algorithm for privacy was modified to A5/3, which uses
the block cipher KASUMI.

4G Stream Ciphers

In the race towards 4G mobile technology, 3GPP LTE Advanced [3] is the
leading contender. For LTE Advanced technology, the chosen security algo-
rithms for encryption and authentication employ two different stream ciphers
– SNOW 3G [2] and ZUC [1]. While SNOW 3G had already been deployed
in the earlier 3G platform, along with KASUMI, the other cipher ZUC is a
brand new design. Both the ciphers are based on similar design principles
using word-oriented linear feedback shift registers, and are used in the LTE
Advanced technology within a portfolio, along with the block cipher AES-128.

eSTREAM Portfolio Ciphers

The eSTREAM project, coordinated under ECRYPT framework from 2004 to
2008, was dedicated towards stream cipher research, with an aim to “identify
new stream ciphers suitable for widespread adoption”. Following the call for
primitives, thirty-four stream ciphers were submitted to eSTREAM and an
overall evaluation was done in three phases. The project came to an end in
2008 and a portfolio of seven stream ciphers was announced [40]. The current
portfolio contains HC-128, Rabbit, Salsa20/12 and SOSEMANUK under the
Software (SW) profile, and Grain v1, MICKEY v2 and Trivium under the
Hardware (HW) profile. These ciphers follow cutting-edge design principles,
and are projected as the stream ciphers of the future.

1.3 Motivation of the Thesis

So far we have discussed the generic description of stream ciphers, and have
listed some of the most prominent designs in practice:

RC4, E0, A5/1, A5/2, SNOW 3G, ZUC, HC-128, Rabbit,

Chapter 1: Preliminaries and Motivation

Salsa20/12, SOSEMANUK, Grain v1, MICKEY v2, Trivium.

Given this array of major practical stream ciphers in the literature, choice
of the specific cipher RC4 for analysis and implementation deserves an ex-
planation. The main motivation of this thesis, focused on RC4 analysis and
implementation, will be summarized after a short description of the cipher.

1.3.1 Description of RC4

One of the main ideas for building a stream cipher relies on constructing a pseu-
dorandom permutation and thereafter extracting a pseudorandom sequence of
words from this permutation. RC4 follows this design principle to extract
pseudorandom bytes from pseudorandom permutations.

The cipher consists of two major components, the Key Scheduling Algo-
rithm (KSA) and the Pseudorandom Generation Algorithm (PRGA). The in-
ternal state of RC4 contains a permutation of all 8-bit words, i.e., a permuta-
tion of N = 28 = 256 bytes, and the KSA produces the initial pseudorandom
permutation of RC4 by scrambling an identity permutation using the secret
key k. The secret key k of RC4 is of length typically between 5 to 32 bytes,
which generates the expanded key K of length N = 256 bytes by simple repe-
tition. If the length of the secret key k is l bytes (typically 5 ≤ l ≤ 32), then
the expanded key K is constructed as K[i] = k[i mod l] for 0 ≤ i ≤ N − 1.
The initial permutation produced by the KSA acts as an input to the next
procedure PRGA that generates the keystream. The RC4 algorithms KSA
and PRGA are depicted in Figure 1.4.

RC4 KSA
(rounds = 256)

K[i] = k[i mod l]
j = j + S[i] + K[i]
Swap S[i]↔ S[j]
i = i + 1

S
(identity)

k

i = 0
j = 0

RC4 PRGA
(rounds = # bytes required)

i = i + 1
j = j + S[i]
Swap S[i]↔ S[j]
Z = S[S[i] + S[j]]

S
(after KSA)

i = 0
j = 0

Z
(after each

round)

Figure 1.4: Description of RC4 stream cipher.

Notation: For round r = 1, 2, . . . of RC4 PRGA, we denote the indices by
ir, jr, the keystream output byte by Zr, the output byte-extraction index as

15 1.3 Motivation of the Thesis

tr = Sr[ir] + Sr[jr], and the permutations before and after the swap by Sr−1

and Sr respectively. After r rounds of KSA, we denote the state variables
by adding a superscript K to each variable. By SK0 and S0, we denote the
initial permutations before KSA and PRGA respectively. Note that SK0 is the
identity permutation and S0 = SKN is the permutation obtained right after
the completion of KSA. Throughout this thesis, all additions (subtractions) in
context of RC4 are to be considered as ‘addition (subtraction) modulo N ’, and
all equalities in context of RC4 are to be considered as ‘congruent modulo N ’.

1.3.2 Choice of RC4 for analysis and implementation

A closer look at RC4, as described in Figure 1.4 and again presented as a
formal algorithm in Table 1.1, leaves one wondering whether these four lines
of core code, too simple even for a toy cipher, can generate a pseudorandom
keystream as demanded of a stream cipher. That’s the beauty of RC4! Since
its public reveal through Internet leakage in 1994 [124], the sheer elegance
and enigmatic appeal of the cipher has roots in its simple design, which is
undoubtedly the simplest for any practical cryptographic algorithm to date.

Table 1.1: The RC4 Algorithm: KSA and PRGA.

Key Scheduling (KSA) Pseudorandom Generation (PRGA)

Input: Secret Key k.
Output: S-Box S0 generated by k.
Initialize SK

0 = {0, 1, 2, . . . , N − 1},
K[i] = k[i mod l] and iK

0 = jK
0 = 0;

for r = 1, . . . , N do
jK

r = jK
r−1 + SK

r−1[iK
r] + K[iK

r];
Swap SK

r−1[iK
r]↔ SK

r−1[jK
r];

iK
r = iK

r−1 + 1;
end

Input: S-Box S0, output of KSA.
Output: Random stream Z.
Initialize the counters: i0 = j0 = 0;
for r = 1, 2, . . . do

ir = ir−1 + 1;
jr = jr−1 + Sr−1[ir];
Swap Sr−1[ir]↔ Sr−1[jr];
Output Zr = Sr[Sr[ir] + Sr[jr]];

end

The simplicity in design has attracted everyone towards this cipher. It has
been a hit in the software industry for decades, and has been adopted as the
core cipher for numerous web and software applications like Microsoft Win-
dows, Apple OCE, Secure SQL, to name a few. The most pervasive application
of RC4 however, has been in standardized web and network security protocols.

Chapter 1: Preliminaries and Motivation

RC4 in Security Protocols

IEEE 802.11 standard protocol for WiFi security used to be Wired Equiva-
lent Privacy (WEP), which has now been replaced by Wi-Fi Protected Access
(WPA). Both WEP and WPA use RC4 as their core module. In case of WEP,
the protocol uses RC4 with a pre-shared key appended to a public initializa-
tion vector (nonce) for self-synchronization. Using the technique of related key
attacks on RC4, this scheme has been broken through passive full-key recovery
attacks, and thus WEP is considered insecure in practice.

To mitigate this problem, WEP has been replaced by WPA. The goal of
WPA was to resolve all security threats of WEP. However, the original WEP
protocol was extensively adopted by the industry, and it was already imple-
mented in several commercial products, both in software and hardware. This
rendered a design of WPA from scratch quite impractical and costly. The
work-around was to fix the full-key recovery problems of WEP using a patch,
as minimal as possible, on top of the original protocol. WPA accomplished
this by introducing a key fixing function to feed the RC4 core with different
unrelated keys for each packet. In addition to this, WPA incorporated a packet
integrity protection scheme to prevent replay and alteration of the initialization
vector, which is a main tool in active attacks.

It is nowadays recommended by the Wi-Fi alliance to use WPA2, which
uses AES block cipher as the core instead of RC4. However for hardware
based applications and products using WEP, and later WPA, it is neither cost
effective nor easy to migrate completely away from the RC4 core. Even with
the proven weaknesses in WEP, a large number of applications still have an
active option for the protocol, and users quite frequently opt for the simplicity
of WEP over WPA or WPA2. Thus, RC4 continues to dominate the domain of
network security to date, through the most widely used IEEE 802.11 security
protocols WEP and WPA.

Another prominent use of RC4 in web security is through Transport Layer
Security (TLS) and its predecessor, Secure Sockets Layer (SSL), which provide
communication security over the Internet. The RC4 suite is considered to be
one of the best choices for use in SSL/TLS, as it can prevent popular attacks
on the protocol that primarily target the CBC cipher suite. Even though a

17 1.3 Motivation of the Thesis

new attack [5] on the RC4 suite of TLS has been proposed in 2013, it still
remains the most popular cipher for the protocol. It is even being debated
whether one should fix the recently discovered problems with a patch.

In short, the users and the industry have been obsessed with RC4 for all
possible web and network security solutions for more than two decades, and
the cipher still remains the most popular, most studied and most debated
symmetric key algorithm in practice.

RC4 in Academic Literature

Since 1994, when the design of this cipher came public, cryptanalysts around
the world have targeted the simplest modern cipher, in both its theoretical
form as well as in its practical applications. Although there had been successful
breaches against some practical protocols using RC4, the stand-alone cipher
is still quite robust at the core. It is this stunning combination of robustness
and simplicity of RC4 that has attracted analysts for the last two decades.

There have been a large number of academic papers on RC4 analysis pub-
lished during the last two decades at top cryptography conferences and jour-
nals. The first attack on RC4 published in the academic literature was a
linear statistical distinguisher presented by Golic in EUROCRYPT’97 [52],
later extended to an IEEE-IT publication [53] in 1999. Analytic results on
the cipher and related security protocols have resulted in three Master’s the-
ses [100, 108, 145], two PhD theses [116, 134], and one book [119] to date. In
addition to this, parts of several other research theses and monographs have
resulted from RC4 cryptanalysis and related studies.

In spite of the vast literature of RC4 analysis since its public appearance
in 1994, the field is nowhere close to saturation. RC4 is thought to be ‘broken’
by some, and yet, attempts at ‘breaking’ the cipher and related protocols
are getting published at top conferences, like FSE’08 [96], CRYPTO’08 [107],
FSE’09 [104], SAC’10 [136], SAC’11 [131], FSE’11 [98], EUROCRYPT’11 [137],
quite regularly over the last five years. Our work on RC4 analysis is due
to appear in the Journal of Cryptology in 2013 [132]. Most recently, the
IACR conference FSE’13 has witnessed two contributory papers [70, 135] and
an invited talk by Dan Bernstein [14], presenting recent results on analysis of

Chapter 1: Preliminaries and Motivation

RC4 and its practical applications in WEP, WPA and TLS. This corroborates
the fact that the enigmatic charm of RC4 is still alive and thriving in the
community; and that it still offers a plethora of research problems to inspire
cryptanalysts worldwide, amateurs and veterans alike.

Intellectual Properties based on RC4

RC4 has been the cipher of choice for numerous practical implementations
over the last two decades. It has been projected primarily as a software stream
cipher, as a software implementation of RC4 is quite simple for any general
purpose processor and any software platform. Detailed comparison of the
software performance of RC4 against modern stream ciphers is given in [41].

However, if we take a look at the other side of the coin, the nontrivial aspect
of hardware implementation of RC4, we find something interesting. There have
been a few hardware designs proposed in the literature, and the motivation has
been efficiency in speed versus the hardware footprint. In 2003, a patent by
Matthews Jr. [106] was disclosed, which provided an efficient RC4 architecture
using hardware pipelining and block RAMs. After a gap of five years, another
patent by Matthews Jr. [105] was disclosed in 2008, which proposed a new
design for RC4 hardware using pipeline architecture. The patents acquired on
hardware designs of RC4 prove the practical viability of its implementations,
and allures a researcher to drive for an even better architecture.

Choice of RC4

In view of the discussion so far, RC4 stands out amongst all modern stream
ciphers due to the following properties:

• Most widely used stream cipher – especially in web and network security.

• Simplest and oldest cipher to withstand decades of analysis, thus com-
manding the respect and interest of the cryptanalyst community.

• Well studied, well understood, but still offering bouquet of research prob-
lems; even after two decades of analysis and attacks.

• Software cipher with patented hardware designs – unusual and intriguing.

19 1.3 Motivation of the Thesis

In summary, there is no other stream cipher that is interesting enough in com-
parison with RC4 if one aims at cryptanalysis and practical implementation.
Thus, we choose RC4 for the problems discussed in this thesis, and the moti-
vation for the particular research problems arises as follows.

1.3.3 Motivation for RC4 Analysis

There is an open problem for everyone who wants to explore the existing
literature of RC4 analysis, as detailed in Chapter 2. The previous cryptanalytic
results on the cipher, covering over fifty prominent research publications, have
opened more problems and research directions in this field than for any other
stream cipher. The problems discussed in this thesis are motivated as follows.

Effect of keylength on RC4 biases

In SAC 2010, Sepehrdad, Vaudenay and Vuagnoux [136] reported a strong
empirical bias in the event (S16[j16] = 0 | Z16 = −16) and mentioned that
no explanation of this bias could be found. A related bias of the same order
involving the event (SK17[16] = 0 | Z16 = −16) has been empirically reported
in [134, Section 6.1], and this has been used to mount WEP and WPA attacks
on RC4. Our first motivation was to investigate the source of the number 16
in both the cases, which led to the following problem.

Problem 1a. Some of the empirical biases observed by Sepehrdad, Vaudenay
and Vuagnoux [136] seem to be related to the length of the secret key
used in RC4. If this is the case, is it possible to identify and prove such
general relations between the keylength to the keystream biases in RC4?

Detailed study and analysis of this problem have led us to keylength-dependent
conditional biases in RC4, a completely new field of RC4 analysis, hitherto
unknown to the community. We present a detailed study in Chapter 3.

In a recent invited talk [14] at FSE 2013, Bernstein disclosed an attack on
TLS, which in fact is one of the most significant attacks on any RC4 based pro-
tocol. In this work [5], the authors AlFardan, Bernstein, Paterson, Poettering
and Schuldt identified a strong negative bias in Z1 towards 129 (for N = 256),

Chapter 1: Preliminaries and Motivation

which was not observed in the earlier works [112, 132] on the first keystream
byte Z1. We observe (experimentally) that this bias is in fact dependent on
the length of the RC4 secret key, and occurs only for certain values of the
keylength. To understand this issue better, we take up the following problem.

Problem 1b. Investigate the negative bias of Z1 towards 129 (N = 256), as
observed by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5],
and identify its keylength dependence characteristics.

We discover an intriguing connection of this bias with “anomalies” in the dis-
tribution of the state array S0 after the RC4 KSA, a mysterious problem open
for more than a decade, since the observation by Mantin [100]. In Chapter 3,
we present our observations and proofs in connection with the keylength de-
pendence of this bias and that of the anomalies.

Discovery and proof of biases involving state variables

Along a similar line of investigation of other empirical biases presented in SAC
2010 by Sepehrdad, Vaudenay and Vuagnoux [136], we find several biases that
depend on the state variables of RC4. These biases are quite strong and may
be useful in practical attacks, although none were theoretically justified. In
addition, we observe critical non-randomness in the behavior of the index j

over the first few rounds of RC4 PRGA. This again, may pose serious security
threats, once completely understood. Quite often the quest for theoretical
justification of experimental results open up new avenues to explore further.
Thus, we raise the following research problems to probe deeper.

Problem 1c. Prove all known significant biases of RC4 involving the state
variables, as empirically observed in [136]. In addition, is it possible to
identify and prove other interesting biases of similar nature?

Problem 1d. It seems that the index j exhibits certain non-random behavior
in the initial rounds of RC4 PRGA. Is it possible to completely charac-
terize the (non-)randomness of index j throughout RC4 PRGA?

Investigation on these problems led to several theoretical results that comple-
ment the current literature of RC4 biases. We discuss the results in Chapter 4.

21 1.3 Motivation of the Thesis

Discovery and proof of keystream biases

In the quest for proving known significant biases, we turn our attention to
the biases in the keystream, most effective for practical attacks. We notice
that although the best known bias of RC4, for the second output byte Z2, was
proved [103] back in 2001, no serious attempt has been made to find and prove
all prominent biases in the other initial bytes of RC4.

In CRYPTO 2002, Mironov [112] observed that the first byte Z1 of RC4
keystream has a negative bias towards zero, and also found an interesting non-
uniform probability distribution (similar to a sine curve) for all other values of
this byte. However, the theoretical proof remained open for almost a decade.
We take up the challenge.

Problem 1e. Theoretically justify the sinusoidal probability distribution of
Z1 and its negative bias towards zero, as observed by Mironov [112].

In Chapter 5, for the first time in the literature, we derive the complete theo-
retical distribution of Z1, and prove all related biases.

Looking back at the FSE 2001 paper by Mantin and Shamir [103], which
proved the bias in the second byte Z2 towards zero, we find that the authors
claimed of no such bias existing in any subsequent byte in the keystream. We
decide not to take this claim on face-value, but to explore further.

Problem 1f. Identify all significant biases towards zero in the initial bytes of
RC4 keystream (Z3 to Z255), and prove all subsequent results.

During this investigation, contrary to this claim by Mantin and Shamir [103],
we find that all the initial bytes Z3 to Z255 of RC4 keystream are biased towards
zero. We present a detailed account of this result in Chapter 5.

In the recent work of AlFardan, Bernstein, Paterson, Poettering and
Schuldt [5, 14], to appear in USENIX Security Symposium 2013, the authors
identified all initial keystream biases in RC4 through extensive experimenta-
tion, and utilized those to mount attacks on TLS and WPA. This identified
several unproved biases in the initial bytes of the RC4 keystream. To comple-
ment and complete the RC4 literature of biases, we target the following.

Chapter 1: Preliminaries and Motivation

Problem 1g. Prove all significant biases in the initial bytes of RC4 keystream
identified by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5].

Some of the identified biases of RC4 already has theoretical justification in the
literature [70, 127, 131, 132]. We attempt only the unproved or the partially
proved ones, and present a systematic account of all such proofs in Chapter 5.

It is well-known that biases in the initial rounds of RC4 has no effect if
one throws away some initial bytes from the keystream of RC4. This naturally
motivates a quest for long-term biases in the RC4 output, if any exists.

Problem 1h. Experimentally discover and subsequently prove biases in RC4
keystream which remain effective even after discarding the initial bytes.

In Chapter 5, we observe and prove a new long-term bias in RC4 keystream.

In summary, we consider the aforesaid eight problems 1a-1h as our target
for RC4 analysis, and we present all relevant results in Part I on this thesis.
The results thus obtained fit nicely into the flow of the RC4 literature to date,
as depicted in Figure 2.1 of Chapter 2.

1.3.4 Motivation for RC4 Implementation

Efficiency in terms of ‘keystream throughput’ has always been a benchmarking
parameter for stream ciphers. The efficiency of the RC4 obviously depends
on the efficiency of KSA and PRGA. While the KSA invokes a fixed cost
for generating the initial pseudorandom state, the PRGA incurs a variable
cost in terms of the number of keystream bytes to be generated. An efficient
implementation of RC4 would aim to minimize the cost for per round of KSA
and PRGA to provide better throughput.

In this thesis, we focus on efficient high-throughput hardware implementa-
tion of the cipher. The main motivation is to test the limits to which RC4,
the popular ‘software’ stream cipher, can be pushed in terms of throughput
efficiency on a dedicated hardware platform. If the hardware throughput of
RC4 is sufficiently good as per current standards, we will have a stronger case
in support of using this time-tested cipher. Furthermore, systematic study of

23 1.4 Organization of the Thesis

the exploitable fine-grained parallelism may aid software developers to attempt
better performance in modern parallel processors.

Although there have been a few attempts to propose efficient hardware
implementation [46, 62, 89] of RC4, the basic issue remained ignored that the
design motivation should be initiated by the following question:

“In how many clock cycles can a keystream byte be generated at the
PRGA stage in an RC4 hardware?”

To the best of our knowledge, this line of thought has never been studied and
exercised in a disciplined manner in the literature, which is quite surprising.

A 3 cycles-per-byte efficient implementation of RC4 on a custom pipelined
hardware was first proposed by Kitsos et al [79] in 2003. In the same year, a
patent by Matthews Jr. [106] was disclosed, which provided a similar 3 cycles-
per-byte architecture using hardware pipelining. After a gap of five years,
another patent by Matthews Jr. [105] was disclosed in 2008, which proposed a
new design for RC4 hardware using pipeline architecture. This could increase
the efficiency of the cipher to obtain 1-byte-per-cycle in RC4 PRGA. To the
best of our knowledge, no further efficiency improvement for RC4 hardware
has been proposed in the existing literature.

We pose and answer the following research problems in this thesis:

Problem 2a. Is it possible to provide a simpler alternative to the best existing
designs for RC4 hardware that would yield the same throughput?

Problem 2b. Is it possible to design a new RC4 hardware that would yield
a better throughput compared to the best existing architecture?

We discuss and present solutions to both the problems in this work. Problem 2a
has been treated in Chapter 7, while Problem 2b has been solved in Chapter 8.

1.4 Organization of the Thesis

As outlined in Sections 1.3.3 and 1.3.4, we consider the following ten research
problems as a backbone for this thesis on analysis and implementation of RC4.

Chapter 1: Preliminaries and Motivation

Problem 1a. Some of the empirical biases observed by Sepehrdad, Vaudenay
and Vuagnoux [136] seem to be related to the length of the secret key
used in RC4. If this is the case, is it possible to identify and prove such
general relations between the keylength to the keystream biases in RC4?

Problem 1b. Investigate the negative bias of Z1 towards 129 (N = 256), as
observed by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5],
and identify its keylength dependence characteristics.

Problem 1c. Prove all known significant biases of RC4 involving the state
variables, as empirically observed in [136]. In addition, is it possible to
identify and prove other interesting biases of similar nature?

Problem 1d. It seems that the index j exhibits certain non-random behavior
in the initial rounds of RC4 PRGA. Is it possible to completely charac-
terize the (non-)randomness of index j throughout RC4 PRGA?

Problem 1e. Theoretically justify the sinusoidal probability distribution of
Z1 and its negative bias towards zero, as observed by Mironov [112].

Problem 1f. Identify all significant biases towards zero in the initial bytes of
RC4 keystream (Z3 to Z255), and prove all subsequent results.

Problem 1g. Prove all significant biases in the initial bytes of RC4 keystream
identified by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5].

Problem 1h. Experimentally discover and subsequently prove biases in RC4
keystream which remain effective even after discarding the initial bytes.

Problem 2a. Is it possible to provide a simpler alternative to the best existing
designs for RC4 hardware that would yield the same throughput?

Problem 2b. Is it possible to design a new RC4 hardware that would yield
a better throughput compared to the best existing architecture?

Structuring the material

This thesis is in two parts. The eight problems 1a–1h are considered our target
for RC4 analysis, and we present all relevant results in Part I of this thesis.

25 1.4 Organization of the Thesis

The last two problems 2a–2b are studied as a part of RC4 implementation,
and all relevant results are presented in Part II of this thesis. In summary, we
answer the ten research problems 1a–1h and 2a–2b posed above, in accordance
with the structure described in Table 1.2.

Table 1.2: Structure of the Thesis

Chapter 1 – Preliminaries and Motivation
Part I – Analysis of RC4 Part II – Implementation of RC4
Chapter 2 – Overview Chapter 6 – Overview
Chapter 3 – Problems 1a, 1b Chapter 7 – Problem 2a
Chapter 4 – Problems 1c, 1d Chapter 8 – Problem 2b
Chapter 5 – Problems 1e, 1f, 1g, 1h

Chapter 9 – Conclusion and Open Problems

The reader may choose to combine Chapter 1 and Chapter 9 with either
Part I or Part II to get two independent self-contained pieces to read.

Publications included in this Thesis

This thesis is built upon two journal papers [129, 132], four conference pa-
pers [98,99,131,133], and one IACR ePrint report [128].

The following publications are included in Part I of this thesis. The journal
paper [132] is a consolidation and considerable extension of the conference
papers [98,131], while the most recent works [99,128] are independent of these.
The results presented in these papers are organized categorically, and hence
assembled and distributed as required, over Chapters 3, 4 and 5 of this thesis.

1. Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu
Sarkar. (Non–)random sequences from (non–)random permutations –
analysis of RC4 stream cipher. Journal of Cryptology, 2013. To appear.
Published online Dec 2012, DOI: 10.1007/s00145-012-9138-1. Ref. [132]

2. Santanu Sarkar, Sourav Sen Gupta, Goutam Paul, and Subhamoy
Maitra. Proving TLS-attack related open biases of RC4. IACR Cryptol-
ogy ePrint Archive, 2013:502, 2013. Ref. [128]

Chapter 1: Preliminaries and Motivation

3. Subhamoy Maitra and Sourav Sen Gupta. New long-term glimpse of
RC4 stream cipher. In Aditya Bagchi and Indrakshi Ray, editors, ICISS,
volume 8303 of Lecture Notes in Computer Science, pages 230–238.
Springer, 2013. Ref. [99]

4. Subhamoy Maitra, Goutam Paul, and Sourav Sen Gupta. Attack on
broadcast RC4 revisited. In FSE, volume 6733 of Lecture Notes in Com-
puter Science, pages 199–217. Springer, 2011. Ref. [98]

5. Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu
Sarkar. Proof of empirical RC4 biases and new key correlations. In
Selected Areas in Cryptography, volume 7118 of Lecture Notes in Com-
puter Science, pages 151–168. Springer, 2011. Ref. [131]

The following publications are included in Part II of this thesis. The journal
paper [129] is a considerable extension of the conference paper [133]. It is
mostly the material of [133] that is presented in Chapter 7, while the extended
portion in [129] is discussed in Chapter 8 of this thesis.

6. Sourav Sen Gupta, Anupam Chattopadhyay, Koushik Sinha, Subhamoy
Maitra, and Bhabani P. Sinha. High-performance hardware imple-
mentation for RC4 stream cipher. IEEE Transactions on Computers,
62(4):730–743, 2013. Ref. [129]

7. Sourav Sen Gupta, Koushik Sinha, Subhamoy Maitra, and Bhabani P.
Sinha. One byte per clock: A novel RC4 hardware. In INDOCRYPT,
volume 6498 of Lecture Notes in Computer Science, pages 347–363.
Springer, 2010. Ref. [133]

Part I

Analysis of RC4 Stream Cipher

27

Chapter 2
Overview of RC4 Analysis

The goal of RC4 is to produce a pseudorandom sequence of bytes from the
internal permutation, which in turn should be pseudorandom. Hence, one
of the main ideas for RC4 cryptanalysis is to investigate for biases, that is,
statistical weaknesses that can be exploited to computationally distinguish the
keystream of RC4 from a truly random sequence of bytes with a considerable
probability of success.

The target of an attack on RC4 may be to exploit the non-randomness in the
internal state of the stream cipher, or the non-randomness of byte-extraction
from the internal permutation. Both ideas have been put to practice in various
ways in the literature, and the main theme of attacks on RC4 has been in four
major directions, as follows.

1. Weak keys, Key recovery from the internal state, and related attacks [4,
13,15,17,31,60,77,104,117,125,150]

2. Key recovery from the keystream [44,80,84,85,101,134–137,146,147,149]

3. State recovery from the keystream [54,57,81,107,113,139,148]

4. Biases, Distinguishers, and related attacks [5,12,45,52,70,75,98,102,103,
112,118,125,127,128,131,132,134,136,137]

Figure 2.1 gives a chronological summary of the major RC4 cryptanalytic re-
sults to date. We also describe, in brief, each of these major attacks to form a
comprehensive overview of the current literature on RC4 analysis.

29

Chapter 2: Overview of RC4 Analysis

�
R
oo

s
bi
as
es

[1
25
]

�
R
oo

s
w
ea
k
ke
ys

[1
25
]

�
W
ag
ne
r
w
ea
k
ke
ys

[1
50
]

�
G
lim

ps
e
bi
as

[7
5]

�
G
ol
ic

lo
ng

te
rm

bi
as

[5
2]

�
B
ra
nc
h
an

d
bo

un
d
[8
1]

�
C
yc
le

st
ru
ct
ur
es

[1
13
]

�
R
el
at
ed

ke
y-
pa

irs
[6
0]

�
It
er
at
iv
e
pr
ob

ab
ili
st
ic

cr
yp

ta
na

ly
sis

[5
4]

�
D
ig
ra
ph

bi
as
es

[4
5]

�
B
ro
ad

ca
st

at
ta
ck

[1
03
]

�
FM

S
W

EP
at
ta
ck

[4
4]

�
N
on

-r
an

do
m

Z
1
[1
12
]

�
St
at
e
pa

rt
-k
no

w
n
[1
39
]

�
K
or
ek

W
EP

at
t.
[8
4,
85
]

�
M
an

tin
’s

A
B
SA

B
[1
02
]

�
M
an

tin
W

EP
at
t.
[1
01
]

�
K
le
in

W
EP

at
ta
ck

[8
0]

(c
on

tin
ue
d
to

ne
xt

pa
ge
)

B
ia

se
s

an
d

D
is

ti
ng

ui
sh

er
s

St
at

e
re

co
ve

ry
at

ta
ck

s
K

ey
re

co
ve

ry
fr

om
ke

ys
tr

ea
m

W
ea

k
ke

ys
an

d
K

ey
re

co
ve

ry
fr

om
st

at
e

19
95

19
96

19
97

19
98

20
00

20
01

20
02

20
03

20
04

20
05

20
06

31

�
M
od

ul
ar

eq
ua

tio
ns

[1
17
]

�
Sh

or
t
re
la
te
d
ke
ys

[1
7]

�
T
W

P
W

EP
at
ta
ck

[1
47
]

�
V
V

W
EP

at
ta
ck

[1
49
]

�
H
ill
-c
lim

b
se
ar
ch

[1
48
]

�
N
es
te
d

S
-v
al
ue
s
[1
18
]

�
N
ew

lo
ng

-t
er
m

bi
as

(c
on

di
tio

na
l)
[1
2]

�
G
en
er
at
iv
e
pa

t-
te
rn

[1
07
]

�
It
er
at
iv
e
pr
ob

ab
ili
st
ic

re
co
ns
tr
uc
tio

n
[5
7]

�
D
iff
er
en
ce

eq
ns
.[
15
]

�
K
ey
-b
yt
e
gr
ou

pi
ng

[4
]

�
B
it-
by

-b
it
ap

pr
oa
ch

[7
7]

�
K
ey

co
lli
sio

ns
[1
04
]

�
B
id
ire

ct
io
na

ls
ea
rc
h
[1
3]

�
T
B

W
EP

an
d
W

PA
at
ta
ck
s
[1
46
]

�
SV

V
W

EP
at
ta
ck

[1
36
]

�
SV

V
bi
as
es

in
ke
y
an

d
st
at
e
va
ria

bl
es

[1
36
]

�
K
ey
le
ng

th
bi
as
es

[1
31
]

�
B
ro
ad

ca
st

re
vi
sit

ed
[9
8]

�
W

PA
di
st
in
gu

ish
er

[1
37
]

�
SV

V
W

EP
an

d
W

PA
at
ta
ck
s
[1
37
]

�
N
ew

ke
y
co
lli
sio

ns
[3
1]

�
SV

V
W

EP
an

d
W

PA
at
ta
ck
s
(r
ev
ise

d)
[1
34
]

�
Pr

oo
fo

fZ
1
bi
as

[1
32
]

�
Lo

ng
-t
er
m

bi
as

[1
32
]

�
Fu

ll
br
oa
dc
as
t
at
t.
[7
0]

�
T
LS

&
W

PA
at
ta
ck

[5
]

�
Pr

oo
fs

of
T
LS

-r
el
at
ed

op
en

bi
as
es

[1
27
,1
28
]

�
SS

V
V

pa
ss
iv
e
at
ta
ck

on
W

EP
[1
35
]

�
N
ea
r-
co
lli
di
ng

ke
ys

[9
7]

B
ia

se
s

an
d

D
is

ti
ng

ui
sh

er
s

St
at

e
re

co
ve

ry
at

ta
ck

s
K

ey
re

co
ve

ry
fr

om
ke

ys
tr

ea
m

W
ea

k
ke

ys
an

d
K

ey
re

co
ve

ry
fr

om
st

at
e

20
07

20
08

20
09

20
10

20
11

20
12

20
13

Fi
gu

re
2.
1:

C
hr
on

ol
og

ic
al

su
m
m
ar
y
of

R
C
4
cr
yp

ta
na

ly
sis

fr
om

19
95

to
20

13
.

Chapter 2: Overview of RC4 Analysis

2.1 Weak keys and Key recovery from state

Weaknesses of RC4 keys and KSA has attracted quite a lot of attention from
the community. In particular, Roos [125] and Wagner [150] showed that for
specific properties of a ‘weak’ secret key, certain undesirable biases occur in
the internal state and in the keystream. Grosul and Wallach [60] demon-
strated that certain related-key pairs generate similar output bytes in RC4, and
later Biham and Dunkelman [17] found better related key constructions. Mat-
sui [104] found much stronger key collisions in the cipher in 2009, and recently,
there has been some more results on key collision by Chen and Miyaji [31],
and partial key collision by Maitra, Paul, Sarkar, Lehmann and Meier [97].
A direct approach for key recovery from the internal permutation of RC4 was
first proposed by Paul and Maitra [117], and was later studied by Biham and
Carmeli [15], Khazaei and Meier [77], Akgün, Kavak and Demirci [4], and Basu,
Maitra, Paul and Talukdar [13]. Brief summary of each result is as follows.

2.1.1 Weak keys

This line of analysis targets a specific set (however small) of keys in RC4 which
leave certain characteristic traces on the internal state of the cipher after key
scheduling (KSA), or on the output keystream bytes. The sets of keys or
specific key-patterns with prominent discoverable traces on the state or the
keystream are called weak keys. Once such prominent traces are observed, an
adversary may attempt a key recovery from the state or the keystream in case
one of the weak keys are used.

Roos weak keys [125]

In 1995, just after the public ‘appearance’ of RC4, Roos [125] discovered the
first set of weak keys for the cipher. He discovered that, given an RC4 key
K[0], . . . , K[l] with K[0] +K[1] = 0, there is a significant probability that the
first byte generated by RC4 will be Z1 = K[2] + 3. In fact, experimentally
he found that the probability of occurrence of this event ranges between 0.12
and 0.16, depending on the values of K[0], K[1], with a mean of approximately
0.138. This is significantly more than the chance of occurrence due to random

33 2.1 Weak keys and Key recovery from state

association, which is approximately 0.003906. These findings and related re-
sults were theoretically proved a decade later by Paul, Rathi and Maitra [121].

In an addendum to his original report [125], Roos extended this to the
first two output bytes. He found that keys starting with “00 00 FD” have 0.14
probability of generating keystream which start with “00 00”, and keys starting
with “03 FD FC” have 0.05 probability of generating keystream which start
with “FF 03”. If an 80-bit keys are in use, then these discoveries result in a
key recovery attack on RC4 with 50% chance of success using only 267.8 trials,
as compared to a brute force approach with 279 trials1. For 64-bit keys, the
complexity of this attack is reduced to 251.8 from a brute force complexity of
263 trials2. This was the first successful cryptanalytic attempt on RC4, setting
the stage for a plethora of research initiatives in this direction.

Wagner weak keys [150]

Motivated by the Roos’s post [125], Wagner presented some of his observa-
tions [150] in the same direction. He had independently noticed some of the
results posted by Roos, and had some new ones as well. Wagner used the
observation (independently presented by Roos [125]) that, given an l-byte and
some e < l, there is around 37% probability that element e of the state ta-
ble depends only on elements K[0], . . . , K[e] of the key. He was motivated
by a ‘simplified-exportable-RC4-SSL-variant’ where an adversary can actively
choose or modify the first 10 bytes K[0], . . . , K[9] of a 16-byte key and thus try
to guess the remaining bytes K[10], . . . , K[15]. In such a model, the first three
keystream bytes will reveal K[10], K[11], K[12] with considerable probability
of success, and then the adversary can recover the remaining bytes of the key
by brute force. This approach does reduce the attack complexity, but is not
of much practical interest, as the model considered here does not match the
actual SSL protocol, which uses a hash on the RC4 key before using it.

1Full 80-bit key recovery attack using brute force would require 280 trials. However, key
recovery with 50% chance of success requires 280/2 = 279 trials in brute force attack.

2Key recovery with 50% chance of success requires 264/2 = 263 trials in brute force attack.

Chapter 2: Overview of RC4 Analysis

2.1.2 Key collisions

The RC4 KSA is not one-to-one in terms of the secret key and the state of
the cipher produced by KSA. Thus, it may happen that two different secret
keys K1 and K2 generate the same state SK1

N = SK2
N = S0 through KSA, and

produce the same keystream output thereafter. This situation is called key
collision, and constructing a pair of colliding keys is the goal for this attack.

Grosul and Wallach related key-pairs [60]

In 2000, Grosul and Wallach [60] came up with the first construction and
example of key collisions in RC4. However, this was not a complete key colli-
sion, as they propose the construction of related key-pairs for which the output
keystreams match in the initial hundred bytes and then diverge. The idea was
to simply construct the second key of the pair by making two complimentary
changes in the first key (any random key) with the goal of not disturbing the
update process of the state.

Grosul and Wallach first propose a change in the last byte of the key-pair,
so that a difference in only three bytes is created in the state after KSA.
They also suggest complimentary differential changes (+δ,−δ) in the last two
bytes of the key-pair, so that the state after KSA is minimally affected. The
authors produced practical examples of such related key-pairs for 256-byte
(full length) keys, but admitted that their attack was ineffective for shorter
and more practical RC4 keylengths. Recently, this idea has been studied again
by Maitra, Paul, Sarkar, Lehmann and Meier [97].

Biham and Dunkelman differential key-pairs [17]

In 2007, Biham and Dunkelman [17] proposed the first constructive method to
remove the problem of only 256-byte keys in Grosul and Wallach’s attack [60].
They considered practical 32-byte keys for RC4, and proposed to introduce
the differential changes (+1,−1) in the last two bytes of the related key-pair.
Thus, for the first 30 rounds of KSA, the state SK remains identical for both
the keys, and it remains identical even after 32-rounds with probability 2−16.
After KSA is over, the probability that the states SKN = S0 are the same for

35 2.1 Weak keys and Key recovery from state

both keys is (2−16)8 = 2−128. Note that for a key-pair with length l, this
probability is approximately (216)N/l, and thus, this related key-pair attack
is not too effective for short keys. In fact, it is elusive whether a practical
example of colliding keys may at all be obtained by this method.

The main idea of [17] behind obtaining a key-collision was to change the
key bytes in two places such that the effect of one difference is nullified by the
other during the course of KSA. However, this intuitive idea did not succeed in
obtaining practical key collisions. Surprisingly, an actual key collision in RC4
was discovered by creating the difference in only one key byte, as in [104].

Matsui key collisions [104]

In 2009, Matsui [104] finally proposed a practical method of constructing col-
liding key-pairs of RC4. In sharp contrast with the previous works of Grosul
and Wallach [60] and Biham and Dunkelman [17], Matsui made no attempts to
introduce self-correcting complimentary differentials in the key-pair. Rather,
the keys were selected to have difference in a single byte, so that the initial
mismatch in the state is nullified at the end of KSA.

The approach of Matsui [104] considered tracking the distance of a key-pair,
which is defined as the number of different bytes in the states at a given round
of KSA. The author designed an algorithm that tracked this distance over all
rounds of KSA and adaptively constructed a related key-pair such that the
distance is not more than 2 in any round. This algorithm effectively generated
practical key collisions, and Matsui reported an example each of colliding key-
pairs of lengths 24, 43 and 64 bytes in his paper [104]. The author also reported
a 20-byte near-colliding key-pair for which the states after the completion of
KSA differed in only two positions.

Chen and Miyaji 22-byte key collision [31]

The strongest practical results on full-key collisions were published in 2011,
by Chen and Miyaji [31]. The motivation of the authors was not to device
theoretical constructions of related keys, but to experimentally find colliding
key-pairs for short and practical keylengths. The main contribution of this

Chapter 2: Overview of RC4 Analysis

work is the design of an efficient search algorithm that produces a 22-byte
colliding key-pair of RC4, the shortest one to date. However, finding colliding
key-pairs for the most practical 16-byte key still seems illusive.

Maitra, Paul, Sarkar, Lehmann and Meier near-colliding keys [97]

In 2013, the most recent work related to key collisions was published by Maitra,
Paul, Sarkar, Lehmann and Meier [97]. The authors discover and discuss
methods to construct near-colliding key-pairs such that the states generated
after KSA differ only by a few bytes. The best near-collision of states presented
in this work [97] has 230 (out of N = 256) matching state bytes after KSA.

2.1.3 Key recovery from state

As RC4 PRGA is one-to-one and reversible, it is easy to reach the initial state
S0 from any given state of PRGA. However, it is not so trivial to reverse the
KSA and obtain the secret key. If one can do this efficiently, it is possible to
convert a state-recovery attack on RC4 to a key-recovery attack as well. This
line of key recovery analysis was not considered until quite recent times.

Paul and Maitra equation solving approach [117]

In 2007, Paul and Maitra [117] pioneered this area of analysis in their work
on key recovery by solving system of modular equations. The motivation for
the work arises from the known correlations between key bytes and the PRGA
initial state bytes, as presented by Roos [125] back in 1995. Roos’ observations
and similar results generate a system of modular equations relating sums of
consecutive key-bytes to the individual bytes of the PRGA initial state S0

(refer to [117, 119] for details). The trick is to choose useful equations, with
known values from S0, and solve those systematically for the key-bytes.

However, one should note that the Roos’ correlations and similar results
connecting the key-bytes and the state-bytes are probabilistic in nature. Thus,
the correctness of the solution for the key-bytes probabilistically depends on
the correctness of the chosen equations. The work of Paul and Maitra [117]
does not assume that majority of the equations are correct, as one may always

37 2.1 Weak keys and Key recovery from state

cross-check the correctness of a system of equations by running the KSA again.
The authors claim through empirical results that one obtains enough correct
equations in a significant proportion of cases to solve for the correct key.

Biham and Carmeli difference equation approach [15]

In 2008, Biham and Carmelli [15] improved the approach of Paul and
Maitra [117] to achieve more efficient key recovery with the same probabil-
ity of success. The authors replaced the basic modular equations of [117] by
difference equations, generated by taking pairwise differences of the original
equations. The novelty in this idea lies in the observation that the probabil-
ity of these difference equations to be correct are more than the probability
of correctness of the original ones. So, solving the system of difference equa-
tions with the same success probability becomes easier compared to solving
the original modular equations, thus providing a more efficient technique for
key recovery.

Akgün, Kavak and Demirci key byte grouping approach [4]

In 2008, the work of Akgün, Kavak and Demirci [4] further improved the equa-
tion solving approach for key recovery from state. The authors used several
different events to guess each value of the j-index, and then proceeded to solve
the difference equations of Biham and Carmelli [15].

Instead of solving for each key-byte straight away, Akgün, Kavak and
Demirci guessed the sum of key-bytes first, and assigned weighted guess values
to a selection of key-bytes. Then the equation solving took place over groups of
key-bytes, where some of the bytes are already assigned weighted guesses, and
the others are obtained by solving the system of equations. This group-wise
divide and conquer approach for equation solving makes the technique even
more efficient, and one gets a faster key recovery with same success probability.

Khazaei and Meier bit-by-bit approach [77]

In the same year 2008, Khazaei and Meier [77] presented another improvement
on the work of Biham and Dunkelman [15]. They started with the same dif-

Chapter 2: Overview of RC4 Analysis

ference equations as [15], but considered a bit-by-bit approach to key recovery.
The basic idea is to convert the probabilistic difference equations into deter-
ministic equations with noise, and recover the key-bytes in a correlation-based
attack using a hypothesis testing approach. This hypothesis testing approach
for key recovery can then be extended to a bit-level decision problem, which
is solved bit-by-bit to obtain the key. The bit-level decision-making process is
performed through a tree-based search algorithm, which claims to have better
complexity compared to the previous key recovery techniques.

Basu, Maitra, Paul and Talukdar bidirectional search [13]

In 2009, Basu, Maitra, Paul and Talukdar [13] employed a bidirectional search
algorithm for guessing the key-bytes, to introduce some parallelism in the
search process. Instead of guessing the key-bytes contiguously, the authors si-
multaneously guessed the lower-index key-bytes using the lower-index S0-bytes,
and the higher-index key-bytes using the higher-index S0-bytes. Cross-checking
is done for consistency at regular intervals by running KSA with the guessed
values of key-bytes, and matching known values of j. This inherently parallel
key-recovery process was naturally faster, and the authors of [13] estimated
the recovery of 16-byte secret keys with success probability 0.1409, which was
almost twice the earlier best known value of 0.0745 reported in [4].

2.2 Key recovery from keystream

Key recovery from the keystream primarily exploits the use of RC4 in WEP
and WPA. The analysis by Fluhrer, Mantin and Shamir [44] and Mantin [101]
are applicable towards RC4 in WEP mode, and there are quite a few practical
attacks [80, 84, 85, 135–137, 146, 149] on the WEP protocol as well. After a
practical breach of WEP by Tews, Weinmann and Pyshkin [147] in 2007, the
new variant WPA came into the picture. This too used RC4 as a backbone,
and the most recent result published Sepehrdad, Vaudenay and Vuagnoux [137]
mounts a distinguishing attack as well as a key recovery attack on RC4 in WPA
mode, later improved in [134]. A brief summary of each of these attacks is as
follows.

39 2.2 Key recovery from keystream

2.2.1 Attacks on WEP

WEP, the RC4-based protocol, had initially been the choice for IEEE 802.11
standard, thus making it an attractive target for cryptanalysts. For robust-
ness against packet loss due to transmission errors, the protocol is designed
to encrypt the packets independently. However, as RC4 does not inherently
support an IV, the WEP protocol generates 64 to 128-bit session keys for each
packet, using a 3-byte IV concatenated with a 5 to 13-byte secret key.

In practice, the IV is generated using a counter, incremented to produce
slightly different keys to encrypt each packet. As a relevant portion of the
plaintext in the WEP protocol is practically constant, and some other bytes
are predictable, the adversary has access to a considerable number of known
plaintext-ciphertext pairs. Thus the most desirable attack on WEP is to re-
cover the secret key K from the known IV (first three bytes of K) and known
values of RC4 keystream bytes obtained from the plaintext-ciphertext pairs.

Fluhrer, Mantin and Shamir related-key attack on WEP [44]

The main idea of related-key attacks on RC4 in the WEP mode was introduced
by Fluhrer, Mantin and Shamir [44] in 2001. They described their attack idea
in theory, and claimed that approximately 4 million packets were sufficient to
recover the WEP secret key with success probability 0.5. This is based on
the implementation of WEP using incremental IVs for consecutive packets.
In practice, this estimate is close to 5 to 6 million packets, as later verified
experimentally by Stubblefield, Ioannidis and Rubin [143,144].

Korek practical attacks on WEP [84,85]

In 2004, Korek’s work [84, 85] initiated the next generation of WEP attacks,
where practical key recovery algorithms took the center stage. In fact, there
was no theoretical analysis in [84, 85], and only practical implementations of
WEP attacks in the form of the Aircrack-ng software [37] were put forward.
The attack complexity was reduced to about 100,000 packets for a success
probability of 0.5.

Chapter 2: Overview of RC4 Analysis

Mantin attack on RC4 and WEP [101]

In 2005, Mantin [101] utilized the well-known Jenkins’ correlation or the
glimpse bias [75] to mount a key recovery attack on RC4 in the WEP mode.
Mantin’s attack improved that of Fluhrer, Mantin and Shamir [44] in terms
of complexity, and remained effective even if the first N = 256 bytes of the
keystream were discarded. No practical timings were reported for general WEP
scenario, but it was claimed that 16-byte key recovery was possible in 248 steps
using 217 short keystreams generated from different chosen IVs. The data com-
plexity was estimated as 222 if the IV was concatenated after the secret key.
This work [101] also introduced the notion of fault injection in WEP attacks,
and claimed that only 214 faulted keystreams could be used to recover the
internal state and the secret key.

Klein attack on WEP [80]

In 2006, Klein’s work [80] presented a new attack strategy on WEP, which
claimed to improve the complexity to 25000 packets for a 0.5 probability of
success. However, these estimates were only theoretical, as no practical imple-
mentation of this attack was made in [80]. Later in 2010-11, Sepehrdad, Vau-
denay and Vuagnoux [136, 137] implemented this attack and verified that the
practical complexity was approximately 60000 packets for Klein’s attack [80].

Tews, Weinmann and Pyshkin 60-second attack on WEP [147]

In 2007, the first hands-on practical attack on WEP was demonstrated by
Tews, Weinmann and Pyshkin [147], where the attack complexity is reduced
to 40000 packets, with a brute force on 106 most probable secret keys. No
theoretical analysis was presented in this work [147], but the practical results
could mount a key recovery attack on WEP in under 60 seconds.

Vaudenay and Vuagnoux attack on WEP [149]

In the same year 2007, Vaudenay and Vuagnoux [149] presented another prac-
tical work in the same direction, without any theoretical analysis. This work

41 2.2 Key recovery from keystream

could further reduce the complexity of key recovery to about 32700 packets
generated using random IVs, where 106 most probable secret keys were brute
forced. The success probability was 0.5, same as before.

Tews and Beck attack on WEP [146]

In 2009, Tews and Beck [146] reimplemented an optimized version of the Vau-
denay and Vuagnoux [149] attack using the Aircrack-ng software in ‘interactive
mode’. The use of this mode was quite novel, and the complexity of the at-
tack could be reduced to 24200 packets with the same number of brute forced
keys and with the same probability of success. Later in 2010-11, Sepehrdad,
Vaudenay and Vuagnoux [136, 137] repeated this attack using Aircrack-ng in
a non-interactive mode, and could only obtain a complexity of 30000 packets.

Sepehrdad, Vaudenay and Vuagnoux attacks on WEP [134,136,137]

During 2010-12, Sepehrdad, Vaudenay and Vuagnoux [134,136,137] presented
several attacks on WEP, continuously evolving and improving over the earlier
results. In [136], the authors discovered several new statistical biases of RC4,
and used some of them to mount a key recovery attack on WEP. Carefully
chosen biases from the existing literature and the new findings led to a key
recovery of WEP with only 9800 packets in less than 20 seconds time. This
proved to be much faster in comparison with the previous best attack of Tews
and Beck [146]. In [137], Sepehrdad, Vaudenay and Vuagnoux estimated that
optimized implementations of the key-recovery attack on WEP can recover the
key from only 4000 packets, if one assumes that the first bytes of the plaintexts
are known for each packet. In 2012, these results on WEP key recovery were
substantially improved in [134] under the name ‘Tornado Attack’, and the new
results arising from this attack were formally presented in [135] by Sepehrdad,
Susil, Vaudenay and Vuagnoux.

Sepehrdad, Susil, Vaudenay and Vuagnoux passive attack [135]

This paper by Sepehrdad, Susil, Vaudenay and Vuagnoux [135] is the most
recent result on WEP analysis, reporting extremely fast and optimized active

Chapter 2: Overview of RC4 Analysis

and passive key recovery attacks against the protocol. The motivation of this
work is based on the earlier results from [137], where the theoretical estimates
for packet complexity was not entirely correct. The authors show in [135]
that in practice, the number of packets required for the attack of [137] is
considerably higher than the claimed value of 4000.

After correcting the estimates of [137], the authors report an active at-
tack on 104-bit WEP, based on ARP injection, requiring 22500 packets for
a success probability of 0.5. This attack is practically tested and verified in
Aircrack-ng software, used in non-interactive mode. In the interactive mode,
however, Aircrack-ng requires only 19800 packets to recover the 104-bit WEP
key through this active attack. The passive attack presented in this work [135]
requires only 27500 packets to recover a 104-bit WEP key. This work [135]
presents the best known key recovery attacks on WEP to date.

A summary of WEP attacks, in terms of packet complexity, is presented
in Table 2.1. The shaded rows in the table refer to attacks that report only
theoretical estimates, and provide no practical measure for packet complexity.

Table 2.1: Summary of WEP attacks in terms of packet complexity.

Year Reference Type Packets
2001 FMS theory [44] Passive (estimate) 4,000,000

FMS verified [143,144] Passive (actual) 5,500,000
2004 Korek [84,85] Passive (Aircrack-ng) 100,000
2006 Klein theory [80] Passive (estimate) 25,000

Klein verified [136,137] Passive (actual) 60,000
2007 TWP attack [147] Passive (actual) 40,000
2007 VV attack [149] Passive (actual) 32,700
2009 Tews-Beck [146] Interactive (Aircrack-ng) 24,200

TB verified [136,137] Non-Int. (Aircrack-ng) 30,000
2010 SVV attack [136] Passive (estimate) 9,800
2011 SVV attack [137] Passive (estimate) 4,000
2013 SSVV attack [135] Passive (actual) 27,500
2013 SSVV attack [135] Non-Int. (Aircrack-ng) 22,500
2013 SSVV attack [135] Interactive (Aircrack-ng) 19,800

43 2.2 Key recovery from keystream

2.2.2 Attacks on WPA

When WEP was proved to be weak in terms of related-key attacks, the 802.11
standard adapted to the WPA protocol for confidentiality. WPA can be
thought of as a wrapper on top of WEP to provide good key mixing fea-
tures. WPA introduces a key hashing module in the original WEP design to
defend against the Fluhrer, Mantin and Shamir attack [44].

It also includes a message integrity feature and a key management scheme to
avoid key reuse in the protocol. The key mixing stage takes as input a temporal
key, the transmitter address and a 48-bit IV (implemented as a counter), and
outputs the main RC4 key, which is claimed to be unrelated for consecutive
packets, and not repeated for 248 packets with different IVs. Once this RC4
session key for an individual packet is obtained, the original WEP algorithm
comes into effect to encrypt the plaintext, concatenated with the message
integrity code. It is an interesting line of analysis to seek weaknesses in the
WPA protocol, which is robust against most WEP vulnerabilities.

Tews and Beck data-injection [146]

In 2009, Tews and Beck [146] presented the first practical attack on the WPA-
PSK protocol. However, the goal of the attack was to inject data in the
encrypted channel, and it was not any form of key recovery attack as such.

Sepehrdad, Vaudenay and Vuagnoux attacks on WPA [134,137]

During 2011-12, Sepehrdad, Vaudenay and Vuagnoux [134,137] presented the
first practical key recovery attack on WPA. The authors first described a dis-
tinguisher of complexity 243 for WPA, with a packet complexity of 240 and
probability of success 0.5. Thereafter, based on several partial key recovery
approaches, the authors presented a new attack to recover the full 128-bit tem-
porary key of WPA by using only 238 packets. The time complexity of this
key-recovery attack was theoretically estimated as 296 in [134,137].

Chapter 2: Overview of RC4 Analysis

2.3 State recovery attacks

RC4 has a state-space of size N ! × N2, where the N ! term comes from the
permutation space of the N -byte S array, and N2 is due to all possible pairs of
values for i, j. In practice, for N = 256, the state-space becomes 256!×2562 ≈
21700, which makes a state-recovery attack extremely challenging for RC4.

The first important state recovery attack was due to Knudsen, Meier and
Preneel [81]. After a series of improvements by Mister and Tavares [113],
Golic [54], Shiraishi, Ohigashi and Morii [139], and Tomasevic, Bojanic and
Nieto-Taladriz [148], the best attack was published by Maximov and Khovra-
tovich [107]. A contemporary result by Golic and Morgari [57] makes some
critical comments on [107], and claims to improve the attack of [107] even fur-
ther by iterative probabilistic reconstruction of the RC4 internal states. Brief
summary of each of these attacks is as follows.

Knudsen, Meier and Preneel branch-and-bound approach [81]

In 1998, Knudsen, Meier and Preneel [81] proposed the first effective state
recovery attack on RC4 that reduced the search space considerably compared
to an exhaustive search. The main idea was to solve for the four unknown
variables jr, Sr[ir], Sr[jr], tr = S−1

r [Zr] in each round of RC4, using an adaptive
and optimized branch-and-bound method for the search. The theoretical esti-
mate for the complexity of this attack was 2779 for N = 256, and in case some
state values are known beforehand, the complexity decreases even further.

Mister and Tavares cycle structures of RC4 [113]

In the same year 1998, Mister and Tavares [113] published a similar obser-
vation, made independently of [81]. The results proposed by the authors for
RC4 state recovery followed the principle of branch-and-bound search. The
interesting addition to this work [113] was the tracking of possible states using
certain cycle-structure of RC4. The cycle-structures were explored and used in
attacking smaller versions of RC4; for example, the state of a RC4-like cipher
with N = 32 could be recovered in 242 steps. However, no practical attack was
attempted on the full-scale cipher, and no complexity estimates were stated.

45 2.3 State recovery attacks

Golic iterative probabilistic recovery [54]

In 2000, Golic [54] presented the first sophisticated probabilistic approach to-
wards state recovery of RC4. An iterative probabilistic algorithm was devel-
oped for reconstructing the RC4 initial state from a short segment of known
keystream bytes. The reconstruction starts with the basic search approach
of Knudsen, Meier and Preneel [81], but uses a much sophisticated and com-
prehensive probabilistic analysis, involving forward and backward recursions
of the posterior probabilities. The proposed attack had similar complexity as
that of [81], but required much less number of known keystream bytes.

Shiraishi, Ohigashi and Morii partial known state approach [139]

In 2003, Shiraishi, Ohigashi and Morii [139] attempted a slightly different route
to state recovery, based on partially known information about the state. They
first showed that the attack by Knudsen, Meier and Preneel [81] would be of
search complexity 2220 if 112 entries of the state were known. Thereafter, they
proposed an improvement of the attack in [81] to reduce the required number
of known state entries to 73, keeping the search complexity the same.

Tomasevic, Bojanic and Nieto-Taladriz hill-climbing approach [148]

The work of Tomasevic, Bojanic and Nieto-Taladriz [148] in 2007 was the first
to reduce the complexity of the attack by Knudsen, Meier and Preneel [81] for
unconditional full-state recovery of RC4. In this work [148], the dependence
relation between the unknown variables jr, Sr[ir], Sr[jr], tr = S−1

r [Zr] over dif-
ferent rounds of RC4 was modeled as a tree, and then this tree was searched
by efficient hill-climbing strategy. The final attack reduced the complexity of
full RC4 state recovery to 2731.

Maximov and Khovratovich generative pattern approach [107]

In 2008, the best known state recovery attack on RC4 appeared in the work
of Maximov and Khovratovich [107]. They considered certain generative pat-
terns which revealed the values of j over a window of consecutive rounds.

Chapter 2: Overview of RC4 Analysis

Once j was known for some consecutive rounds, the number of unknown vari-
ables in each round of RC4 reduced to two from the original four unknowns
jr, Sr[ir], Sr[jr], tr = S−1

r [Zr]. This considerably simplified the problem, and
the search complexity drastically reduced to 2241 from 2731 as in [148]. The
estimate for time complexity was based on theoretical justifications and simu-
lation results of the attack on reduced scale RC4.

Golic and Morgari iterative probabilistic reconstruction [57]

In the same year 2008, Golic and Morgari [57] revisited the attack of Maximov
and Khovratovich [107], and presented comprehensive analysis of their work
based on the techniques of iterative probabilistic reconstruction. This work [57]
claimed that the complexity estimates of [107] were somewhat optimistic, and
presented a practical improvement over the existing attack strategy. The im-
proved attack is based on guess-and-determine strategy to reconstruct the RC4
state, and the authors of [57] claimed the data and time complexities to be
241, 2689 for the basic version and 2211, 2262 for the optimized version of the
attack, respectively. In a recent result by Golic and Morgari (unpublished;
known through personal communication), a combined attack is proposed to
improve the data and time complexities further to 2222 and 2214, respectively.

Successful state recovery attacks on full-scale RC4 seem to be the most chal-
lenging line of research in RC4 analysis, as quite evident from the considerably
large void in the third column of Figure 2.1. Finding short cycles in RC4 state
evolution is another field in which not much progress has been made to date.
The main focus of RC4 cryptanalysis to date has been towards discovery and
exploitation of statistical weaknesses in the cipher, primarily in the direction
of identifying new biases and corresponding distinguishers.

2.4 Biases and Distinguishers

As a stream cipher, RC4 promises to deliver pseudorandom bytes as keystream
output. Thus, any lapse in that goal creates interesting consequences towards
the security of the cipher. This is the reason why statistical weaknesses like

47 2.4 Biases and Distinguishers

biases and their application as distinguishers have attracted the main focus of
RC4 cryptanalysis to date. There have been numerous results on RC4 biases
over years, and the trend still continues, as evident from Figure 2.1. The focus
of RC4 analysis in this thesis is also towards biases and distinguishers.

Most of the existing results are targeted towards specific short-term
(involving only the initial few bytes of the output) biases and correla-
tions [5, 52, 70, 75, 98, 103, 112, 125, 127, 128, 132, 134, 136], while there exist
only a few important results for long-term (prominent even after discarding an
arbitrary number of initial bytes of the output) biases [12, 45,52,75,102,132].

We present the details of relating a bias to its corresponding distinguisher
in Section 2.4.1, and a brief summary of each of these attacks thereafter.

2.4.1 Theory of biases and distinguishers

For a stream cipher, if there is an event such that the probability of occurrence
of the event is different from that in case of a uniformly random sequence of
bits, the event is said to be biased. If there exists a biased event based only on
the bits /bytes of the keystream, then such an event gives rise to a distinguisher,
an algorithm that can computationally differentiate between the keystream of
the cipher and a random sequence of bits.

The efficiency of most distinguishers, including the ones we study and pro-
pose in this thesis, is judged by the number of samples (keystream or ciphertext
bytes from the cipher) required to identify the bias.

Number of samples required to identify a bias

Let E be an event based on some key bits or internal state bits or keystream
bits or a combination of them in a stream cipher. Suppose, Pr(E) = p for a
uniformly random sequence of bits, and Pr(E) = p(1 + q) for the keystream
of the stream cipher under consideration. The cryptanalytic motivation of
studying a stream cipher is to distinguish these two sequences in terms of
the difference in the above probabilities when q 6= 0. It requires the formal
information theoretic notion of ‘relative entropy’ between two sequences.

The relative entropy between two discrete probability distributions P (·)

Chapter 2: Overview of RC4 Analysis

and Q(·) is given by the Kullback-Leibler divergence [86]:

DKL(P ||Q) =
∑
x

P (x) log2(P (x)/Q(x)),

where x runs over all the sample points. For the above-mentioned single event
E with probabilities p and p(1+q) in two different distributions P (·) and Q(·),
the relative entropy is given by:

p log2

(
p

p(1 + q)

)
+ (1− p) log2

(
1− p

1− p(1 + q)

)

≈ −p
(

q

1 + q

)
+ (1− p)

(
pq

1− p(1 + q)

)
≈ pq2,

where the approximations hold when q is small. Applying this to n samples
from the same distribution, the relative entropy is obtained as npq2, and ac-
cording to [25], the bound for false positive rate (α) and false negative rate (β)
in distinguishing between P (·) and Q(·) satisfy the following:

npq2 ≥ β log2
β

1− α + (1− β) log2
1− β
α

.

Thus for a given false positive rate α and a false negative rate β, one needs
roughly O(1/pq2) many samples to perform the distinguishing test. For the
special case α = β, this relation reduces to

n ≥ 1
pq2 · (1− 2α) · log2

(1− α
α

)
.

In our context, false positive means that the test sequence is actually from the
stream cipher but we accept it to be random, and false negative means that
the test sequence is actually random but we accept it to be the keystream of
a specific stream cipher.

In particular, n ≥ 1/pq2 signifies α ≈ 0.22, i.e., a success probability of
approximately 0.78. Since 0.78 > 0.5 is a reasonably good success probability,
O(1/pq2) many samples are considered enough to reliably apply the distin-
guisher. The theoretical estimate for the complexity of a distinguisher also
appears in the work of Mantin and Shamir [103], in form of the following
technical result (originally Theorem 2 in [103]).

49 2.4 Biases and Distinguishers

Proposition 2.1 (Mantin and Shamir [103]). Let X, Y be distributions, and
suppose that the event e happens in X with probability p and in Y with proba-
bility p(1 + q). Then for small p and q, O(1/pq2) samples suffice to distinguish
X from Y with a constant probability of success.

This result, when applied to the distribution of the keystream of a stream
cipher and a random sequence of bytes, gives an estimate of the number of
samples needed to confirm a bias (either through simulation or from practi-
cal data). We shall use this notion of sample complexity while judging the
effectiveness of any bias discussed throughout this thesis.

It is worth noting at this point that Proposition 2.1 is true only for small
values of p and q, and the result does not hold if the base event occurs with a
large probability p. However, a special case of interest in stream ciphers is the
case of binary events, i.e., events with two outcomes, where p = 0.5 is large.
This special case had previously been considered by Golic [48,52] towards the
investigation for linear statistical weaknesses in stream ciphers.

2.4.2 Biases related to the secret key

As a matter of great interest to RC4 cryptanalysts was to recover the secret
key from the output keystream or the internal state, it was also of prime
importance to identify any biases or correlations relating the secret key to the
others. There is a large number of examples of such biases in the literature.

Roos’ key correlations [125]

In 1995, Roos [125] was the first to correlate the secret key bytes to the bytes
of the PRGA initial state S0. He experimentally observed that S0[E] for any
given E = 0, 1, . . . , N−1 depends only on the key bytes K[0], . . . , K[E] with a
higher than expected probability of 0.37. More precisely, Roos postulated that
S0[E] is most likely equal to be K[0] + K[1] + · · · + K[E] + E(E + 1)/2, just
after the completion of KSA. He also stated in [125] that given an RC4 key
K with K[0] +K[1] = 0, there is a significant probability that Z1 = K[2] + 3.
This experimental observation was the first bias found in the cipher [125], and
the result was later proved by Paul, Rathi and Maitra [121].

Chapter 2: Overview of RC4 Analysis

Sen Gupta, Maitra, Paul and Sarkar keylength bias [131,132]

In 2011, we identified [131] a relation between the length of the secret key to
certain biases in the RC4 keystream, while trying to find theoretical justifi-
cation of an observation made by Sepehrdad, Vaudenay and Vuagnoux [136].
This was the first proof for any keylength dependent bias in RC4, and re-
sulted in a keylength distinguisher for the cipher. This distinguisher, in turn,
provided an efficient strategy to guess the length of the secret key from the
keystream output. The result was further studied by us in [132], and the details
are presented in Chapter 3 of this thesis.

Isobe, Ohigashi, Watanabe and Morii extended keylength bias [70]

Following the identification of the first keylength dependent bias in our previ-
ous works [131, 132], Isobe, Ohigashi, Watanabe and Morii [70] extended the
result in 2013 to identify a general class of keylength dependent biases in RC4.
They used the biases (along with other short-term biases of RC4) to mount an
efficient full plaintext recovery attack on the broadcast version of the cipher
that uses a 16-byte secret key. Although the authors attempted a partial proof
of this result [70], a conclusive proof of the extended keylength dependent bi-
ases was presented in our recent work [128]. We discuss the general results
of [70] and [128] in Chapter 3 of this thesis.

Sarkar, Sen Gupta, Paul and Maitra keylength dependent bias of
first byte and anomalies [128]

In 2013, we attempted [128] the proofs of all significant biases used by Al-
Fardan, Bernstein, Paterson, Poettering and Schuldt [5] towards an attack on
TLS. While proving certain negative bias in Z1 = 129 (for N = 256) observed
in [5], we noticed in a recent work [128] that the negative bias of Z1 towards
129 occurs prominently only for certain lengths of the secret key of RC4. This
is the first observation of any keylength dependent bias in the first byte of the
RC4 keystream.

In the same work [128], we also discovered that this bias in Z1 may be
related to the long-standing mysterious problem of “anomalies” in the distri-

51 2.4 Biases and Distinguishers

bution of the state array after the RC4 KSA. In this connection, we could prove
the anomaly in S0[128] = 127, a problem open for more than a decade since
the observation of anomaly pairs by Mantin [100] in 2001. Detailed results are
presented in Chapter 3 of this thesis.

2.4.3 Biases related to state variables

Statistical weaknesses that relate the output keystream bytes of RC4 to its
internal state are also of prime importance due to their direct application
towards state-recovery attacks on the cipher. The main results are as follows.

Jenkins correlation and glimpse [75]

In 1996, Jenkins [75] first noticed a relation between the output keystream
bytes and the internal state of RC4. He observed that at any round r of RC4,
the relations Sr[jr] = ir − Zr and Sr[ir] = jr − Zr hold with probability 2/N ,
twice that of the chance of random association. However, he never proved the
result. In 2001, the work of Mantin and Shamir [103] brought the Jenkins’ bias
in the public literature, and Mantin’s thesis [100] provided the first detailed
explanation for this bias. This was the first bias of RC4 to provide a glimpse
into the hidden state from the output.

Mantin non-uniform distribution of initial PRGA state [100]

In 2001, Mantin [100] identified and proved the interesting probability distri-
bution of S0[u] = v for the initial PRGA state, where u, v ranged over all values
0, . . . , N − 1. This results showed for the first time that the internal state S0

right after the completion of KSA is not even close to uniform, as one would ex-
pect from a good key scheduling process. The result was proved again in 2007
by Paul, Maitra and Srivastava [120] by an alternative technique. To date,
Mantin’s non-uniform S0 distribution [100] has been the most useful internal
state bias of RC4, giving rise to several non-uniformities in the keystream.

Chapter 2: Overview of RC4 Analysis

Sepehrdad, Vaudenay and Vuagnoux spectral search [134,136]

In 2010, Sepehrdad, Vaudenay and Vuagnoux [136] performed an almost ex-
haustive search on the space of all relations between ir, jr, Sr[ir], Sr[jr], Zr to
identify all linear correlations in a single round of the cipher. Their spectral
technique proved quite effective in enlisting a host of new biases in RC4 that
relate the internal state to the output bytes of the cipher. The work was fur-
ther discussed and extended in [134]. The authors did not prove many of the
prominent biases they found, as their goal was to use these biases to mount
practical attacks on WEP and WPA [134,136,137].

Sen Gupta, Maitra, Paul and Sarkar state-related biases [131]

In 2011, we attempted [131] a complete theoretical justification for all promi-
nent biases identified by Sepehrdad, Vaudenay and Vuagnoux [136], and proved
almost all of them. This systematic approach towards analyzing the state-
related biases from [136] did not only provide proper theoretical base for the
existing empirical biases, but also identified some new ones. During the same
time, some other state-related results were presented in our work [98], and
all the aforesaid results were further studied by us in [132]. The details are
presented in Chapter 4 of this thesis.

2.4.4 Short-term biases in the keystream bytes

There exist many traits of non-random behavior in the initial keystream bytes
of RC4, especially in the first N output bytes. Some of these result from
the non-uniform distribution of S0, the initial PRGA state, as observed by
Mantin [100]. Some others result out of the simple permutation update and
byte extraction procedure of the cipher. There has been a few attempts
at analyzing the general shuffle-exchange paradigm of RC4 and its draw-
backs [112,123], while most of the effort has been targeted towards identifying
the initial keystream biases and their potential application towards practical
attacks. Most of these initial keystream biases are short-term, in the sense that
they do not linger in future rounds of the PRGA, while some persist (often
periodically) in the later rounds as well. In this section, we deal with only the

53 2.4 Biases and Distinguishers

short-term biases of RC4, and summarize the prominent results as follows.

Mantin and Shamir second byte bias [103]

In 2001, Mantin and Shamir [103] identified one of the most celebrated
keystream biases of RC4 – bias of the second keystream byte towards zero.
They proved that the event Z2 = 0 occurs with probability 2/N , twice that
of the chance of random association. Observation of such a simple yet elegant
bias in the initial keystream byte of RC4 pioneered a completely new direc-
tion of analysis. This bias of the second byte [103] provided a quite efficient
distinguisher of RC4, with a complexity of only O(N).

In addition to this, the second byte bias allowed Mantin and Shamir to
mount a practical attack on RC4 in the broadcast setting, where the same
plaintext is broadcast to several receivers using different random keys for en-
cryption. In such a case, the second byte of the plaintext can be successfully
recovered from the knowledge of only about Ω(N) ciphertexts [103].

Mironov first byte sinusoidal distribution [112]

In 2002, Mironov [112] thoroughly studied the shuffle-exchange paradigm of
RC4, took a close look at the first keystream byte of RC4, and identified a
negative bias towards zero. This bias was of the order of 1/N2, not as promi-
nent as the Mantin and Shamir [103] bias, but nonetheless, was an interesting
observation. He also noticed that the probability distribution of Z1 = v for
v = 0, . . . , N − 1 exhibits a non-uniform sinusoidal feature. This was only an
experimental observation, without any proofs attempted [112].

Maitra, Paul and Sen Gupta short-term biases towards zero [98]

Mantin and Shamir’s [103] claimed in 2001 that no significant bias towards zero
exists in the initial keystream bytes of RC4 other than the one exhibited by
Z2. However in 2011, after a decade of this claim, we refuted [98] it by proving
that all initial bytes of RC4, from Z3 to Z255, exhibit considerably significant
biases, of the order of 1/N2, towards zero. We could successfully identify and
prove [98] the biases in Zr = 0 for r = 3, . . . , 255. A detailed account of this

Chapter 2: Overview of RC4 Analysis

result is presented in Chapter 5 of this thesis. These biases were later used
by Isobe, Ohigashi, Watanabe and Morii [70] towards a general attack on the
broadcast mode of RC4.

Sen Gupta, Maitra, Paul and Sarkar proof of first byte bias [132]

In 2013, after almost a decade of the identification of Mironov [112] first byte
bias, we theoretically proved [132] the complete distribution of Z1 for full
keylength l = N = 256, as well as its negative bias towards zero. The details
are presented in Chapter 5 of this thesis.

Sarkar second byte negative bias [127]

In 2013, another short-term bias was identified and proved by Sarkar [127],
which showed that the second byte Z2 is negatively biased towards the value
2. This in fact is the most prominent bias in Z2 after the Z2 = 0 positive bias
proved by Mantin and Shamir [103]. Sarkar [127] also mention the existence
of a negative bias in Z2 = N/2 + 1 and positive biases in Zr = r for r =
3, . . . , N − 1, but no proofs were presented in this work.

Isobe, Ohigashi, Watanabe and Morii full broadcast attack [70]

In 2013, as a follow up of [98, 132], Isobe, Ohigashi, Watanabe and Morii [70]
attempted an experimental identification of the best biases in each initial
keystream byte Z1, Z2, . . . , Z257 of RC4. They could discover and prove some
new short-term biases in RC4 [70] in addition to rediscovering the known bi-
ases [98, 103, 112, 132]. Two major new biases proved in [70] are in the events
(Z1 = 0 | Z2 = 0) and Z3 = 131. However, the most important short-term
bias identified and proved in this work was the general positive bias pattern
in Zr = r for r = 3, . . . , N − 1, which was independently observed, but not
proved, by Sarkar [127].

The prime target of this work [70] was RC4 in broadcast mode. The authors
could mount the first practical full-plaintext recovery attack on broadcast RC4
by combining all known and new biases, specifically the best ones for each
initial keystream byte of the cipher, with the long-term digraph repetition bias

55 2.4 Biases and Distinguishers

of Mantin [102]. Isobe, Ohigashi, Watanabe and Morii [70] prove that almost
all of the first 257 bytes of the plaintext can be recovered, with probability
more than 0.8, using only 232 ciphertexts of broadcast RC4. If the digraph
repetition bias [102] is used, then all later bytes of the plaintext can also be
recovered from about 234 ciphertexts. They validate their theory by providing
experimental attacks on RC4 in broadcast setting, where they estimate the
recovery of first 250 bytes of the plaintext, with probability close to 1, using
only 234 ciphertexts generated by random keys. Some critical comments on
these results have been made in a related recent work [5].

AlFardan, Bernstein, Paterson, Poettering, Schuldt TLS-attack [5]

In the same year 2013, another prominent attempt was made by AlFardan,
Bernstein, Paterson, Poettering and Schuldt [5, 14] to experimentally identify
all initial keystream biases in RC4. They ran extensive experiments, using
more than 244 random keys, to generate a list of approximately 65536 single-
byte short-term biases of RC4, including the previous ones [70,98,103,112,132].
This search provides a comprehensive list of non-random behavior of the initial
keystream bytes (bytes 1 to N = 256) of RC4 when a 16-byte key is used.

The main goal of this analysis [5] was not to provide theoretical justification
for the biases, but to exploit those in a practical message recovery attack
against the TLS protocol that uses RC4 for confidentiality. The authors could
use all of the above-mentioned 65536 initial short-term biases of RC4 to mount
a plaintext recovery attack on the TLS protocol that reliably recovers the first
256 bytes of the plaintext from the knowledge of only 228 to 232 ciphertexts
generated using random keys, with no prior plaintext knowledge. The authors
show that plaintext recovery for RC4 in TLS is also possible from arbitrary
positions of the plaintext, provided that enough (around 234) encryptions of
the same plaintext bytes are available.

The same principle was exploited in the full version of the research paper [5]
to mount a plaintext-recovery attack against WPA. The authors claim that the
first 130 bytes of the plaintext can be reliably recovered with the knowledge
of about 230 frames of the WPA/TKIP protocol. This attack on TLS and
WPA by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5] is one of

Chapter 2: Overview of RC4 Analysis

the most extensive attacks on any practical RC4 protocol to date, with far-
reaching consequences.

Sarkar, Sen Gupta, Paul and Maitra proofs of TLS biases [128]

In 2013, immediately after the practical breach of RC4 security in TLS by
AlFardan, Bernstein, Paterson, Poettering and Schuldt [5, 14], the proofs of
almost all open (unproved or partially proved in literature) and significant
TLS-related biases were presented by us in a recent work [128]. We provided
proofs for the open biases in Z2 = 129, Z2 = 172, Z4 = 2, Z256 = 0, Z257 = 0,
and the detailed results are presented in Chapter 5 of this thesis.

RC4 short-term landscape generated from the data of [5, 14]

The extensive experimental results by AlFardan, Bernstein, Paterson, Poetter-
ing and Schuldt [5] identified several non-random behaviors in the short-term
output keystream of RC4. Figure 2.2 presents a 3D model of the probabilities
Pr(Zr = v) for r = 1, . . . , N and v = 0, . . . , N − 1, which we call the ‘RC4
landscape’ of initial keystream bytes.

Note that this landscape is for the most practical version of RC4 that uses
a 16-byte key, and is not identical for RC4 initial keystream patterns generated
by secret keys of various other lengths. For example, the non-random peaks
and troughs present in the 16-byte key landscape reduce to a certain extent if
one uses a full length N = 256 bytes key.

The visible vertical walls and spikes in Figure 2.2 identify the prominent
short-term bias patterns in the RC4 landscape. The main ones are for the
events Z2 = 0 (largest positive spike), Z2 = 2 (largest negative spike), Z1 = v

where v = 0, . . . , N − 1 (sinusoidal vertical wall on the left side), Zr = 0
(decreasing vertical wall on the right side), Zr = r (decreasing vertical wall
at the center) and Zr = −r (decreasing series of spikes at the center), where
r = 1, . . . , N . The patterns for Z1 = v, Zr = 0, Zr = r and Zr = −r are
presented independently in Figure 2.3.

The proofs for many of these major non-random events are present in the
literature, as discussed earlier. The biases in Z2 = 0 and Z2 = 2 have been

57 2.4 Biases and Distinguishers

Figure 2.2: The RC4 landscape of initial keystream bytes (data from [5,14]).

proved by Mantin and Shamir [103] in 2001 and Sarkar [127] in 2013 respec-
tively. The sinusoidal pattern of Z1 for full-length key, including the negative
biases in Z1 = 0, 1, have been proved by us [132] in 2013, and the general proof
for Zr = 0 had been presented by us [98] in 2011. We also proved [131] the
Zr = −r case for r = 16 (keylength) in 2011; and we proved the general pat-
tern for Zr = −r in a recent work [128]. In 2013, Isobe, Ohigashi, Watanabe
and Morii [70] proved the general bias pattern for Zr = r.

The slightly weaker single-byte bias Z3 = 131 has been proved by Isobe,
Ohigashi, Watanabe and Morii [70]; and the biases in Z2 = 129 and Z2 = 172
have been proved by us [128] in 2013. These biases are pictorially depicted as
visible spikes in Figure 2.4.

In addition to these, we have also proved the biases in Z4 = 2, Z256 = 0 and
Z257 = 0 in our recent work [128]. A consolidated account of the current state-
of-the-art scenario, in terms of identified and proved short-term keystream
biases, is presented in Table 2.2 at the end of this chapter.

Chapter 2: Overview of RC4 Analysis

Figure 2.3: Prominent bias patterns in RC4 initial bytes (data from [5,14]).

2.4.5 Long-term biases in the keystream bytes

In view of the numerous short-term biases infecting the initial keystream bytes
of RC4, many researchers have suggested to discard the initial N to 6N bytes of
the keystream, and use the ones thereafter for encrypting the plaintext. If this
practice is adopted, then an attacker will be interested to find long-term biases
of RC4, that is, biases which remain in the keystream even after an arbitrary
number of initial bytes are discarded. There has been a few prominent results
in this direction, summarized as follows.

Golic bit-wise bias [52]

In 1997, Golic [52] was the first to systematically study the linear statistical
weaknesses in the RC4 keystream, and to propose a long-term bias of the
cipher. He identified that the second binary derivative of the LSB output
sequence is correlated to 1 with an approximate correlation coefficient of 15/N3.
It means that the LSB of Zr⊕Zr+2 for all r ≥ 1 is biased towards 1, or in other

59 2.4 Biases and Distinguishers

Figure 2.4: Single-byte biases in Z2 and Z3 of RC4 (data from [5,14]).

words, the LSBs of the non-consecutive bytes Zr and Zr+2 mismatch with a
probability more than that of random coincidence. This bias resulted in the
first long-term distinguisher of RC4, with a theoretical complexity to 240.2.

Fluhrer and McGrew digraph bias [45]

In 2000, Fluhrer and McGrew [45] analyzed the work of Golic [52] to show that
the practical complexity estimates for the distinguisher in [52] is close to 244.7.
The authors also introduced the notion of biases in successive pairs of bytes,
called digraphs, in their work [45], and performed a comprehensive analysis of
the digraph probabilities in the long-term behavior of RC4 keystream. They
found a list of biased digraphs which persist in the long run, with probabilities
different from the chance of random association. Using these digraph biases,
Fluhrer and McGrew [45] could mount an efficient distinguishing attack on
RC4 that required only 230.6 keystream bytes.

Mantin digraph repetition bias [102]

In 2005, Mantin [102] presented the best known long-term bias and distin-
guisher for RC4, which remains effective even after arbitrary number of initial
keystream bytes are discarded. This work got motivated by the digraph oc-
currence analysis of [45], and attempted the analysis of the digraph repetition
pattern in RC4 keystream. Mantin [102] showed that the occurrence of a re-
peated digraph string ABSAB, where A,B are bytes and S is a random string
of small length, is more frequent in RC4 keystream compared to a uniformly

Chapter 2: Overview of RC4 Analysis

random stream of bytes.

The bias in digraph repetition for RC4 is more than 1/N2, and moreover,
the digraph biases for strings S of different lengths could be combined to pro-
duce a stronger cumulative bias. This cumulative bias results in the strongest
known long-term distinguisher of RC4, with a complexity of just 226 ciphertext
bytes. This long-term bias of Mantin [102] has found one of its most prominent
applications in the recent work of Isobe, Ohigashi, Watanabe and Morii [70],
where a full-plaintext recovery attack has been mounted on RC4 broadcast
scheme exploiting the ABSAB bias.

Basu, Ganguly, Maitra and Paul conditional bias [12]

In 2008, Basu, Ganguly, Maitra and Paul [12] presented a complete charac-
terization for one-step operation of the RC4 PRGA, and identified that under
certain conditions, two consecutive bytes Zr and Zr+1 of the RC4 keystream
are equal with probability more than that of random association. This result
produces a new long-term (conditional) distinguisher of RC4 with complexity
estimates of approximately 240 ciphertext bytes [12].

Sen Gupta, Maitra, Paul and Sarkar periodic bias [132]

In 2013, we identified and proved [132] the first byte-wise long-term correlation
between non-consecutive bytes of the RC4 keystream, which persists even after
discarding an arbitrary number of initial keystream bytes. While Golic [52]
proved a bit-wise correlation between non-consecutive bytes Zr and Zr+2, our
work [132] identified a correlation between the non-consecutive periodic bytes
ZwN and ZwN+2 of RC4, where N is the size of the permutation. We proved
a bias in the event (ZwN+2 = 0 ∧ ZwN = 0), which in turn resulted in a new
long-term distinguisher for RC4. The detailed results of [132] are presented in
Chapter 5 of this thesis.

2.4.6 Significance of proofs for RC4 biases

Identification of biases and distinguishers has been the most prominent trend
of RC4 cryptanalysis, and proofs of the observed biases play a crucial role.

61 2.4 Biases and Distinguishers

Fundamentally, it is necessary to prove and study biases in RC4 due to
the undeniable significance of theoretical justification. In cryptanalysis, one
uses the biases to mount practical attacks on a cipher. However, as in any
scientific discipline based on the foundations of mathematics and computer
science, the cryptanalytic attempts based on biases require proper theoretical
support to validate the idea behind the attack. Theory helps to generalize
the experimental observations and often identifies further applications of the
biases to understand the intrinsic characteristics of the cipher.

Discovering RC4 biases through experiments and proofs

In general, there are two ways to discover a bias in the RC4 keystream –
through experimentation, and via a theoretical approach. One has to run
extensive experiments to identify significant biases in the keystream bytes of
RC4. There is a strong history of this approach, including prominent recent
examples like Sepehrdad, Vaudenay and Vuagnoux spectral search [134, 136],
Isobe, Ohigashi, Watanabe and Morii search [70] for optimal bias set, and
AlFardan, Bernstein, Paterson, Poettering and Schuldt search [5] for all single-
byte initial keystream biases. This method has proved to be successful in
discovering several unknown biases in the initial keystream bytes.

However, experimental method for discovering biases is restricted by com-
putational limits of the experiment platform. For example, it is extremely
improbable (if not impossible) to exhaustively enumerate all significant biases
in the initial keystream bytes of RC4 (with N = 256) where dependence be-
tween two or more bytes are considered. In such cases, proving the biases
theoretically may help, as in the process of proving the existing biases, one
needs to consider some additional events and often ends up discovering new
biases. This leads to further insight into the cipher. In the course of this
thesis, we shall discuss several biases that would possibly not have been dis-
covered otherwise. These include the keylength dependent biases identified
and proved by us [131, 132] while analyzing certain empirical biases of [136],
and the keylength dependent bias in the first keystream byte and its relation
with anomalies, identified by us [128] while analyzing certain biases of [5, 14].

Chapter 2: Overview of RC4 Analysis

Identified and/or proved keystream biases of RC4

In this thesis, we try to present theoretical justification for experimentally
observed and unproved significant non-randomnesses in RC4.

A consolidated account of the current state-of-the-art in terms of identified
and/or proved keystream biases is presented in Table 2.2, with references to
our proofs in this thesis. The shaded row represents the only open (identified
but unproved) significant bias in the keystream bytes of RC4.

63 2.4 Biases and Distinguishers

Table 2.2: Identified and/or proved keystream biases of RC4.

Biased event Type of bias Observed Proved In thesis
Isolated short-term biases

Z1 = 0 Negative [112] [132] Chap. 5
Z1 = 1 Negative [132] [132] Chap. 5
Z1 = 129 Negative if l divides 128 [5, 128] Open –
Z2 = 0 Positive [103] [103] –
Z2 = 2 Negative [5, 127] [127] –
Z2 = 129 Negative [5, 127] [128] Chap. 5
Z2 = 172 Positive [5] [128] Chap. 5
Z3 = 131 Positive [5, 70] [70] –
Z4 = 2 Positive [5] [128] Chap. 5
Z256 = 0 Negative [5, 70] [128] Chap. 5
Z257 = 0 Positive [70] [128] Chap. 5

Patterns of short-term biases
Z1 = v Sinusoidal (v = 0, . . . , 255) [112] [132] Chap. 5
Zr = 0 Positive (r = 3, . . . , N −1) [98] [98] Chap. 5
Zr = r Positive (r = 3, . . . , N −1) [5, 70] [70] –
Zl = −l Positive [131] [132] Chap. 3
Zxl = −xl Positive if x = 1, . . . , N/l [70] [128] Chap. 3

Long-term keystream biases
Zr ⊕ Zr+2 Bitwise (LSB) correlation [52] [52] –
ABSAB Digraph repetition [102] [102] –
To be filled Digraph biases [45] [45] –
Zr = Zr+1 Conditioned on 2Zr = ir [12] [12] –
ZwN = ZwN+2 Conditioned on ZwN = 0 [132] [132] Chap. 5

this page intentionally left blank

Chapter 3
Biases Based on RC4 Keylength

In this chapter, we present a family of biases in RC4 that are dependent on
the length of the secret key, and thereby try to predict the keylength of RC4.
This chapter deals with the following problems in RC4 analysis, as mentioned
earlier in Section 1.4 of Chapter 1, towards the organization of this thesis.

Problem 1a. Some of the empirical biases observed by Sepehrdad, Vaudenay
and Vuagnoux [136] seem to be related to the length of the secret key
used in RC4. If this is the case, is it possible to identify and prove such
general relations between the keylength to the keystream biases in RC4?

Problem 1b. Investigate the negative bias of Z1 towards 129 (N = 256), as
observed by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5],
and identify its keylength dependence characteristics.

Problem 1a is studied and solved in our papers [128, 131], and the study of
Problem 1b is presented in our recent work [128].

Notation: Throughout this chapter (and the thesis), we denote the length of
the secret key k as l, and in connection with the expanded key K, we define:

fy ≡
y∑
i=0

K[i] + y(y + 1)
2 (mod N) for 0 ≤ y ≤ N − 1.

Further, ‘x : A α−→ B
β−→ · · · ’ denotes that the value x transits from position

A to B (of S) with probability α, from B to the next with probability β, etc.

65

Chapter 3: Biases Based on RC4 Keylength

Probabilistic model: Throughout this chapter, we shall assume the probabilistic
model of uniform random keys to prove the results on keylength dependent
biases in KSA and initial rounds of PRGA. We assume actual RC4 next-state-
function for the evolution of S and i, j, and no randomness assumptions are
made on the initial state S0 of PRGA.

3.1 Keylength dependent biases

Our motivation arises from the conditional bias Pr(S16[j16] = 0 | Z16 = −16) ≈
0.038488 observed by Sepehrdad, Vaudenay and Vuagnoux [136]. They also
mentioned in [136, Section 3] that no explanation for this bias could be found.
For direct exploitation in WEP and WPA attacks, a related KSA version of
this bias (of the same order) was reported in [134, Section 6.1] for the event
(SK17[16] = 0 | Z16 = −16).

While exploring these conditional biases in RC4 PRGA, we ran extensive
experiments (1 billion runs of RC4 with randomly chosen keys in each case)
with N = 256 and keylength 5 ≤ l ≤ 32. We could observe that the biases
actually correspond to the keylength l:

Pr (Sl[jl] = 0 | Zl = −l) ≈ η
(1A)
l /256,

Pr
(
SKl+1[l] = 0 | Zl = −l

)
≈ η

(1B)
l /256,

(3.1)

where each of η(1A)
l and η(1B)

l decreases from 12 to 7 (approx.) as l increases
from 5 to 32. In this section, we present first proofs of these two biases.

We also observe and prove a family of new conditional biases. Experiment-
ing with 1 billion runs of RC4 in each case, we observed that:

Pr (Zl = −l | Sl[jl] = 0) ≈ η
(2)
l /256,

Pr (Sl[l] = −l | Sl[jl] = 0) ≈ η
(3)
l /256,

Pr (tl = −l | Sl[jl] = 0) ≈ η
(4)
l /256,

Pr (Sl[jl] = 0 | tl = −l) ≈ η
(5)
l /256,

(3.2)

where η(2)
l decreases from 12 to 7 (approx.), each of η(3)

l and η(4)
l decreases from

67 3.1 Keylength dependent biases

34 to 22 (approx.), and η(5)
l decreases from 30 to 20 (approx.) as l increases

from 5 to 32. Note that as per our earlier notation, tl denotes the index of
extracting the keystream byte Zl from the S permutation, i.e., Sl[tl] = Zl.

We also find a keylength distinguisher for RC4, based on the following event.

(Zl = −l) for 5 ≤ l ≤ 32. (3.3)

3.1.1 Technical results required to prove the biases

For the proofs of the biases in this section we need some additional technical
results that we present here. Some of these results would also be referred for
our results in subsequent sections. We start with [100, Theorem 6.2.1], restated
as Proposition 3.1 below.

Proposition 3.1. At the end of RC4 KSA, for 0 ≤ u ≤ N−1, 0 ≤ v ≤ N−1,

Pr(S0[u] = v) =

1
N

((
N−1
N

)v
+
(
1−

(
N−1
N

)v) (
N−1
N

)N−u−1
)
, if v ≤ u;

1
N

((
N−1
N

)N−u−1
+
(
N−1
N

)v)
, if v > u.

Now, we extend the above result to the end of the first round of the PRGA.
Since the KSA ends with iK = N−1 and the PRGA begins with i = 1, skipping
the index 0 of RC4 permutation, this extension is non-trivial, as would be clear
from the proof of Lemma 3.2. This is a revised version of [132, Lemma 1].

Lemma 3.2. After the first round of RC4 PRGA, the probability Pr(S1[u] = v)
is given by

Pr(S1[u] = v)

=

Pr(S0[1] = 1) +
∑
X 6=1

Pr(S0[1] = X ∧ S0[X] = 1), u = 1, v = 1;

∑
X 6=1,v

Pr(S0[1] = X ∧ S0[X] = v), u = 1, v 6= 1;

Pr(S0[1] = u) +
∑
X 6=u

Pr(S0[1] = X ∧ S0[u] = u), u 6= 1, v = u;

∑
X 6=u,v

Pr(S0[1] = X ∧ S0[u] = v), u 6= 1, v 6= u.

Chapter 3: Biases Based on RC4 Keylength

Proof. First, let us represent the probability as

Pr(S1[u] = v) =
N−1∑
X=0

Pr(S0[1] = X ∧ S1[u] = v).

The goal is to reduce all probabilities in terms of expressions over S0. After
the first round of RC4 PRGA, all positions of S0, except for i1 = 1 and
j1 = S0[1] = X, remain fixed in S1. So, we need to be careful about the cases
where X = 1, u, v. Let us separate these cases and write

Pr(S1[u] = v)

= Pr(S0[1] = 1 ∧ S1[u] = v) + Pr(S0[1] = u ∧ S1[u] = v)

+ Pr(S0[1] = v ∧ S1[u] = v) +
∑

X 6=1,u,v
Pr(S0[1] = X ∧ S1[u] = v). (3.4)

Now, depending on the values of u, v, we get a few special cases. In the first
PRGA round,

S1[u] =

S1[i1] = S0[j1] = S0[S0[1]], u = i1 = 1;

S1[j1] = S0[i1] = S0[1] = u, u = j1 = S0[1];

S0[u], otherwise.

This indicates that one needs to consider two special cases, u = 1 and u = v,
separately. However, there is an overlap within these two cases at the point
(u = 1, v = 1), which in turn, should be considered on its own. In total, we
have fours cases to consider for Equation (3.4), as shown in Figure 3.1.

Common point u = 1, v = 1: In this case, S0[1] = X = 1 implies no swap,
resulting in S1[u] = S1[1] = S0[1]. If X 6= 1, we have S1[u] = S1[1] =
S0[X]. Thus, Equation (3.4) reduces to

Pr(S1[1] = 1)

= Pr(S0[1] = 1 ∧ S0[1] = 1) +
∑
X 6=1

Pr(S0[1] = X ∧ S0[X] = 1)

= Pr(S0[1] = 1) +
∑
X 6=1

Pr(S0[1] = X ∧ S0[X] = 1).

69 3.1 Keylength dependent biases

Common point
Special cases
General cases

0
0

255

255

v

u

Special case u = 1

Special case u = v
] Common point

(u = 1, v = 1)

Figure 3.1: u, v dependent special cases and range of sums for evaluation of
Pr(S1[u] = v) in terms of S0.

Special case u = 1, v 6= 1: In this case, S0[1] = X = 1 implies S1[u] = S1[1] =
S0[1], as before, and S0[1] = X = v implies S1[u] = S1[1] = S0[v]. If
X 6= 1, v, we have S1[u] = S1[1] = S0[X] . Thus,

Pr(S1[1] = v)

= Pr(S0[1] = 1 ∧ S0[1] = v) + Pr(S0[1] = 1 ∧ S0[v] = 1)

+
∑
X 6=1,v

Pr(S0[1] = X ∧ S0[X] = v)

= 0 + 0 +
∑
X 6=1,v

Pr(S0[1] = X ∧ S0[X] = v).

Special case u 6= 1, v = u: In this case, S0[1] = X = 1 implies no swap,
resulting in S1[u] = S0[u]. Again, S0[1] = X = u implies S1[u] = S0[1],
and if X 6= 1, u, we have S1[u] = S0[u] . Thus,

Pr(S1[u] = u)

= Pr(S0[1] = 1 ∧ S0[u] = u) + Pr(S0[1] = u ∧ S0[1] = u)

+
∑

X 6=1,u
Pr(S0[1] = X ∧ S0[u] = u)

= Pr(S0[1] = u) +
∑
X 6=u

Pr(S0[1] = X ∧ S0[u] = u).

General case u 6= 1, v 6= u: In this case, S0[1] = X = 1 implies no swap,
resulting in S1[u] = S0[u]. Again, S0[1] = X = u implies S1[u] = S0[1],

Chapter 3: Biases Based on RC4 Keylength

and if X 6= 1, u, we have S1[u] = S0[u]. Thus,

Pr(S1[u] = v)

= Pr(S0[1] = 1 ∧ S0[u] = v) + Pr(S0[1] = u ∧ S0[1] = v)

+ Pr(S0[1] = v ∧ S0[u] = v) +
∑

X 6=1,u,v
Pr(S0[1] = X ∧ S0[u] = v)

= Pr(S0[1] = 1 ∧ S0[u] = v) + 0

+ 0 +
∑

X 6=1,u,v
Pr(S0[1] = X ∧ S0[u] = v)

=
∑

X 6=u,v
Pr(S0[1] = X ∧ S0[u] = v).

Combining all the above cases together, we obtain the desired result.

The probabilities depending on S0 can be derived from Proposition 3.1.
The estimation of the joint probabilities Pr(S0[u] = v ∧ S0[u′] = v′) is also
required for our next result, i.e., Theorem 3.3, as well as for our results in
Section 5.1. This estimation is explained in detail in Section 5.1.3.

In Theorem 3.3, we find the probability distribution of Su−1[u] = v, just
before index i touches the position u during PRGA. This is a generalization
of [131, Theorem 4].

Theorem 3.3. In RC4 PRGA, for 3 ≤ u ≤ N − 1,

Pr(Su−1[u] = v) ≈Pr(S1[u] = v)
(

1− 1
N

)u−2

+
u−1∑
t=2

u−t∑
w=0

Pr(S1[t] = v)
w! ·N

(
u− t− 1

N

)w (
1− 1

N

)u−3−w
.

Proof. From Lemma 3.2, we know that the event Pr(S1[u] = v) is positively
biased for all u. Hence the natural path for investigation is as follows:

Pr(Su−1[u] = v) = Pr(Su−1[u] = v | S1[u] = v) · Pr(S1[u] = v)

+ Pr(Su−1[u] = v | S1[u] 6= v) · Pr(S1[u] 6= v).

Case (S1[u] = v): Index i varies from 2 to (u − 1) during the evolution of S1

to Su−1, and hence never touches the u-th index. Thus, the index u will retain

71 3.1 Keylength dependent biases

its value S1[u] if index j does not touch it. The probability of this event is
(1− 1/N)u−2 over all the intermediate rounds. Hence we get:

Pr(Su−1[u] = v | S1[u] = v) · Pr(S1[u] = v) =
(

1− 1
N

)u−2
· Pr(S1[u] = v).

Case (S1[u] 6= v): Suppose that S1[t] = v for some t 6= u. In such a case, only
a swap between the positions u and t during rounds 2 to (u − 1) of PRGA
can result in (Su−1[u] = v). If index i does not touch the t-th location, then
the value at S1[t] can only go to some position behind i ≤ u − 1, and can
never reach Su−1[u]. Thus we must have i touching the t-th position, i.e.,
2 ≤ t ≤ u− 1.

Now suppose that it requires (w + 1) hops for v to reach from S1[t] to
Su−1[u]. The transfer will never happen if the position t swaps with any index
which is not touched by i later. This fraction of favorable positions start from
(u− t−1)/N for the first hop and decreases approximately to (u− t−1)/(lN)
at the l-th hop. It is also required that j does not touch the position u for the
remaining (u− 3− w) rounds. Thus, the second part of the probability for a
specific position t is:

Pr(S1[t] = v)
(

w∏
l=1

u− t− 1
lN

)(
1− 1

N

)u−3−w

= Pr(S1[t] = v)
w! ·N

(
u− t− 1

N

)w (
1− 1

N

)u−3−w
.

Finally, the number of hops is bounded as 1 ≤ w+1 ≤ u−t+1 (here w+1 = 1
or w = 0 denotes a single-hop transfer), depending on the initial gap between
t and u positions. Summing over all t, k with their respective bounds, we get
the desired expression for Pr(Su−1[u] = v).

3.1.2 Proofs of the keylength dependent biases

Observation of the biases (3.2) was first reported in [131, Section 3], but with-
out any proof. In this section, we present complete proofs of all these biases.
Although the biases are all conditional in nature, for ease of understanding
we first compute the associated joint probabilities and then discuss how the
conditional probabilities can be computed. All the biases that we are inter-

Chapter 3: Biases Based on RC4 Keylength

ested in are related to (SKl+1[l − 1] = −l ∧ SKl+1[l] = 0). So we first derive the
probability for this event.

Lemma 3.4. Suppose that l is the length of the secret key of RC4. Then

Pr(SKl+1[l − 1] = −l ∧ SKl+1[l] = 0) ≈ 1
N2 +

(
1− 1

N2

)
αl,

where αl = 1
N

(
1− 3

N

)l−2 (
1− l + 1

N

)
.

Proof. The major path that leads to the target event is as follows.

• In the first round of the KSA, when iK1 = 0 and jK1 = K[0], the value 0
is swapped into the index SK [K[0]] with probability 1.

• The index jK1 = K[0] /∈ {l − 1, l,−l}, so that the values l − 1, l,−l at
these indices respectively are not swapped out in the first round of the
KSA. We as well require K[0] /∈ {1, . . . , l − 2}, so that the value 0 at
index K[0] is not touched by these values of iK during the next l − 2
rounds of the KSA. This happens with probability

(
1− l+1

N

)
.

• From round 2 to l − 1 (i.e., for iK = 1 to l − 2) of the KSA, none of
jK2 , . . . , j

K
l−1 touches the three indices {l,−l,K[0]}. This happens with

probability
(
1− 3

N

)l−2
.

• In round l of the KSA, when iKl = l− 1, jKl becomes −l with probability
1
N
, thereby moving −l into index l − 1.

• In round l+1 of the KSA, when iKl+1 = l, jKl+1 becomes jKl +SKl [l]+K[l] =
−l + l + K[0] = K[0], and as discussed above, this index contains the
value 0. Hence, after the swap, SKl+1[l] = 0. Since K[0] 6= l − 1, we have
SKl+1[l − 1] = −l.

Considering the above events to be independent, the probability that all of
above occur together is given by αl = 1

N

(
1− 3

N

)l−2 (
1− l+1

N

)
. If the above

path does not occur, then the target event happens due to random association,
with probability 1

N2 , thus contributing a probability of (1−αl) 1
N2 . Adding the

two contributions, the result follows.

73 3.1 Keylength dependent biases

Now we may derive the joint probabilities associated with the conditional
events of (3.2), as follows.

Theorem 3.5. Suppose that l is the length of the secret key of RC4. Then

Pr(Sl[l] = −l ∧ Sl[jl] = 0) = Pr(tl = −l ∧ Sl[jl] = 0) ≈ 1
N2 +

(
1− 1

N2

)
βl,

where βl = 1
N

(
1− 1

N

)(
1− 2

N

)N−3 (
1− 3

N

)l−2 (
1− l + 1

N

)
.

Proof. From the proof of Lemma 3.4, consider the major path with probability
αl for the event (SKl+1[l− 1] = −l ∧ SKl+1[l] = 0). For the remaining N − l− 1
rounds of the KSA and for the first l− 2 rounds of the PRGA (i.e., for a total
of N − 3 rounds), none of the values of jK (corresponding to the KSA rounds)
or j (corresponding to the PRGA rounds) should touch the indices {l − 1, l}.
This happens with a probability of

(
1− 2

N

)N−3
.

Now, in round l− 1 of PRGA, il−1 = l− 1, from where the value −l moves
to index jl−1 due to the swap. In the next round, il = l and jl = jl−1 +Sl−1[l] =
jl−1, provided the value 0 at index l had not been swapped out by jl−1, the
probability of which is 1− 1

N
. So during the next swap, the value −l moves from

index jl to index l and the value 0 moves from index l to jl. The probability of
the above major path leading to the event (Sl[l] = −l ∧ Sl[jl] = 0) is given by
βl = αl

(
1− 2

N

)N−3 (
1− 1

N

)
. If this path does not occur, then there is always a

chance of 1
N2 for the target event to happen due to random association. Adding

the two contributions and substituting the value of αl from Lemma 3.4, the
result follows.

Further, as tl = Sl[l]+Sl[jl], the event (Sl[l] = −l ∧ Sl[jl] = 0) is equivalent
to the event (tl = −l ∧ Sl[jl] = 0), and hence the result.

Theorem 3.6. Suppose that l is the length of the secret key of RC4. Then

Pr(Zl = −l ∧ Sl[jl] = 0) ≈ 1
N2 +

(
1− 1

N2

)
γl,

where γl = 1
N2

(
1− l + 1

N

)
N−1∑
x=l+1

(
1− 1

N

)x (
1− 2

N

)x−l (
1− 3

N

)N−x+2l−4
.

Proof. From the PRGA update rule, we have jl = jl−1+Sl−1[l]. Hence, Sl[jl] =
Sl−1[l] = 0 implies jl = jl−1 as well as Zl = Sl[Sl[l] + Sl[jl]] = Sl[Sl−1[jl] + 0] =

Chapter 3: Biases Based on RC4 Keylength

Sl[Sl−1[jl−1]] = Sl[Sl−2[l − 1]]. Thus, the event (Zl = −l ∧ Sl[jl] = 0) is
equivalent to the event (Sl[Sl−2[l − 1]] = −l ∧ Sl−1[l] = 0).

From the proof of Lemma 3.4, consider the major path with probability αl
for the joint event (SKl+1[l − 1] = −l ∧ SKl+1[l] = 0). This constitutes the first
part of our main path leading to the target event. The second part, having
probability α′l, can be constructed as follows.

• For an index x ∈ [l + 1, N − 1], we have SKx [x] = x. This happens with
probability

(
1− 1

N

)x
.

• For the KSA rounds l + 2 to x, the jK values do not touch the indices
l − 1 and l. This happens with probability

(
1− 2

N

)x−l−1
.

• In round x+1 of KSA, when iKx+1 = x, jKx+1 becomes l−1 with probability
1
N
. Due to the swap, the value x moves to SKx+1[l − 1] and the value −l

moves to SKx+1[x] = SKx+1[SKx+1[l − 1]].

• For the remaining N − x − 1 rounds of the KSA and for the first l − 1
rounds of the PRGA, none of the jK or j values should touch the indices
{l − 1, S[l − 1], l}. This happens with a probability of

(
1− 3

N

)N−x+l−2
.

• So far, we have (Sl−1[Sl−2[l − 1]] = −l ∧ Sl−1[l] = 0). Now, we should
also have jl /∈ {l− 1, S[l− 1]} for Sl[Sl−2[l− 1]] = Sl−1[Sl−2[l− 1]] = −l.
The probability of this condition is

(
1− 2

N

)
.

Assuming all the individual events in the above path to be mutually indepen-
dent, we get

α′l = 1
N

N−1∑
x=l+1

(
1− 1

N

)x (
1− 2

N

)x−l (
1− 3

N

)N−x+l−2
.

Thus, the probability of the entire path is given by γl = αl · α′l, that is,

γl = 1
N2

(
1− l + 1

N

)
N−1∑
x=l+1

(
1− 1

N

)x (
1− 2

N

)x−l (
1− 3

N

)N−x+2l−4
.

If this path does not occur, then there is always a chance of 1
N2 for the target

event to happen due to random association. Adding the two contributions, we
get the result.

75 3.1 Keylength dependent biases

In order to calculate the conditional probabilities of (3.2), we need to com-
pute the marginals δl = Pr(Sl[jl] = 0) and τl = Pr(tl = −l). Our experimental
observations reveal that in 5 ≤ l ≤ 32, δl does not change much with l, and
has a slightly negative bias: δl ≈ 1/N − 1/N2. On the other hand, as l varies
from 5 to 32, τl changes approximately from 1.13/N to 1.08/N . We can derive
the exact expression for δl as a corollary to Theorem 3.3, and an expression
for τl using δl.

Corollary 3.7. For any keylength l, with 3 ≤ l ≤ N − 1,

Pr(Sl[jl] = 0) = δl ≈Pr(S1[l] = 0)
(

1− 1
N

)l−2

+
l−1∑
t=2

l−t∑
w=0

Pr(S1[t] = 0)
w! ·N

(
l − t− 1

N

)w (
1− 1

N

)l−3−w
.

Proof. Note that Sl[jl] is assigned the value of Sl−1[l] due to the swap in round
l. Hence, by substituting u = l and v = 0 in Theorem 3.3, we get the result.

Theorem 3.8. Suppose that l is the length of the secret key of RC4. Then

τl = Pr(tl = −l) ≈ 1
N2 +

(
1− 1

N2

)
βl + (1− δl)

1
N
,

where βl is given in Theorem 3.5 and δl is given in Corollary 3.7.

Proof. We can write

Pr(tl = −l) = Pr(tl = −l ∧ Sl[jl] = 0) + Pr(tl = −l ∧ Sl[jl] 6= 0),

where the first term is given by Theorem 3.5. When Sl[jl] 6= 0, the event
(tl = −l) can be assumed to occur due to random association. Hence the
second term can be computed as

Pr(Sl[jl] 6= 0) · Pr(tl = −l | Sl[jl] 6= 0) ≈ (1− δl)
1
N
.

Adding the two terms, we get the result.

Theoretical values for both δl and τl match closely with the experimental
ones for all values of l.

Chapter 3: Biases Based on RC4 Keylength

Computing the conditional biases in (3.2): When we divide the joint
probabilities Pr(Sl[l] = −l ∧ Sl[jl] = 0) and Pr(tl = −l ∧ Sl[jl] = 0) of
Theorem 3.5, and Pr(Zl = −l ∧ Sl[jl] = 0) of Theorem 3.6 by the appropriate
marginals δl = Pr(Sl[jl] = 0) of Corollary 3.7 and τl = Pr(tl = −l) of Theo-
rem 3.8, we get theoretical values for all the biases in (3.2). The theoretical
values closely match with the experimental observations.

3.1.3 Bias in (Zl = −l) and keylength prediction

First, we prove the bias in (3.3) and thereby show how to predict the length
l of RC4 secret key. Next, we use the marginal probability Pr(Zl = −l) to
derive the conditional probabilities of (3.1).

Theorem 3.9. Suppose that l is the length of the secret key of RC4. Then

Pr(Zl = −l) ≈ 1
N2 +

(
1− 1

N2

)
γl + (1− δl)

1
N
,

where γl is given in Theorem 3.6 and δl is given in Corollary 3.7.

Proof. We can write

Pr(Zl = −l) = Pr(Zl = −l ∧ Sl[jl] = 0) + Pr(Zl = −l ∧ Sl[jl] 6= 0),

where the first term is given by Theorem 3.6. When Sl[jl] 6= 0, the event
(Zl = −l) can be assumed to occur due to random association. Hence the
second term can be computed as

Pr(Sl[jl] 6= 0) · Pr(Zl = −l | Sl[jl] 6= 0) ≈ (1− δl)
1
N
.

Adding the two terms, we get the result.

It is important to note that the estimate of Pr(Zl = −l) is always greater
than 1/N + 1/N2 ≈ 0.003922 for N = 256 and 5 ≤ l ≤ 32. In Figure 3.2, we
plot the theoretical as well as the experimental values of Pr(Zl = −l) against
l for 5 ≤ l ≤ 32, where the experiments have been run over 1 billion trials of
RC4 PRGA, with randomly generated keys.

77 3.1 Keylength dependent biases

Figure 3.2: Distribution of Pr(Zl = −l) for different lengths 5 ≤ l ≤ 32 of the RC4
secret key.

Keylength distinguisher: From this estimate, we immediately get a distin-
guisher of RC4 that can effectively distinguish the output keystream of the
cipher from a random sequence of bytes. For the event E : (Zl = −l), the
bias proved in Theorem 3.9 can be written as p(1 + q), where p = 1/N and
q > 1/N for 5 ≤ l ≤ 32 and N = 256. Thus, the number of samples required to
distinguish RC4 from random sequence of bits with a constant probability of
success is approximately 1

pq2 = N3. Using this distinguisher, one may predict
the length l of RC4 secret key from the output keystream.

Proofs of the keylength-dependent biases in (3.1): To prove the con-
ditional biases in (3.1), we first compute the associated joint probabili-
ties Pr (Sl[jl] = 0 ∧ Zl = −l) and Pr

(
SKl+1[l] = 0 ∧ Zl = −l

)
, and then use the

marginal Pr(Zl = −l) to obtain the final results. The first joint probability is
already computed in Theorem 3.6, and the second one is computed as follows.

Theorem 3.10. Suppose that l is the length of the secret key of RC4. Then

Pr(Zl = −l ∧ SKl+1[l] = 0)

≈
(1
N2 +

(
1− 1

N2

)
αl

)
· α′l +

(
1− 1

N
−
(

1− 1
N2

)
αl

)
· 1
N2 ,

where αl is given in Lemma 3.4 and α′l is given in Theorem 3.6.

Proof. We consider the main path in this case to be Pr(SKl+1[l − 1] = −l ∧
SKl+1[l] = 0), which occurs with probability 1

N2 +
(
1− 1

N2

)
αl, as in Lemma 3.4.

Chapter 3: Biases Based on RC4 Keylength

We also need to compute Pr(SKl+1[l − 1] = −l). Since iK in round l + 1 has
touched the index l, the value at this position can be assumed to be random.
Thus, we may assume Pr(SKl+1[l] = 0) ≈ 1

N
, and hence

Pr(SKl+1[l − 1] = −l)

= Pr(SKl+1[l − 1] = −l ∧ SKl+1[l] = 0) + Pr(SKl+1[l − 1] = −l ∧ SKl+1[l] 6= 0)

= 1
N2 +

(
1− 1

N2

)
αl + Pr(SKl+1[l] 6= 0) · Pr(SKl+1[l − 1] = −l | SKl+1[l] 6= 0)

≈ 1
N2 +

(
1− 1

N2

)
αl +

(
1− 1

N

) 1
N

= 1
N

+
(

1− 1
N2

)
αl.

Now, we may compute the main probability Pr(Zl = −l ∧ SKl+1[l] = 0), as

Pr(Zl = −l ∧ SKl+1[l] = 0 ∧ SKl+1[l − 1] = −l)

+ Pr(Zl = −l ∧ SKl+1[l] = 0 ∧ SKl+1[l − 1] 6= −l)

= Pr(SKl+1[l] = 0 ∧ SKl+1[l − 1] = −l) · Pr(Zl = −l |

SKl+1[l] = 0 ∧ SKl+1[l − 1] = −l)

+ Pr(SKl+1[l − 1] 6= −l) · Pr(Zl = −l ∧ SKl+1[l] = 0 | SKl+1[l − 1] 6= −l).

From Lemma 3.4 and proof of Theorem 3.6, the first part is approximated by(
1
N2 +

(
1− 1

N2

)
αl
)
· α′l. In the second part, we assume that when SKl+1[l −

1] 6= −l, with probability 1 − 1
N
−
(
1− 1

N2

)
αl, then the event (Zl = −l ∧

SKl+1[l] = 0) happens due to random association, with probability 1
N2 . Adding

the contributions from the two parts as above, we obtain the result.

If we divide Pr (Sl[jl] = 0 ∧ Zl = −l), as obtained from Theorem 3.6, and
Pr
(
SKl+1[l] = 0 ∧ Zl = −l

)
, as obtained from Theorem 3.10, by Pr(Zl = −l)

of Theorem 3.9, we get the desired conditional probabilities for the events
(Sl[jl] = 0 | Zl = −l) and

(
SKl+1[l] = 0 | Zl = −l

)
respectively. These theoret-

ical estimates closely match with our experimental observations. For an ex-
ample, in case of l = 16, from simulations with 1 billion randomly generated
secret keys, we obtained the experimental values of the above probabilities as
9.7/256 and 9.5/256 (approx.) respectively, whereas the theoretical values are
close to 9.6/256 for both cases.

79 3.2 Extended keylength dependent biases

3.2 Extended keylength dependent biases

In [132, Section 2], we presented a family of biases in RC4 that are dependent
on the length of the secret key. The most important of those biases was a
keylength distinguisher based on the positive bias in the event (Zl = −l),
where l is the length of RC4 secret key in bytes. This result was discussed in
the previous section.

Subsequently, in [70, Section 3.4], Isobe, Ohigashi, Watanabe and Morii
observed that similar bias also exists in the class of events (Zxl = −xl) for
positive integer x = 1, . . . , bN/lc. To prove these biases, they explored certain
paths involving the expression fy = y(y + 1)/2 + ∑y

x=0 K[x]. However, they
could not prove all the paths and substituted experimental values to compute
what they referred to as semi-theoretical values. They also commented that

“Since semi-theoretical value are partially based on experimental
results, we can not claim that complete theoretical proof of these
bias are given.”

We observe that instead of following the approach of [70], if one follows the
approach in [132], then the theoretical derivation of the extended keylength
dependent biases become much simpler. In this section, we generalize all the
keylength dependent biases of [132] for any keylength l ∈ [3, N−1] and any in-
teger x = 1, 2, . . . , bN

l
c, and thereby complete the proof of extended keylength

distinguisher that was left open in [70]. As a result, the biases in [132] (pre-
sented in the previous section) become special cases of our results presented in
this section, if we take x = 1.

Note that though the general proof follows the same approach as in [132],
the extension is not obvious. A general proof always imply the special cases,
but the converse need not be true. We experimentally verified all the interme-
diate claims and assumptions related to the events involving xl, and we found
them to be consistent with our theoretical claims.

We will require some existing results for our proofs in this section. Propo-
sition 3.1 from the previous section (originally [100, Theorem 6.2.1]) and
Lemma 3.2 (revised version of [132, Lemma 1]) will be needed, along with
the following result, which is a revised version of [132, Theorem 1].

Chapter 3: Biases Based on RC4 Keylength

Proposition 3.11. In RC4 PRGA, for 3 ≤ u ≤ N − 1 and 0 ≤ v ≤ N − 1,

Pr(Su−1[u] = v) ≈Pr(S1[u] = v)
(

1− 1
N

)u−2

+
u−1∑
y=2

u−y∑
w=0

Pr(S1[y] = v)
w! ·N

(
u− y − 1

N

)w (
1− 1

N

)u−3−w
.

3.2.1 Proofs of extended keylength dependent biases

All the biases that we are interested in are related to (SKxl+1[xl − 1] = −xl ∧
SKxl+1[xl] = 0), where x is an integer between 1 and bN

l
c. So we first derive the

probability for this event in Lemma 3.12.

Lemma 3.12. Suppose that l is the length of the secret key of RC4. Then
for 1 ≤ x ≤ bN

l
c, we have Pr(SKxl+1[xl − 1] = −xl ∧ SKxl+1[xl] = 0) ≈

1
N2 +

(
1− 1

N2

)
αx,l, where αx,l = 1

N

(
1− 3

N

)xl−2 (
1− xl+1

N

)
.

Proof. The major path that leads to the target event is as follows.

• In the first round of the KSA, when iK1 = 0 and jK1 = K[0], the value 0
is swapped into the index SK [K[0]] with probability 1.

• The index jK1 = K[0] /∈ {xl−1, xl,−xl}, so that the values xl−1, xl,−xl
at these indices respectively are not swapped out in the first round of
the KSA. We as well require K[0] /∈ {1, . . . , xl − 2}, so that the value 0
at index K[0] is not touched by these values of iK during the next xl− 2
rounds of the KSA. This happens with probability

(
1− xl+1

N

)
.

• From round 2 to xl − 1 (i.e., for iK = 1 to xl − 2) of the KSA, none
of jK2 , . . . , jKxl−1 touches the three indices {xl,−xl,K[0]}. This happens
with probability

(
1− 3

N

)xl−2
.

• In round xl of the KSA, when iKxl = xl − 1, jKxl becomes −xl with prob-
ability 1

N
, thereby moving −xl into index xl − 1.

• In round xl+1 of the KSA, when iKxl+1 = xl, jKxl+1 becomes jKxl +SKxl [xl]+
K[xl] = −xl + xl + K[0] = K[0], and as discussed above, this index
contains the value 0. Hence, after the swap, SKxl+1[xl] = 0. Since K[0] 6=
xl − 1, we have SKxl+1[xl − 1] = −xl.

81 3.2 Extended keylength dependent biases

Considering the above events to be independent, the probability that all of
above occur together is given by αx,l = 1

N

(
1− 3

N

)xl−2 (
1− xl+1

N

)
. If the above

path does not occur, then the target event happens due to random association
with probability 1

N2 , thus contributing a probability of (1 − αx,l) 1
N2 . Adding

the two contributions, the result follows.

Theorem 3.13. Suppose that l is the length of the secret key of RC4.
Then for 1 ≤ x ≤ bN

l
c, we have Pr(Sxl[xl] = −xl ∧ Sxl[jxl] = 0) =

Pr(txl = −xl ∧ Sxl[jxl] = 0) ≈ 1
N2 +

(
1− 1

N2

)
βx,l, where βx,l =

1
N

(
1− 1

N

) (
1− 2

N

)N−3 (
1− 3

N

)xl−2 (
1− xl+1

N

)
.

Proof. From the proof of Lemma 3.12, consider the major path with probability
αx,l for the event (SKxl+1[xl − 1] = −xl ∧ SKxl+1[xl] = 0). For the remaining
N − xl − 1 rounds of the KSA and for the first xl − 2 rounds of the PRGA
(i.e., for a total of N − 3 rounds), none of the values of jK (corresponding to
the KSA rounds) or j (corresponding to the PRGA rounds) should touch the
indices {xl − 1, xl}. This happens with a probability of

(
1− 2

N

)N−3
.

Now, in round xl − 1 of PRGA, ixl−1 = xl − 1, from where the value
xl − 1 moves to index jxl−1 due to the swap. In the next round, ixl = xl and
jxl = jxl−1 + Sxl−1[xl] = jxl−1, provided the value 0 at index xl had not been
swapped out by jxl−1, the probability of which is 1 − 1

N
. So during the next

swap, the value −xl moves from index jxl to index xl and the value 0 moves
from index xl to jxl. The probability of the above major path leading to the
event (Sxl[xl] = −xl ∧ Sxl[jxl] = 0) is given by βx,l = αx,l

(
1− 2

N

)N−3 (
1− 1

N

)
.

If this path does not occur, then there is always a chance of 1
N2 for the target

event to happen due to random association. Adding the two contributions and
substituting the value of αx,l from Lemma 3.12, the result follows.

Further, as txl = Sxl[xl] + Sxl[jxl], the event (Sxl[xl] = −xl ∧ Sxl[jxl] = 0)
is equivalent to the event (txl = −xl ∧ Sxl[jxl] = 0), and hence the result.

Theorem 3.14. Suppose that l is the length of the secret key of RC4. Then
for 1 ≤ x ≤ bN

l
c, we have

Pr(Zxl = −xl ∧ Sxl[jxl] = 0) ≈ 1
N2 +

(
1− 1

N2

)
γx,l,

where γx,l = 1
N2

(
1− xl+1

N

)∑N−1
u=xl+1

(
1− 1

N

)u (
1− 2

N

)u−xl (
1− 3

N

)N−u+2xl−4
.

Chapter 3: Biases Based on RC4 Keylength

Proof. From the PRGA update rule, we have jxl = jxl−1 + Sxl−1[xl]. Hence,
Sxl[jxl] = Sxl−1[xl] = 0 implies jxl = jxl−1 as well as Zxl = Sxl[Sxl[xl] +
Sxl[jxl]] = Sxl[Sxl−1[jxl] + 0] = Sxl[Sxl−1[jxl−1]] = Sxl[Sxl−2[xl − 1]]. Thus, the
event (Zxl = −xl ∧ Sxl[jxl] = 0) is equivalent to the event (Sxl[Sxl−2[xl−1]] =
−xl ∧ Sxl−1[xl] = 0).

From the proof of Lemma 3.12, consider the major path with probability
αxl for the joint event (SKxl+1[xl − 1] = −xl ∧ SKxl+1[xl] = 0). This constitutes
the first part of our main path leading to the target event. The second part,
having probability α′x,l, can be constructed as follows.

• For an index u ∈ [xl+ 1, N − 1], we have SKu [u] = u. This happens with
probability

(
1− 1

N

)u
.

• For the KSA rounds xl + 2 to u, the jK values do not touch the indices
xl − 1 and xl. This happens with probability

(
1− 2

N

)u−xl−1
.

• In round u + 1 of KSA, when iKu+1 = u, jKu+1 becomes xl − 1 with prob-
ability 1

N
. Due to the swap, the value u moves to SKu+1[xl − 1] and the

value −xl moves to SKu+1[u] = SKu+1[SKu+1[xl − 1]].

• For the remaining N − u − 1 rounds of the KSA and for the first
xl − 1 rounds of the PRGA, none of the jK or j values should touch
the indices {xl − 1, S[xl − 1], xl}. This happens with a probability of(
1− 3

N

)N−u+xl−2
.

• So far, we have (Sxl−1[Sxl−2[xl − 1]] = −xl ∧ Sxl−1[xl] = 0). Now,
we should also have jxl /∈ {xl − 1, S[xl − 1]} for Sxl[Sxl−2[xl − 1]] =
Sxl−1[Sxl−2[xl − 1]] = −xl. The probability of this condition is

(
1− 2

N

)
.

Assuming all the individual events in the above path to be mutually indepen-
dent, we get α′x,l = 1

N

∑N−1
u=xl+1

(
1− 1

N

)u (
1− 2

N

)u−xl (
1− 3

N

)N−u+xl−2
. Thus,

the probability of the entire path is given by γx,l = αx,l · α′x,l, that is

γx,l = 1
N2

(
1− xl + 1

N

)
N−1∑

u=xl+1

(
1− 1

N

)u (
1− 2

N

)u−xl (
1− 3

N

)N−u+2xl−4
.

If this path does not occur, then probability of occurrence is 1
N2 due to random

association. Adding the two contributions, we get the result.

83 3.2 Extended keylength dependent biases

Theorem 3.15. For any length 3 ≤ l ≤ N − 1 of the secret key, and any
integer 1 ≤ x ≤ bN

l
c, the probability Pr(Sxl[jxl] = 0) is given by

δx,l ≈ Pr(S1[xl] = 0)
(

1− 1
N

)xl−2

+
xl−1∑
y=2

xl−y∑
w=0

Pr(S1[y] = 0)
w! ·N

(
xl − y − 1

N

)w (
1− 1

N

)xl−3−w
.

Proof. Note that Sxl[jxl] is assigned the value of Sxl−1[xl] due to the swap in
round xl. Hence, by substituting u = xl and v = 0 in Proposition 3.11, we get
the result.

Theorem 3.16. Suppose that l is the length of the secret key of RC4. Then
for 1 ≤ x ≤ bN

l
c, we have

τx,l = Pr(txl = −xl) ≈ 1
N2 +

(
1− 1

N2

)
βx,l + (1− δx,l)

1
N
,

where βx,l is given in Theorem 3.13 and δx,l is given in Theorem 3.15.

Proof. We can write Pr(txl = −xl) = Pr(txl = −xl ∧ Sxl[jxl] = 0) + Pr(txl =
−xl ∧ Sxl[jxl] 6= 0), where the first term is given by Theorem 3.13. When
Sxl[jxl] 6= 0, the event (txl = −xl) can be assumed to occur due to random
association. Hence the second term can be computed as

Pr(Sxl[jxl] 6= 0) · Pr(txl = −xl | Sxl[jxl] 6= 0) ≈ (1− δx,l)
1
N
,

where δx,l is as in Theorem 3.15. Adding the two terms, we get the result.

By dividing the joint probabilities Pr(Sxl[xl] = −xl ∧ Sxl[jxl] = 0) and
Pr(txl = −xl ∧ Sxl[jxl] = 0) of Theorem 3.13, and Pr(Zxl = −xl ∧ Sxl[jxl] =
0) of Theorem 3.14 by the appropriate marginals δx,l = Pr(Sxl[jxl] = 0) of
Theorem 3.15 and τx,l = Pr(tx,l = −xl) of Theorem 3.16, we get the theoretical
values of the following conditional biases:

Pr(Sxl[xl] = −xl | Sxl[jxl] = 0) = Pr(txl = −xl | Sxl[jxl] = 0),
Pr(Sxl[jxl] = 0 | txl = −xl), and Pr(Zxl = −xl | Sxl[jxl] = 0).

Chapter 3: Biases Based on RC4 Keylength

3.2.2 Keylength dependent bias in (Zxl = −xl)

Theorem 3.17. Suppose that l is the length of the secret key of RC4. Then
for 1 ≤ x ≤ bN

l
c,

Pr(Zxl = −xl) ≈ 1
N2 +

(
1− 1

N2

)
γx,l + (1− δx,l)

1
N
,

where γx,l is given in Theorem 3.14 and δx,l is given in Theorem 3.15.

Proof. We can write Pr(Zxl = −xl) = Pr(Zxl = −xl ∧ Sxl[jxl] = 0)+Pr(Zxl =
−xl ∧ Sxl[jxl] 6= 0), where the first term is given by Theorem 3.14. When
Sxl[jxl] 6= 0, the event (Zxl = −xl) can be assumed to occur due to random
association. Hence the second term can be computed as Pr(Sxl[jxl] 6= 0) ·
Pr(Zxl = −xl | Sxl[jxl] 6= 0) ≈ (1 − δx,l) 1

N
, where δx,l is as in Theorem 3.15.

Adding the two terms, we get the result.

By dividing the joint probability Pr(Zxl = −xl ∧ Sxl[jxl] = 0) of Theo-
rem 3.14 by Pr(Zxl = −xl) of Theorem 3.17, we get the theoretical value of
the probability Pr(Sxl[jxl] = 0 | Zxl = −xl).

In Figure 3.3, we compare the experimental values of (Zxl = −xl), obtained
from the data of [5,14], with our theoretical values derived from Theorem 3.17,
for keylength l = 16 and x = 1, 2, . . . , 15. We have obtained similar results for
other keylengths as well, and Figures 3.4 to 3.9 represent some of the results.

Figure 3.3: Bias in (Zxl = −xl) for keylength l = 16 and x = 1, 2, . . . , 15.

85 3.2 Extended keylength dependent biases

Figure 3.4: Bias in (Zxl = −xl) for keylength l = 8 and x = 1, 2, . . . , 31.

Figure 3.5: Bias in (Zxl = −xl) for keylength l = 12 and x = 1, 2, . . . , 21.

Figure 3.6: Bias in (Zxl = −xl) for keylength l = 20 and x = 1, 2, . . . , 12.

Chapter 3: Biases Based on RC4 Keylength

Figure 3.7: Bias in (Zxl = −xl) for keylength l = 24 and x = 1, 2, . . . , 10.

Figure 3.8: Bias in (Zxl = −xl) for keylength l = 28 and x = 1, 2, . . . , 9.

Figure 3.9: Bias in (Zxl = −xl) for keylength l = 32 and x = 1, 2, . . . , 7.

87 3.3 Keylength dependent bias in first byte

The theoretical values for probabilities Pr(Zxl = −xl) derived in this section
closely match the experimental data, as depicted in the figures above. Only
in case of Figures 3.4 and 3.5, for l = 8 and l = 12 respectively, we find
a deviation of the experimental data from our theoretical estimates. This
deviation however, is prominent only at a single data-point x = 2; and we
leave it outside the scope of this thesis for a potential future work.

3.3 Keylength dependent bias in first byte

In this section, we attempt at solving the mysterious negative bias in the event
(Z1 = 129), which was observed by [5,14], but not in [112,132]. We notice that
the length of the secret key used in the experiments of [5,14] was consistently
l = 16, whereas the same for [112,132] might have been different. This hinted
that the bias in (Z1 = 129) may be keylength dependent. Our experiments
revealed that the negative bias of (Z1 = 129) is prominent only for keylength
l equal to non-trivial factors of 256, that is, for l = 2, 4, 8, 16, 32, 64, 128. This
behavior, depicted in Figure 3.10, is amazingly similar to the keylength depen-
dence of Pr(S0[128] = 127), as in Figure 3.11.

The graphical representation of the complete probability distribution of Z1

presented in [132, Fig.9] had a typographic error stating that the experimental
values are ‘with 16 byte keys’, whereas the experimental values were actually
recorded for full-length 256 byte secret keys. This is why the curve for Z1

in [132] missed the prominent, but keylength dependent, bias in (Z1 = 129).
We correct the typographic error in Figure 5.2 of Chapter 5.

Our experiments with these specific keylengths l = 2, 4, . . . , 128 revealed
that the negative bias in (S0[128] = 127) is of the same kind. This bias
had been pointed out quite a few years ago [100, 120] as an ‘anomaly’ in the
otherwise smooth distribution of S0[u] = v, but it was never observed as a
keylength dependent phenomenon. In fact, dependence of keystream biases on
the secret keylength l was first proved in [132], for any keylength l, but no such
pattern for specific keylengths was discovered earlier.

In this section, we settle the mysterious open issue of the (S0[128] = 127)
anomaly, and then analyze its connection with the bias of (Z1 = 129), if any.

Chapter 3: Biases Based on RC4 Keylength

Figure 3.10: Bias in the event (Z1 = 129) for keylength 1 ≤ l ≤ 256.

Figure 3.11: Bias in the event (S0[128] = 127) for keylength 1 ≤ l ≤ 256.

3.3.1 Proof of anomaly in (S0[128] = 127)

We will require the following technical results to prove the main theorem later.

Lemma 3.18. In practical RC4 with N = 256, for 1 ≤ r ≤ N ,

Pr(SKr−1[r] = r) ≈ 1/N + (1− 1/N)r.

Proof. We know that SK0 is the identity permutation of {0, . . . , N − 1}, and
thus SK0 [r] = r. This value will remain at the same index till round (r − 1)
if none of jK1 , jK2 , . . . , jKr−1 touches the index r, which occurs with probability
(1 − 1/N)r−1, or otherwise due to random association, with probability 1/N .

89 3.3 Keylength dependent bias in first byte

Hence, we get Pr(SKr−1[r] = r) approximately equal to

(1− 1/N)r−1 · 1 + (1− (1− 1/N)r−1) · (1/N) = 1/N + (1− 1/N)r.

Thus the result.

Lemma 3.19. In practical RC4 with N = 256,

Pr(SK127[128] = −K[128]) ≈ 0.4/N,

if and only if l, the length of the secret key, is a non-trivial factor of N = 256.

Proof. Let us consider the following two paths.

Path 1. Consider SK127[128] = 128. In this case, we surely require K[128] =
−128 = 128 (modulo N = 256). Now, if l = 2, 4, . . . , 128, then K[128] =
K[0] = 128. This implies jK1 = jK0 + SK0 [0] + K[0] = 0 + 0 + 128 = 128,
which in turn results in SK1 [0] = 128 and SK1 [128] = 0 after swap in the
first round. As iK does not touch index locations 0 or 128 during rounds
2 to 127, we can not have SK127[128] = 128, a contradiction. If l does
not divide 128, then K[128] may not be equal to K[0], and in this case
SK127[128] = 128 may occur with probability 1/N .

Thus, Pr(SK127[128] = −K[128] | SK127[128] = 128) = 0 if l = 2, 4, . . . , 128,
and Pr(SK127[128] = −K[128] | SK127[128] = 128) ≈ 1/N , otherwise.

Path 2. In case SK127[128] 6= 128, there is no special behavior depen-
dent on the keylength l, and we may assume that Pr(SK127[128] =
−K[128] | SK127[128] 6= 128) ≈ 1/N .

Combining the two paths, we get

Pr(SK127[128] = −K[128])

= Pr(SK127[128] = −K[128] | SK127[128] = 128) · Pr(SK127[128] = 128)

+ Pr(SK127[128] = −K[128] | SK127[128] 6= 128) · Pr(SK127[128] = 128)

≈ 0 · (156/N) + (1/N) · (1− 156/N) ≈ 0.4/N,

Chapter 3: Biases Based on RC4 Keylength

if l = 2, 4, . . . , 128, where Pr(SK127[128] = 128) ≈ 156/N is by Lemma 3.18 with
r = 128. For all other values of l, we get

Pr(SK127[128] = −K[128]) ≈ (1/N) · (156/N) + (1/N) · (1− 156/N) = 1/N.

Integrating the two cases, we get the result.

Theorem 3.20. In practical RC4 with N = 256,

Pr(S0[128] = SKN [128] = 127) ≈ 0.63/N,

if and only if l, the length of the secret key, is a non-trivial factor of N = 256.

Proof. Let us first compute Pr(SK128[128] = 127), using the following paths.

Path 1. Consider SK127[128] = −K[128]. In this case, j128 = j127 + SK127[128] +
K[128] = j127. So, SK128[128] = SK127[j128] = SK127[j127] = SK126[127]. Now,
by Lemma 3.18 with r = 127, we get Pr(SK126[127] = 127) ≈ 156/N .
Thus, Pr(SK128[128] = 127 | SK127[128] = −K[128]) ≈ 156/N .

Path 2. Consider SK127[128] 6= −K[128]. In this case, SK128[128] = SK126[X]
for some X 6= 127. Thus by normalization over the probability values
Pr(SK126[X] = 127) for X 6= 127, we get Pr(SK128[128] = 127 | SK127[128] 6=
−K[128]) ≈ (1− 156/N)/(N − 1) ≈ 0.4/N .

Combining the two paths as above, we get

Pr(SK128[128] = 127)

= Pr(SK128[128] = 127 | SK127[128] = −K[128]) · Pr(SK127[128] = −K[128])

+ Pr(SK128[128] = 127 | SK127[128] 6= −K[128]) · Pr(SK127[128] 6= −K[128])

≈ (156/N) · (0.4/N) + (0.4/N) · (1− 0.4/N) ≈ 0.64/N,

if l = 2, 4, . . . , 128. For all other values of l, we get Pr(SK128[128] = 127) ≈
(156/N) · (1/N) + (0.4/N) · (1 − 1/N) ≈ 1/N . In both cases, the value of
Pr(SK127[128] = −K[128]) comes from Lemma 3.19.

Once we have SK128[128] = 127, we know that S0[128] = SKN [128] = 127 if
none of j129, . . . , jN touches the index 128. If otherwise SK128[128] 6= 127 and the

91 3.3 Keylength dependent bias in first byte

value 127 is in any index less than 128, then SKN [128] 6= 127. If SK128[128] 6= 127
and the value 127 is in any index I greater than 128, then SKN [128] = 127 may
occur due to the following association.

Indices j129, . . . , jI−1 do not touch location I before i = I.
When i = I, we have j = 128, so that the appropriate swap occurs.
None of jI+1, . . . , jN touches location 128 after the previous event.

This path entails a approximate probability (1/N) · (1 − 1/N)127 for each I,
and the total probability of the aforesaid association, over I = 129, . . . , 255,
becomes approximately 0.24/N . Thus for l = 2, 4, . . . , 128, we have

Pr(SKN [128] = 127)

= Pr(SK128[128] = 127) · (1− 1/N)128 + Pr(SK128[128] 6= 127) · (0.24/N)

≈ (0.64/N) · (155/N) + (1− 0.64/N) · (0.24/N) ≈ 0.63/N.

For other values of l, we get Pr(S0[128] = SKN [128] = 127) following the distri-
bution of S0[u] = v predicted by Mantin [100,103]. Hence the ‘anomaly’.

The theoretical results regarding the anomaly in (S0[128] = 127), as above,
produce a numerical value of 0.63/N = 0.002461 for N = 256. This value
closely matches with the experimental results, both from our own experiments
(0.002453), as well as the value 0.002440 reported in the literature [119,120].

This settles a long-standing mysterious issue in RC4 literature, and hints
at the possibility that all ‘anomalies’ or deviations of probabilities in the dis-
tribution of S0 from that predicted by Mantin [100], may actually result from
intricate keylength dependencies.

3.3.2 Study of the bias in (Z1 = 129)

Experimentally, we find that Pr(Z1 = 129 | S0[128] = 127) ≈ 1/N − 0.5/N2

and Pr(Z1 = 129 | S0[128] 6= 127) ≈ 1/N − 2/N2. Thus, using the anomaly,

Chapter 3: Biases Based on RC4 Keylength

one may estimate Pr(Z1 = 129) as

Pr(Z1 = 129 | S0[128] = 127) Pr(S0[128] = 127)

+ Pr(Z1 = 129 | S0[128] 6= 127) Pr(S0[128] 6= 127)

≈ (1/N − 0.5/N2) · (0.63/N) + (1/N − 2/N2) · (1− 0.63/N) ≈ 1/N − 2/N2.

However, it may be the case that the anomaly is not directly influencing the
bias in (Z1 = 129). Investigation and proof of all causal paths towards proving
the negative bias in (Z1 = 129) remains an interesting open question, which
requires an independent rigorous analysis, beyond the scope of this thesis.

In summary, we attempted the proof of the bias in (Z1 = 129), but could not
settle it completely. However, we discovered that this bias is a new ‘keylength
dependent’ bias of RC4, which is prominent only for certain keylengths l =
2, 4, 8, . . . , 128. In the process, we tried to relate it with the long-standing open
issue of ‘anomalies’ in RC4 initial state, and could prove an important anomaly
regarding the bias in (S0[128] = 127). Our work reveals that a thorough
analysis of the ‘anomaly pairs’ of RC4 initial PRGA state S0 is necessary, not
only for their independent theoretical interest, but also to investigate their
potential implications towards keystream biases.

Chapter 4
Biases Involving State Variables of RC4

In this chapter, we prove some empirically observed biases that involve the
state variables i, j and S along with the output keystream Z. This chapter
deals with the following problems in RC4 analysis, as mentioned earlier in
Section 1.4 of Chapter 1.

Problem 1c. Prove all known significant biases of RC4 involving the state
variables, as empirically observed in [136]. In addition, is it possible to
identify and prove other interesting biases of similar nature?

Problem 1d. It seems that the index j exhibits certain non-random behavior
in the initial rounds of RC4 PRGA. Is it possible to completely charac-
terize the (non-)randomness of index j throughout RC4 PRGA?

Problems 1c is studied and solved in our papers [131, 132], and the study of
Problem 1d is presented in our works [98,132].

4.1 Proof of biases involving state variables

In connection with Problems 1c and 1d, we investigate some significant em-
pirical biases discovered and reported by Sepehrdad, Vaudenay and Vuag-
noux [136]. We provide theoretical justification only for the biases which are
of the approximate order of 2/N or more, as in Table 4.1.

93

Chapter 4: Biases Involving State Variables of RC4

Table
4.1:

Significant
biases

observed
in

[136]and
proved

in
this

chapter.

Type
ofBias

Labelas
in

[136]
Biased

events
observed

in
[136] a

Probabilities
reported

in
[136]

“N
ew

_
004”

j2 +
S

2 [j2]=
S

2 [i2]+
Z

2
2/N

Bias
at

Specific
“N

ew
_
noz_

007”
j2 +

S
2 [j2]=

6
2.37/N

InitialR
ounds

“N
ew

_
noz_

009”
j2 +

S
2 [j2]=

S
2 [i2]

2/N
“N

ew
_
noz_

014”
j1 +

S
1 [i1]=

2
1.94/N

Bias
at

A
llR

ounds
“N

ew
_
noz_

001”
j
r +

S
r [i

r]=
i
r +

S
r [j

r]
2/N

(round-independent)
“N

ew
_
noz_

002”
j
r +

S
r [j

r]=
i
r +

S
r [i

r]
2/N

Bias
at

A
llInitial

“N
ew

_
000”

S
r [t

r]=
t
r

1.9/N
at
r

=
3

R
ounds,1

≤
r
≤
N
−

1
“N

ew
_
noz_

004”
S
r [i

r]=
j
r

1.9/N
at
r

=
3

(round-dependent)
“N

ew
_
noz_

006”
S
r [j

r]=
i
r

2.34/N
at
r

=
3

aN
ote

that
the

authors
of[136]denoted

the
PRG

A
variables

by
prim

ed
indices,but

we
do

not
use

that
notation.

95 4.1 Proof of biases involving state variables

4.1.1 Biases at specific initial rounds

In this section, we shall assume two main models to prove the results; that of
uniform random keys with actual RC4 next-state-function for the evolution of
S and i, j through KSA (we refer to this model as S0 of RC4), and that of
uniformly random initial permutation S0 in PRGA (we refer to this model as
random S0). Each result specifies the model used to compute the values.

We first prove the bias labeled “New_noz_014” in [136, Figure 3 and Figure
4] and Table 4.1.

Theorem 4.1. After the first round (r = 1) of RC4 PRGA,

Pr(j1 + S1[i1] = 2) = Pr(S0[1] = 1) +
∑
X 6=1

Pr(S0[X] = 2−X ∧ S0[1] = X).

Proof. We have j1 + S1[i1] = S0[1] + S0[j1] = S0[1] + S0[S0[1]]. We compute
the desired probability using the following two conditional paths depending on
the value of j1 = S0[1]:

Pr(j1 + S1[i1] = 2)

= Pr(S0[1] + S0[S0[1]] = 2 | S0[1] = 1) · Pr(S0[1] = 1)

+
∑
X 6=1

Pr(S0[1] + S0[S0[1]] = 2 | S0[1] = X) · Pr(S0[1] = X)

= Pr(1 + S0[1] = 2 | S0[1] = 1) · Pr(S0[1] = 1)

+
∑
X 6=1

Pr(X + S0[X] = 2 | S0[1] = X) · Pr(S0[1] = X)

= 1 · Pr(S0[1] = 1) +
∑
X 6=1

Pr(S0[X] = 2−X ∧ S0[1] = X).

Hence the result.

If we consider the RC4 permutation after the KSA, the probabilities in-
volving S0 in the expression for Pr(j1 + S1[i1] = 2) should be evaluated using
Proposition 3.1 and the joint probability should be estimated in the same man-
ner as in Section 5.1.3, giving a total probability of approximately 1.937/N for
N = 256. This closely matches the observed value 1.94/N . If we assume that
RC4 PRGA starts with a random initial permutation S0, the probability turns
out to be approximately 2/N − 1/N2 ≈ 1.996/N for N = 256, i.e., almost

Chapter 4: Biases Involving State Variables of RC4

twice that of a random occurrence.

Next, we prove the biases “New_noz_007”, “New_noz_009” and “New_004”,
as labeled in [136] and Table 4.1.

Theorem 4.2. After the second round (r = 2) of PRGA, the following prob-
ability relations hold between index j2 and state variables S2[i2], S2[j2]:

Pr(j2 + S2[j2] = 6) ≈ Pr(S0[1] = 2) +
∑

X even, X 6=2
(2/N) · Pr(S0[1] = X), (4.1)

Pr(j2 + S2[j2] = S2[i2]) ≈ 2/N − 1/N2, (4.2)

Pr(j2 + S2[j2] = S2[i2] + Z2) ≈ 2/N − 1/N2. (4.3)

Proof. We have j2 + S2[j2] = (j1 + S1[i2]) + S1[i2] = S0[1] + 2 · S1[2] in RC4
PRGA. Now for Equation (4.1), we have the following paths depending on the
value of j1 = S0[1]:

Pr(j2 + S2[j2] = 6) = Pr(S0[1] + 2 · S1[2] = 6 | S0[1] = 2) · Pr(S0[1] = 2)

+
∑
X 6=2

Pr(S0[1] + 2 · S1[2] = 6 | S0[1] = X) · Pr(S0[1] = X).

We explore the conditional events in each of the above paths as follows:

S0[1] = 2 ⇒ S0[1] + 2 · S1[2] = 2 + 2 · S1[j1]

= 2 + 2 · S0[i1] = 2 + 2 · S0[1] = 6,

S0[1] = X 6= 2 ⇒ S0[1] + 2 · S1[2] = X + 2 · S1[2].

To satisfy X + 2 · S1[2] = 6 in the second path, the value of X must be even
and for each such value of X, the variable S1[2] can take two different values,
namely (3 +N/2−X/2) and (3 +N −X/2) modulo N . Thus, we have

Pr(j2 + S2[j2] = 6) = 1 · Pr(S0[1] = 2) +
∑

X even, X 6=2
(2/N) · Pr(S0[1] = X).

In case of Equation (4.2), we have the following conditional paths depending

97 4.1 Proof of biases involving state variables

on the value of S1[2]:

Pr(j2 + S2[j2] = S2[i2])

= Pr(S0[1] + 2 · S1[2] = S1[j2] | S1[2] = 0) · Pr(S1[2] = 0)

+ Pr(S0[1] + 2 · S1[2] = S1[j2] | S1[2] 6= 0) · Pr(S1[2] 6= 0).

In the first case, the condition holds with probability 1, since S1[2] = 0 implies

S0[1] + 2 · S1[2] = S0[1], and

S1[j2] = S1[S0[1] + S1[2]] = S1[S0[1]] = S1[j1] = S0[i1] = S0[1].

For all other cases in the second path, with S1[2] = X 6= 0, we can assume the
condition to hold with probability approximately 1/N . Thus, we have:

Pr(j2 + S2[j2] = S2[i2]) ≈ 1 · (1/N) + (1/N) · (1− 1/N) = 2/N − 1/N2.

For Equation (4.3), the condition is almost identical to the condition of Equa-
tion (4.2) apart from the inclusion of Z2. However, our first path S1[2] = 0
gives Pr(Z2 = 0 | S1[2] = 0) = 1 (as in [103]), which implies the following:

Pr(j2 + S2[j2] = S2[i2] + Z2 | S1[2] = 0) = Pr(j2 + S2[j2] = S2[i2] | S1[2] = 0).

In all other cases with S1[2] 6= 0, we assume the conditions to match uniformly
at random. Therefore:

Pr(j2 + S2[j2] = S2[i2] + Z2) ≈ (1/N) · 1 + (1− 1/N) · (1/N) = 2/N − 1/N2.

(4.4)
Hence the result.

In case of Equation (4.1), if we assume S0 to be the initial state for RC4
PRGA, and substitute all probabilities involving S0 using Proposition 3.1, we
get the total probability equal to 2.36/N for N = 256. This value closely
matches with the observed probability 2.37/N . If we assume S0 to be a ran-
dom permutation in (4.1), we get probability 2/N − 2/N2 ≈ 1.992/N for
N = 256. The theoretical results are summarized in Table 4.2 along with the
experimentally observed probabilities from [136].

Chapter 4: Biases Involving State Variables of RC4

Table
4.2:

T
heoreticaland

observed
biases

at
specific

initialrounds
ofR

C
4
PR

G
A
.

Label[136]
Event

O
bserved

Probability
T
heoreticalProbability

(for
N

=
256)

(reported
in

[136])
S

0
ofRC

4
R
andom

S
0

“N
ew

_
noz_

014”
j1 +

S
1 [i1]=

2
1.94/N

1.937/N
1.996/N

“N
ew

_
noz_

007”
j2 +

S
2 [j2]=

6
2.37/N

2.363/N
1.992/N

“N
ew

_
noz_

009”
j2 +

S
2 [j2]=

S
2 [i2]

2/N
1.996/N

1.996/N
“N

ew
_
noz_

004”
j2 +

S
2 [j2]=

S
2 [i2]+

Z
2

2/N
1.996/N

1.996/N

99 4.1 Proof of biases involving state variables

4.1.2 Round-independent biases at all initial rounds

In this section, we turn our attention to the biases labeled “New_noz_001” and
“New_noz_002.” In [136] it was observed that both of these biases exist for all
initial rounds (1 ≤ r ≤ N −1) of RC4 PRGA. In Theorem 4.3 below, we prove
a more general result. We show that actually these biases do not change with
r and they continue to persist at the same order of 2/N at any arbitrary round
of PRGA. Thus, the probabilities for “New_noz_001” and “New_noz_002”
from [136] are special cases (for 1 ≤ r ≤ N − 1) of Theorem 4.3.

We shall assume the probabilistic model of uniformly random permutation
S anytime during PRGA, where the pointer j is assumed to be uniformly
random and independent of the permutation.

Theorem 4.3. At any round r ≥ 1 of RC4 PRGA, the following two relations
hold between the indices ir, jr and the state variables Sr[ir], Sr[jr]:

Pr(jr + Sr[jr] = ir + Sr[ir]) ≈ 2/N, (4.5)

Pr(jr + Sr[ir] = ir + Sr[jr]) ≈ 2/N. (4.6)

Proof. We denote the events as E1 : (jr + Sr[jr] = ir + Sr[ir]) and E2 : (jr +
Sr[ir] = ir + Sr[jr]). For both the events, we shall take the conditional paths
as follows for computing the probabilities:

Pr(E1) = Pr(E1 | ir = jr) · Pr(ir = jr) + Pr(E1 | ir 6= jr) · Pr(ir 6= jr),

Pr(E2) = Pr(E2 | ir = jr) · Pr(ir = jr) + Pr(E2 | ir 6= jr) · Pr(ir 6= jr).

We have Pr(ir = jr) ≈ 1/N and Pr(E1 | ir = jr) = Pr(E2 | ir = jr) = 1.
In the case where ir 6= jr, we have Sr[jr] 6= Sr[ir], as Sr is a permutation.
Thus in case ir 6= jr, the values of Sr[ir] and Sr[jr] can be chosen in N(N − 1)
ways (drawing from a permutation without replacement) to satisfy the events
E1, E2. This gives the total probability for each event E1, E2 as

Pr(E1) ≈ Pr(E2)

≈ 1 · 1
N

+
∑
jr 6=ir

1
N(N − 1) = 1

N
+ (N − 1) · 1

N(N − 1) = 2
N
. (4.7)

Hence the result.

Chapter 4: Biases Involving State Variables of RC4

Our theoretical results match the probabilities reported in [136, Figure 2]
for the initial rounds 1 ≤ r ≤ N − 1. One may note that the biases in
Theorem 4.3 look somewhat similar to Jenkin’s correlations [75]:

Pr(Zr = jr − Sr[ir]) ≈ 2/N and Pr(Zr = ir − Sr[jr]) ≈ 2/N.

However, the biases proved in Theorem 4.3 do not contain the keystream byte
Zr, and one may check that the results do not follow directly from Jenkin’s
correlations [75] either.

4.1.3 Round-dependent biases at all initial rounds

Next, we consider the biases that are labeled as “New_000”, “New_noz_004”
and “New_noz_006” in [136, Figure 2]. We prove the biases for rounds 3 to
255 in RC4 PRGA, and we show that all of these decrease in magnitude with
increase in r, as observed experimentally in [136].

In this section, we shall assume the probabilistic model of uniform random
keys to prove the results. We assume actual RC4 next-state-function for the
evolution of S and i, j, and no randomness assumptions are made on the initial
state S0 of PRGA.

The bias labeled “New_noz_006” in [136] can be derived as a corollary to
Theorem 3.3 as follows.

Corollary 4.4. For PRGA rounds 3 ≤ r ≤ N − 1,

Pr(Sr[jr] = ir) ≈ Pr(S1[r] = r)
(

1− 1
N

)r−2

+
r−1∑
t=2

r−t∑
w=0

Pr(S1[t] = r)
w! ·N

(
r − t− 1

N

)w (
1− 1

N

)r−3−w
.

Proof. Sr[jr] is assigned the value at Sr−1[r] due to the swap in round r. Hence
substituting u = r and v = ir = r in Theorem 3.3, we get the result.

In Figure 4.1, we illustrate the experimental observations (each data point
represents the average obtained from over 100 million experimental runs with
16-byte key in each case) and the theoretical values for the distribution of

101 4.1 Proof of biases involving state variables

3 32 64 96 128 160 192 224 255
Count r of RC4 rounds.

0.004

0.005

0.006

0.007

0.008

0.009

0.010

P
r
(S

r
[j

r
]=

i r
).

Experimental (16 byte key)
Theoretical

Figure 4.1: Distribution of Pr(Sr[jr] = ir) for initial rounds 3 ≤ r ≤ 255 of RC4
PRGA.

Pr(Sr[jr] = ir) over the initial rounds 3 ≤ r ≤ 255 of RC4 PRGA. It is
evident that our theoretical formula, as derived in Corollary 4.4, matches the
experimental observations.

Next we take a look at the other two round-dependent biases of RC4,
observed in [136]. We state the related result in Theorem 4.5, corresponding
to observations “New_noz_004” and “New_000”.

Theorem 4.5. For PRGA rounds 3 ≤ r ≤ N − 1,

Pr(Sr[ir] = jr) ≈ Pr(Sr[tr] = tr)

≈ r

N2 +
N−1∑
X=r

1
N

(
Pr(S1[X] = X)

(
1− 1

N

)r−2

+
r−1∑
u=2

r−u∑
w=0

Pr(S1[u] = r)
w! ·N

(
r − u− 1

N

)w (
1− 1

N

)r−3−w)
.

Proof. We can write the two events under consideration as E3 : (Sr−1[jr] = jr)
and E4 : (Sr[tr] = tr), where jr and tr can be considered as pseudorandom
variables for all 3 ≤ r ≤ N − 1. We consider the following conditional paths
for the first event E3, depending on the range of values jr may take:

Pr(E3) =
r−1∑
X=0

Pr(E3|jr = X) · Pr(jr = X) +
N−1∑
X=r

Pr(E3|jr = X) · Pr(jr = X).

Case I. In this case, we assume that jr takes a value X between 0 and r − 1.
Each position in this range is touched by index i, and may also be touched

Chapter 4: Biases Involving State Variables of RC4

by index j. Thus, irrespective of any initial condition, we may assume that
Pr(E3 | jr = X) ≈ 1/N in this case. Hence, this part contributes:

r−1∑
X=0

Pr(E3 | jr = X) · Pr(jr = X) ≈
r−1∑
X=0

1
N
· 1
N

= r

N2 .

Case II. Here we suppose that jr assumes a value r ≤ X ≤ N − 1. In this
case, the probability calculation can be split into two paths, as follows:

Pr(E3 | jr = X) = Pr(E3 | jr = X ∧ S1[X] = X) · Pr(S1[X] = X)

+ Pr(E3 | jr = X ∧ S1[X] 6= X) · Pr(S1[X] 6= X).

If S1[X] = X, similarly to the logic in Theorem 3.3, we get the following:

Pr(E3 | jr = X ∧S1[X] = X) ·Pr(S1[X] = X) ≈ Pr(S1[X] = X)
(

1− 1
N

)r−2
.

If we suppose that S1[u] = X for some u 6= X, then one may note the following
two sub-cases:

• Sub-case 2 ≤ u ≤ r − 1: The probability for this path is similar to that
in the proof of Theorem 3.3:

r−1∑
u=2

r−u∑
w=0

Pr(S1[u] = r)
w! ·N

(
r − u− 1

N

)w (
1− 1

N

)r−3−w
.

• Sub-case r ≤ u ≤ N − 1: In this case the value X will always be behind
the position of ir = r, whereas X > r as per assumption, i.e., the value
X can never reach index position X from initial position u. Thus the
probability is 0 in this case.

Assuming Pr(jr = X) = 1/N for all X, and combining all contributions from
the above-mentioned cases, we get the value of Pr(Sr−1[jr] = jr) = Pr(Sr[ir] =
jr), as desired.

In case of Pr(Sr[tr] = tr), tr is a random variable just like jr, and may take
all values from 0 to N−1 with approximately the same probability 1/N . Thus
we can approximate Pr(Sr[tr] = tr) ≈ Pr(Sr−1[jr] = jr) to obtain the desired
expression.

103 4.1 Proof of biases involving state variables

Remark 4.6. The approximation Pr(Sr[tr] = tr) ≈ Pr(Sr−1[jr] = jr), as in
Theorem 4.5, is particularly close for higher values of r because the effect of a
single state change from Sr−1 to Sr is low in such a case. For smaller values
of r, it is more accurate to approximate Pr(Sr−1[tr] = tr) ≈ Pr(Sr−1[jr] = jr)
and critically analyze the effect of the r-th round of PRGA thereafter.

3 32 64 96 128 160 192 224 255
Count r of RC4 rounds.

0.003

0.004

0.005

0.006

0.007

0.008

P
r
(S

r
[i
r
]=

j r
).

Experimental (16 byte key)
Theoretical

3 32 64 96 128 160 192 224 255
Count r of RC4 rounds.

0.003

0.004

0.005

0.006

0.007

0.008

P
r
(S

r
[t
r
]=

t r
).

Experimental (16 byte key)
Theoretical

Figure 4.2: Distributions of Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) for initial rounds
3 ≤ r ≤ 255 of RC4 PRGA.

In Figure 4.2, we show the experimental observations (averages taken over
100 million runs with 16-byte key) and the theoretical values for the distribu-
tions of Pr(Sr[ir] = jr) and Pr(Sr[tr] = tr) over the initial rounds 3 ≤ r ≤ 255
of RC4 PRGA. It is evident that our theoretical formulae closely match with
the experimental observations in both the cases.

Chapter 4: Biases Involving State Variables of RC4

4.2 (Non-)Randomness of j at initial rounds

Two indices, i and j, are used in RC4 PRGA – the first is deterministic and
the second one is pseudorandom. Index j depends on the values of i and S[i]
simultaneously, and the pseudorandomness of the permutation S causes the
pseudorandomness in j. In this section, we attempt to analyze the pseudoran-
dom behavior of j more clearly.

In this section, we shall assume the probabilistic model of uniform random
keys to prove the results. We assume actual RC4 next-state-function for the
evolution of S and i, j, and no randomness assumptions are made on the initial
state S0 of PRGA.

In RC4 PRGA, we know that for r ≥ 1, ir = r mod N and jr = jr−1 +
Sr−1[ir], starting with j0 = 0. Thus, we can recursively write the values of j
at different rounds 1 ≤ r ≤ N − 1:

j0 = 0,

j1 = S0[1],

j2 = S0[1] + S1[2],

· · ·

jr = jr−1 + Sr−1[ir] = S0[1] + S1[2] + · · ·+ Sr−1[r] =
r∑

x=1
Sx−1[x].

4.2.1 Non-randomness of j1

In the first round of PRGA, j1 = S0[1] follows a probability distribution which
is determined by S0. According to Proposition 3.1, we have:

Pr(j1 = v) = Pr(S0[1] = v)

=

1
N
, if v = 0;

1
N

(
N − 1
N

+ 1
N

(
N − 1
N

)N−2)
, if v = 1;

1
N

((
N − 1
N

)N−2
+
(
N − 1
N

)v)
, if v > 1.

This clearly tells us that j1 is not random. This is also portrayed in Figure 4.3.

105 4.2 (Non-)Randomness of j at initial rounds

4.2.2 Non-randomness of j2

In the second round of PRGA, however, we have j2 = S0[1] + S1[2], which
demonstrates better randomness, as per the following discussion. We have:

Pr(j2 = v) = Pr(S0[1]+S1[2] = v) =
N−1∑
w=0

Pr(S0[1] = w∧S1[2] = v−w). (4.8)

The following cases may arise with respect to Equation (4.8).

• Case I: Suppose that j1 = S0[1] = w = 2. Then, S1[i2] = S1[2] = S1[j1] =
S0[i1] = S0[1] = 2. In this case, we have:

Pr(j2 = v) =

Pr(S0[1] = 2), if v = 4;

0, otherwise.

• Case II: Suppose that j1 = S0[1] = w 6= 2. Then S0[2] will not get
swapped in the first round, and hence S1[2] = S0[2]. In this case,
Pr(S0[1] = w ∧ S1[2] = v − w) = Pr(S0[1] = w ∧ S0[2] = v − w).

We substitute the results obtained from these cases to Equation (4.8) to obtain:

Pr(j2 = v) =

Pr(S0[1] = 2)

+
∑
w 6=2

Pr(S0[1] = w ∧ S0[2] = v − w), if v = 4;

∑
w 6=2

Pr(S0[1] = w ∧ S0[2] = v − w), if v 6= 4.

(4.9)

Equation (4.9) completely specifies the exact probability distribution of j2,
where the exact values of the probabilities Pr(S0[x] = y) can be substituted
from Proposition 3.1 with the adjustment as in Section 5.1.3 for estimating
the joint probabilities. However, the expression suffices to exhibit the non-
randomness of j2 in the RC4 PRGA, having a large bias for v = 4. We found
that the theoretical probabilities from Equation (4.9) match almost exactly
with the experimental data plotted in Figure 4.3. For the sake of clarity, we
do not show the theoretical curve in Figure 4.3.

Chapter 4: Biases Involving State Variables of RC4

4.2.3 Randomness of jr for r ≥ 3

It is possible to compute the explicit probability distributions of jr =∑r
x=1 Sx−1[x] for 3 ≤ r ≤ 255 as well. We do not present the complicated

expressions for Pr(jr = v) for r ≥ 3 here, but it turns out that jr becomes
closer to be random as r increases.

0 4 32 64 96 128 160 192 224 255
0.0025

0.0039

0.005

0.0075

0.01

Value v, from 0 to 255.

P
r(

 j
 r =

 v
)

.

Distribution of j
1

Distribution of j
2

Distribution of j
3

Figure 4.3: Probability distribution of jr for 1 ≤ r ≤ 3.

The probability distributions of j1, j2 and j3 are shown in Figure 4.3, where
the experiments have been run over 1 billion trials of RC4 PRGA, with ran-
domly generated keys of size 16 bytes. One may note that the randomness in j2

is more than that of j1 (apart from the case v = 4), and j3 is almost uniformly
random. This trend continues for the later rounds of PRGA as well. However,
we do not plot the graphs for the probability distributions of jr with r ≥ 4,
as these distributions are almost identical to that of j3, i.e., almost uniformly
random in behavior.

4.2.4 Correlation between Z2 and S2[2]

We now explore the bias in (j2 = 4) more deeply and establish a correlation
between the state S2 and the keystream. Let us first evaluate Pr(j2 = 4):

Pr(j2 = 4) = Pr(S0[1] = 2) +
∑
w 6=2

Pr(S0[1] = w ∧ S0[2] = 4− w)

= 1
N

[(
N − 1
N

)N−2
+
(
N − 1
N

)2]
+
∑
w 6=2

Pr(S0[1] = w ∧ S0[2] = 4− w).

107 4.2 (Non-)Randomness of j at initial rounds

Following Proposition 3.1 and the estimation of joint probabilities as in
Section 5.1.3, the sum in the above expression evaluates approximately to
0.965268/N for N = 256. Thus, we get:

Pr(j2 = 4) ≈ 1
N

[(
N − 1
N

)N−2
+
(
N − 1
N

)2]
+ 0.965268

N
≈ 7/3

N
.

This closely matches with our experimental observation, as depicted in Fig-
ure 4.3. To exploit this bias in (j2 = 4), we focus on the event (S2[i2] = 4−Z2)
or (S2[2] = 4− Z2), and prove the following.

Theorem 4.7. After the second round of RC4 PRGA with N = 256,

Pr (S2[2] = 4− Z2) ≈ 1
N

+ 4/3
N2 .

Proof. We can write Z2 in terms of the state variables as follows:

Z2 = S2[S2[i2] + S2[j2]] = S2[S1[j2] + S1[i2]] = S2[S1[j2] + S1[2]].

Thus, we can write the probability of the target event (S2[2] = 4− Z2) as

Pr(S2[2] = 4− Z2) = Pr(S2[i2] = 4− S2[S1[j2] + S1[2]])

= Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4)

= Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 = 4)

+ Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4).

Computing the first term: The probability for the first event can be cal-
culated as follows:

Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 = 4)

= Pr(S1[4] + S2[S1[4] + S1[2]] = 4 ∧ j2 = 4)

=
N−1∑
y=0

Pr (S1[4] + S2[y] = 4 ∧ S1[4] + S1[2] = y ∧ j2 = 4)

= Pr(j2 = 4) ·
N−1∑
y=0

Pr (S1[4] + S2[y] = 4 ∧ S1[4] + S1[2] = y) .

In the last expression, the values taken from S1 are independent of the value

Chapter 4: Biases Involving State Variables of RC4

of j2, and thus the events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) are both
independent of the event (j2 = 4). Also, if y = 4, we obtain S1[4] + S2[y] =
S1[4] + S2[4] = S1[4] + S2[j2] = S1[4] + S1[i2] = S1[4] + S1[2], which results
in the events (S1[4] + S2[y] = 4) and (S1[4] + S1[2] = y) being identical. In
all other cases, we have S1[4] + S2[y] 6= S1[4] + S1[2] and thus the values are
chosen distinctly independent at random. Hence, we obtain:

Pr(S1[4] + S2[y] = 4 ∧ S1[4] + S1[2] = y) =

1
N
, if y = 4;

1
N(N−1) , if y 6= 4.

Thus, the probability Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 = 4) for the first
event turns out to be:

Pr(j2 = 4) ·
 1
N

+
∑
y 6=4

1
N(N − 1)

 = 7/3
N
·
(

1
N

+ N − 1
N(N − 1)

)
= 7/3

N
· 2
N
.

Computing the second term: The probability calculation follows a similar
path:

Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4)

=
∑
x6=4

Pr(S1[x] + S2[S1[x] + S1[2]] = 4 ∧ j2 = x)

=
∑
x 6=4

N−1∑
y=0

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y ∧ j2 = x).

The case y = x poses an interesting situation. On the one hand, we obtain
S1[x]+S2[y] = S1[x]+S2[x] = S1[x]+S2[j2] = S1[x]+S1[i2] = S1[x]+S1[2] = 4,
while on the other hand, we get S1[x] + S1[2] = x 6= 4. We rule out this case
to get Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4 ∧ j2 6= 4):

∑
x 6=4

∑
y 6=x

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y) · Pr(j2 = x).

As before, the values taken from S1 are independent of the value of j2, and thus
the events (S1[x] + S2[y] = 4) and (S1[x] + S1[2] = y) are both independent of
the event (j2 = x).

If y = 4, we have S1[x] + S2[4] = 4, while S1[x] + S1[2] = 4. One may note

109 4.3 Long-term glimpse correlation in RC4

that S1[4] does not get swapped to obtain S2, as i2 = 2 and j2 = x 6= 4. Thus,
S2[4] = S1[4] and we get S1[x]+S1[4] = 4 and S1[x]+S1[2] = 4. This indicates
S1[4] = S1[2], which is impossible as S1 is a permutation. All other cases
(y 6= 4) deal with two distinct locations of the permutation S1. Therefore,

Pr(S1[x] + S2[y] = 4 ∧ S1[x] + S1[2] = y) =

0, if y = 4;

1
N(N−1) , otherwise.

Thus, the probability Pr(S1[j2] + S2[S1[j2] + S1[2]] = 4∧ j2 6= 4) of the second
event turns out to be:

∑
x 6=4

Pr(j2 = x) ·
0 +

∑
y 6=x,4

1
N(N − 1)

= N − 2
N(N − 1) ·

∑
x 6=4

Pr(j2 = x) = N − 2
N(N − 1) ·

(
1− 7/3

N2

)
.

Calculation for Pr(S2[2] = 4− Z2): Combining the probabilities for the
first and second events, we get the following:

Pr(S2[2] = 4− Z2) = 7/3
N2 ·

2
N

+ N − 2
N(N − 1) ·

(
1− 7/3

N2

)
≈ 1
N

+ 4/3
N2 . (4.10)

Hence the result.

This establishes a correlation between the state byte S2[2] and the
keystream byte Z2. For N = 256, the result supports our experimental data
generated from 1 billion runs of RC4 with randomly selected 16-byte keys.

4.3 Long-term glimpse correlation in RC4

In 1996, Jenkins [75] pointed out that the RC4 keystream provides a glimpse
of the RC4 state, now known as Glimpse theorem or Jenkins’ correlation.

Theorem 4.8 (Glimpse theorem). After the r-th round of RC4 PRGA, for
r ≥ 1, we have Pr(Sr[jr] = ir − Zr) = Pr(Sr[ir] = jr − Zr) ≈ 2/N .

This glimpse correlation can be observed at any point of the RC4 keystream.

Chapter 4: Biases Involving State Variables of RC4

In Asiacrypt 2005, Mantin [102] has also explored a general set of similar events
in this direction that leak state information with probability more than that
of random association. There exist several related works that look only at the
initial keystream bytes of RC4 to obtain information regarding the state and
eventually the secret keys (few recent examples are in [137]). However, these
observations never work in the long term scenario. We ask the question:

“Is there a correlation between the RC4 keystream and the state
that offers a long-term glimpse with probability more than 2/N?”

In this section, we answer to this question affirmatively. We prove the
following: given that two consecutive bytes Zr, Zr+1 of RC4 are equal to the
specific value (r + 2) during the consecutive two rounds r and r + 1 (modulo
N), the probability that the (r+1)-th location of the state array during round
r (denoted as Sr[r + 1] as per our notation) will be equal to (N − 1) is 3/N ,
significantly higher than the probability of random association 1/N .

We shall assume the probabilistic model of uniformly random permutation
S anytime during PRGA, where the pointer j is assumed to be uniformly
random and independent of the permutation.

4.3.1 Proof of the long-term glimpse

We start with our most important observation which we made while trying to
obtain the scenario where the S array comes back to the same permutation
after two consecutive rounds. As one may note in Figure 4.4, if in the r-th
round, jr = ir + 1 and Sr[jr] = N − 1, then the two places swapped in round
(r + 1) will be restored in round (r + 2). That is, we shall have Sr+2 identical
to Sr in such a case. This motivated our first result, as in Theorem 4.9.

Theorem 4.9. After the r-th round (r ≥ 1) of RC4 PRGA, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr) ≈
2
N
.

Proof. We shall first prove Pr(Zr+1 = Zr | Sr[r+1] = N −1) ≈ 2/N , and then
apply Bayes’ theorem to get the desired result. The condition Sr[r+1] = N−1,
and the path jr = r + 1 results in jr+1 = jr + Sr[r + 1] = r + 1 + N − 1 = r,

111 4.3 Long-term glimpse correlation in RC4

which eventually gives

tr+1 = Sr+1[ir+1] + Sr+1[jr+1] = Sr[jr+1] + Sr[ir+1]

= Sr[r] + Sr[r + 1] = Sr[ir] + Sr[jr] = tr.

Thus, Zr+1 = Sr+1[tr+1] = Sr+1[tr] is equal to Zr = Sr[tr] in almost all cases,
except when tr equals either ir+1 or jr+1, the only two locations that get
swapped in transition from Sr to Sr+1. Thus,

Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1) ≈ 1.

This scenario is as illustrated in Figure 4.4.

Sr X N − 1 Zr = Sr[X − 1]

i j

Sr+1 N − 1 X Zr+1 = Sr+1[X − 1]

j i

Sr+2 X N − 1 Sr+2 identical to Sr

Figure 4.4: The scenario for (Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1).

We may now evaluate Pr(Zr+1 = Zr | Sr[r + 1] = N − 1) as

Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr = r + 1) · Pr(jr = r + 1)

+ Pr(Zr+1 = Zr | Sr[r + 1] = N − 1 ∧ jr 6= r + 1) · Pr(jr 6= r + 1)

≈ 1 · 1/N + 1/N · (1− 1/N) ≈ 2/N.

Applying Bayes’ theorem to the above result, we obtain

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr) · Pr(Zr+1 = Zr)

= Pr(Zr+1 = Zr | Sr[r + 1] = N − 1) · Pr(Sr[r + 1] = N − 1) ≈ 2/N · 1/N.

Chapter 4: Biases Involving State Variables of RC4

Assuming pseudorandomness of RC4 keystream bytes, we may write that
Pr(Zr+1 = Zr) ≈ 1/N (experimentally verified over a billion trials). This
gives Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr) ≈ 2/N .

Thus the event (Zr+1 = Zr) leaks the information of a single permutation
location with probability twice that of random association. We would like to
point out a simple corollary of the Glimpse theorem (Theorem 4.8) that leaks
the information of a permutation location with the same probability.

Corollary 4.10 (Glimpse corollary). After the r-th round of RC4 PRGA, for
r ≥ 1, we have Pr(Sr[r + 1] = N − 1 | Zr+1 = r + 2) ≈ 2

N
.

Proof. In RC4 transition between rounds r and r + 1, we have ir+1 = r + 1,
and Sr+1[jr+1] = Sr[ir+1] = Sr[r + 1], due to the swap in round r. Thus, by
the Glimpse theorem (Theorem 4.8), we have

Pr(Sr[r + 1] = r + 1− Zr+1) ≈ 2/N.

In case of Zr+1 = r + 2, we get the desired conditional result.

In the above two scenarios (Theorem 4.9 and Corollary 4.10), we find two
different cases that leak the value of a specific location in the S array (namely,
Sr[r+1]) with probability 2/N in each case. Moreover, the two events seem to
be unrelated, or at least not completely dependent. Thus, it is quite natural
to expect that considering the events together, one may have better confidence
about the value in that specific location Sr[r+ 1]. In this direction, we present
our result in Theorem 4.11.

Theorem 4.11. After the r-th round (r ≥ 1) of RC4 PRGA, we have

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr ∧ Zr+1 = r + 2) ≈ 3
N
.

Proof. Let us define the main events as follows:

A := (Sr[r + 1] = N − 1), B := (Zr+1 = Zr), C := (Zr+1 = r + 2).

The result requires Pr(A|B ∧ C), and it seems that a naive composition of
Theorem 4.9 (which gives Pr(A|B)) and Theorem 4.10 (which gives Pr(A|C))

113 4.3 Long-term glimpse correlation in RC4

will produce the desired result. However, this is not the case. If we try to
compute Pr(A∧B ∧C) as Pr(B ∧C|A) Pr(A), then the first part is not easily
computable as events B and C, conditional to event A, are not independent
(verified experimentally over a billion trials). Hence we try the following route.

Pr(A ∧B ∧ C) = Pr(C|B ∧ A) · Pr(B|A) · Pr(A).

Still there remains a problem with the first part, as event C occurs simul-
taneously with the occurrence of Zr+1 in event B. This is easy to observe
experimentally, but not so easy to prove in theory.

To avoid the aforesaid problem in computing Pr(C|B ∧A), we rewrite the
problem definition slightly, and try to prove

Pr(Sr[r + 1] = N − 1 | Zr = r + 2 ∧ Zr+1 = r + 2) ≈ 3/N.

We compute this as Pr(A ∧B′ ∧ C) = Pr(C|B′ ∧A) · Pr(B′|A) · Pr(A), where
A := (Sr[r+1] = N−1), C := (Zr+1 = r+2) as before, and B′ := (Zr = r+2).
Now we may compute Pr(C|B′ ∧A) easily, as event C occurs after completion
of both the events A and B′.

Computing Pr(C|B′ ∧ A): Note that event A := (Sr[r + 1] = N − 1) implies
Zr+1 = Sr+1[Sr+1[r + 1] + Sr[r + 1]] = Sr+1[Sr+1[r + 1] − 1]. And of course,
event B′ := (Zr = r+2) implies Zr = Sr[tr] = r+2. We consider the following
paths for the proof.

• Case I: (Sr+1[r + 1] = r + 2). In case of this path, we shall have Zr+1 =
Sr+1[(r+ 2)− 1] = Sr+1[r+ 1] = r+ 2, with probability of occurrence 1.

• Case II: (Sr+1[r + 1] = tr + 1). In case of this path, we shall have
Zr+1 = Sr+1[(tr + 1)− 1] = Sr+1[tr] = Sr[tr] = r + 2, with probability of
occurrence approximately 1, disregarding the two cases when tr may be
equal to either ir+1 or jr+1.

In almost all other cases, we may assume that C := (Zr+1 = r + 2) happens
with probability of random association 1/N (verified experimentally over a

Chapter 4: Biases Involving State Variables of RC4

billion trials). We compute Pr(C|B′ ∧ A) as

Pr(C|B′ ∧ A ∧ (Sr+1[r + 1] = r + 2)) · Pr(Sr+1[r + 1] = r + 2)

+ Pr(C|B′ ∧ A ∧ (Sr+1[r + 1] = r + 2)) · Pr(Sr+1[r + 1] = tr + 1)

+
∑

X 6=r+2
X 6=tr+1

Pr(C|B′ ∧ A ∧ (Sr+1[r + 1] = X)) · Pr(Sr+1[r + 1] = X)

≈ 1 · 1/N + 1 · 1/N + (1− 2/N) · 1/N ≈ 3/N.

Computing Pr(A|B′ ∧ C): As no glimpse-like connection has been found be-
tween Sr[r+1] and Zr in the literature to date, we may assume Pr(B′|A) ≈ 1/N
(verified experimentally over a billion trials), and we may of course take
Pr(A) ≈ 1/N as per natural pseudorandomness assumptions of RC4. Thus,

Pr(A ∧B′ ∧ C) = Pr(C|B′ ∧ A) · Pr(B′|A) · Pr(A) ≈ 3/N · 1/N · 1/N.

We may assume Pr(B′ ∧ C) = Pr(B′) · Pr(C) ≈ 1/N · 1/N (verified experi-
mentally over a billion trials), and this produces the desired conditional result
Pr(A|B ∧ C) = Pr(A|B′ ∧ C) ≈ 3/N .

4.3.2 Experimental results and discussion

We have performed extensive experiments to obtain accurate practical esti-
mates of each of the results presented in this chapter. Each correlation reported
in this chapter is of order 1/N with respect to a base event of probability 1/N .
Thus, O(N3) trials are sufficient to identify the biases with considerable proba-
bility of success (refer to [100,119] for detailed explanation on the complexity).

The experimental results presented in this section are based on an average
of N4 trials of RC4, with keys chosen uniformly at random. The experiments
were carried out using GCC-compiled C-code on a Unix machine with 3.34
GHz processor and 8 GB of memory. Table 4.3 lists the theoretical estimates
against the experimental values for each of the results presented in Section 4.3.

The values presented in Table 4.3 testify that our theoretical estimates for
our new glimpse correlation and associated results closely match their respec-
tive experimental values. Slight deviations, if any, are due to marginal gaps of

115 4.3 Long-term glimpse correlation in RC4

Table 4.3: Experimental values and theoretical estimates of our results, where A :=
(Sr[r + 1] = N − 1), B := (Zr+1 = Zr) and C := (Zr+1 = r + 2).

Biased event Probability of the biased event Result
Experiment Theory

(A | B) 0.0077881670 2/N = 0.0078125 Theorem 4.9
(A | C) 0.0078166422 2/N = 0.0078125 Corollary 4.10
(A | B ∧ C) 0.0117323766 3/N = 0.01171875 Theorem 4.11

order 1/N2 or less, which we have purposefully disregarded in case of theory.

Discussion on the new glimpse correlation

The glimpse correlations have been quite well studied in RC4 literature, as
they provide practical leaks into the state permutation of the cipher from the
knowledge of the output keystream. Glimpse correlations can be exploited
towards state-recovery and key-recovery attacks on RC4. One may find some
important results in state-recovery attacks on RC4 in [57, 107], and a few
attacks along the lines of RC4 key-recovery from the permutation in [4,15,117].

Although glimpse biases provide practical cryptanalytic tools against RC4,
not many have been identified over the last two decades of analysis. Jenkins [75]
was the first to report a glimpse into RC4 state from the keystream with prob-
ability 2/N , and it has since been the best one that persists in the long-term
evolution of the PRGA. Later in 2001 and 2005, Mantin [100,102] generalized
the glimpse correlations into ‘useful states’ of RC4, which included Jenkins’
correlations as a special case. These biases were again of magnitude 2/N , and
persisted in the long-term evolution of PRGA. In recent times, several correla-
tions between the state permutation and keystream have been observed, mainly
by Sepehrdad et al [136, 137], and later proved by us in [131, 132]. Although
these correlations are larger in magnitude, none persist in the long-term, and
only pertain to the initial bytes of the output.

Our result in this direction provides a long-term glimpse correlation of
magnitude 3/N , the best to date. It is interesting to note that no long-term
glimpse bias of magnitude more than 2/N has been reported in the literature
over the last 15 years, since the first one [75] in 1996. The result has been

Chapter 4: Biases Involving State Variables of RC4

published in our recent work [99].

The long-term glimpse correlations reported in the literature to date gen-
erally relate a keystream output byte to a single location of the state permu-
tation, typically at a specific round of RC4. Thus, simultaneous knowledge
of two or more keystream bytes may help in guessing two or more permuta-
tion locations, but does not always provide additional benefits in guessing a
single location of the permutation over any one of them. Our result combines
the knowledge of two consecutive output bytes Zr, Zr+1 to obtain a significant
advantage in guessing a single permutation location Sr[r + 1].

Chapter 5
Biases in Keystream Bytes of RC4

In the previous chapter, we discussed some biases involving the RC4 state
variables S, i, j, during RC4 PRGA. Although a few of those biases in-
volved the keystream bytes, we did not consider biases concerning only the
keystream bytes. In this chapter, we concentrate only on biases exhibited by
RC4 keystream bytes towards constant values in {0, . . . , 255}.

This chapter deals with the following problems in RC4 analysis, as men-
tioned earlier in Section 1.4 of Chapter 1, the organization of this thesis.

Problem 1e. Theoretically justify the sinusoidal probability distribution of
Z1 and its negative bias towards zero, as observed by Mironov [112].

Problem 1f. Identify all significant biases towards zero in the initial bytes of
RC4 keystream (Z3 to Z255), and prove all subsequent results.

Problem 1g. Prove all significant biases in the initial bytes of RC4 keystream
identified by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5].

Problem 1h. Experimentally discover and subsequently prove biases in RC4
keystream which remain effective even after discarding the initial bytes.

Problem 1e has been solved in our work [132], Problem 1f was studied and
solved in our papers [98, 132], Problem 1g was completed in our recent
work [128], and Problem 1h was studied in our paper [132].

117

Chapter 5: Biases in Keystream Bytes of RC4

5.1 Probability distribution of first byte

Here we derive the complete probability distribution of the first RC4 keystream
byte Z1, as observed by Mironov [112, Figure 6] in CRYPTO 2002. Before
proceeding to prove the general result, we start with a specific case, namely,
the negative bias of Z1 towards 0.

5.1.1 Negative bias in Z1 towards zero

The special case of Z1’s negative bias towards 0 is contained in the complete
probability distribution of Z1 to be proved shortly. However, we present a sep-
arate proof for this special case because, unlike the proof for the complete case,
this special case has a much simpler proof which reveals a different relationship
of the RC4 state variables. This is elaborated further in Remark 5.3.

Theorem 5.1. Suppose the initial permutation S0 of RC4 PRGA is randomly
chosen from the set of all permutations of {0, 1, . . . , N − 1}. Then the proba-
bility that the first keystream byte of RC4 is zero is Pr(Z1 = 0) ≈ 1/N −1/N2.

Proof. We explore the probability Pr(Z1 = 0) using the following paths:

Pr(Z1 = 0) = Pr(Z1 = 0 | S0[j1] = 0) · Pr(S0[j1] = 0)

+ Pr(Z1 = 0 | S0[j1] 6= 0) · Pr(S0[j1] 6= 0).

Case I: S0[j1] = 0: Suppose that j1 = S0[1] = X 6= 1 and S0[j1] = S0[S0[1]] =
0. Then we have

Z1 = S1[S1[1] +S1[X]] = S1[S0[X] +S0[1]] = S1[0 +X] = S0[1] = X 6= 0,

as S0 is a permutation, where X and 0 belong to two different indices 1
and X. Thus, in this case we have Pr(Z1 = 0 | S0[j1] = 0) ≈ 0.

Case II: S0[j1] 6= 0: In this case, output byte Z1 can be considered uniformly
random, and thus Pr(Z1 = 0 | S0[j1] 6= 0) ≈ 1/N .

Combining the two cases, the total probability that the first output byte is 0
is given by Pr(Z1 = 0) ≈ 0 · 1/N + 1/N · (1− 1/N) = 1/N − 1/N2.

119 5.1 Probability distribution of first byte

From Theorem 5.1, we immediately get a distinguisher of RC4 that can
effectively distinguish the output keystream of the cipher from a random se-
quence of bytes. For the event E : (Z1 = 0), the bias proved above can be
written as p(1 + q), where p = 1/N and q = −1/N . The number of samples
required to distinguish RC4 from random sequence of bits with a constant
probability of success in this case is approximately N3.

5.1.2 Complete distribution of Z1

In this section, we turn our attention to the complete probability distribution
of the first byte Z1. In [112, Figure 6], the empirical plot of Z1 has a peculiar si-
nusoidal pattern which is not observed for any other variables or events related
to RC4. In Theorem 5.2, we theoretically derive this interesting distribution.

We shall assume the probabilistic model of uniform random keys to prove
the results. We assume actual RC4 next-state-function for the evolution of S
and i, j, and no randomness assumptions are made on the initial state S0 of
PRGA.

Theorem 5.2. The probability distribution of the first output byte of RC4
keystream is as follows, where v ∈ {0, . . . , N−1}, Lv = {0, 1, . . . , N−1}\{1, v}
and Tv,X = {0, 1, . . . , N − 1} \ {0, X, 1−X, v}.

Pr(Z1 = v)

= Qv +
∑
X∈Lv

∑
Y ∈Tv,X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y] = v),

with Qv =

Pr(S0[1] = 1 ∧ S0[2] = 0), if v = 0;

Pr(S0[1] = 0 ∧ S0[0] = 1), if v = 1;

Pr(S0[1] = 1 ∧ S0[2] = v)

+ Pr(S0[1] = v ∧ S0[v] = 0)

+ Pr(S0[1] = 1− v ∧ S0[1− v] = v), otherwise.

Proof. The first output byte Z1 can be explicitly written as

Z1 = S1[S1[i1]+S1[j1]] = S1[S0[j1]+S0[i1]] = S1[S0[S0[1]]+S0[1]] = S1[Y +X],

Chapter 5: Biases in Keystream Bytes of RC4

where we denote j1 = S0[1] by X and S0[S0[1]] = S0[X] by Y . Thus, we have

Pr(Z1 = v) =
N−1∑
X=0

N−1∑
Y=0

Pr(S0[1] = X ∧ S0[X] = Y ∧ S1[X + Y] = v).

Special cases depending on X, Y : Our goal is to write all probability
expressions in terms of S0. To express S1[X + Y] in terms of S0, we observe
that the state S1 is different from S0 in at most two places, i1 = 1 and j1 = X.
Thus, we need to treat specially the case X + Y = 1, which holds if and only
if Y = 1 − X, and X + Y = X, which holds if and only if Y = 0. Another
special case to consider is X = 1, which holds if and only if Y = X, where no
swap occurs from S0 to S1. These special cases are as follows:

• X + Y = 1 if and only if Y = 1−X, which implies
Z1 = S1[1] = S1[i1] = S0[j1] = S0[X] = Y = 1−X,

• X + Y = X if and only if Y = 0, which implies
Z1 = S1[X] = S1[j1] = S0[i1] = S0[1] = X, and

• X = 1 if and only if Y = X, which implies
Z1 = S1[X + Y] = S0[X + Y] = S0[1 + 1] = S0[2].

In all other circumstances, we would have Z1 = S1[X + Y] = S0[X + Y].
Considering all the special cases as discussed above, we obtain Pr(Z1 = v) in
terms of S0 as follows:

Pr(Z1 = v) =
N−1∑
X=0

Pr(S0[1] = X ∧ S0[X] = 1−X ∧ 1−X = v)

+
N−1∑
X=0

Pr(S0[1] = X ∧ S0[X] = 0 ∧ X = v)

+ Pr(S0[1] = 1 ∧ S0[2] = v)

+
∑
X 6=1

∑
Y 6=0,X,1−X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y] = v).

The first sum refers to the special case Y = 1 −X and the second one refers
to Y = 0. The special case X = 1, which holds if and only if Y = X, merges
to produce the third term, common point (X = 1, Y = 1). All other points on
X = 1 and Y = X are discarded. The last double summation term denotes
all other general cases.

121 5.1 Probability distribution of first byte

One may refer to Figure 5.1 to obtain a clearer exposition of the ranges of
summations required to be considered for this proof.

0
0

255

255

Y

X

Special case X = 1

Special case Y = X
] Common point

(X = 1, Y = 1)

Special case Y = 1−X

Special case Y = 0

Special cases General cases Discarded cases

Figure 5.1: X, Y dependent special cases and range of sums for evaluation of Pr(Z1 =
v) in terms of S0.

Special cases depending on v: The first summation term reduces to a single
point (X = 1 − v, Y = v), as we fix 1 −X = v and Y = 1 −X. The second
summation, similarly, reduces to the point (X = v, Y = 0). Furthermore, we
have two impossible cases in the double summation:

• (X = v, Y 6= 0) which implies
S1[v] = v, X + Y 6= v ⇒ Z1 = S1[X + Y] 6= v, and

• (X 6= 1− v, Y = v) which implies
S1[1] = S0[X] = v, X + Y 6= 1 ⇒ Z1 = S1[X + Y] 6= v.

Hence, the most general form for the probability Pr(Z1 = v) can be written as

Qv +
∑
X∈Lv

∑
Y ∈Tv,X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y] = v),

where Qv = Pr(S0[1] = 1 − v ∧ S0[1 − v] = v) + Pr(S0[1] = v ∧ S0[v] =
0) + Pr(S0[1] = 1 ∧ S0[2] = v).

Value of Qv: State S0 being a permutation, some of the probability terms in
Qv are 0 when v takes particular values. We have the following three cases:

Chapter 5: Biases in Keystream Bytes of RC4

• Case v = 0: We have Q0 = Pr(S0[1] = 1 ∧ S0[1] = 0) + Pr(S0[1] =
0 ∧ S0[0] = 0)+Pr(S0[1] = 1 ∧ S0[2] = 0) = Pr(S0[1] = 1 ∧ S0[2] = 0),
as S0 is a permutation.

• Case v = 1: We have Qv = Pr(S0[1] = 0 ∧ S0[0] = 1) + Pr(S0[1] =
1 ∧ S0[1] = 0)+Pr(S0[1] = 1 ∧ S0[2] = 1) = Pr(S0[1] = 0 ∧ S0[0] = 1),
as S0 is a permutation.

• Case v 6= 0, 1: Here we have no conflicts or special conditions as in the
previous cases, and hence the general form of Qv holds.

Combining the general formula for Pr(Z1 = v) and all three cases for Qv, we
obtain the desired theoretical probability distribution for the first byte Z1.

5.1.3 Estimation of the joint probabilities

We consider two special cases while computing the numeric values of Pr(Z1 =
v). First, we investigate RC4 PRGA where S0 is fed from the output of RC4
KSA, as in practice. Next, we probe into the scenario when S0 is random.

Assume that the initial permutation S0 of RC4 PRGA is constructed from
the regular KSA, i.e., the probabilities Pr(S0[u] = v) follow the distribution
mentioned in Proposition 3.1. However, we require the joint probabilities like
Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y] = v) in our formula derived in
Theorem 5.2, and we devise the following estimates for these joint probabilities.

• Consider the joint probability Pr(S0[u] = v ∧ S0[u′] = v′) where u 6=
u′ and v 6= v′. We can represent this by Pr(S0[u] = v ∧ S0[u′] =
v′) = Pr(S0[u] = v) · Pr(S0[u′] = v′ | S0[u] = v). The first term is
estimated directly from Proposition 3.1. For the second term, S0[u] =
v ⇒ S0[u′] 6= v. Thus we normalize Pr(S0[u′] = v) and estimate the
second term as

Pr(S0[u′] = v′ | S0[u] = v) ≈ Pr(S0[u′] = v′) + Pr(S0[u′] = v)
N − 1 .

• For the joint probability Pr(S0[u] = v ∧ S0[u′] = v′ ∧ S0[u′′] = v′′), we
can represent it by Pr(S0[u] = v) ·Pr(S0[u′] = v′ | S0[u] = v) ·Pr(S0[u′′] =

123 5.1 Probability distribution of first byte

v′′ | S0[u′] = v′ ∧ S0[u] = v). The first term comes from Proposition 3.1
and the second term as above. The third term is estimated as

Pr(S0[u′′] = v′′ | S0[u′] = v′ ∧ S0[u] = v)

≈ Pr(S0[u′′] = v′′) + Pr(S0[u′′] = v′)
N − 2 + Pr(S0[u′′] = v)

N − 2 .

We compute the theoretical values of Pr(Z1 = v) using Theorem 5.2 and
Proposition 3.1, along with the estimations for joint probabilities discussed
above. Figure 5.2 shows the theoretical and experimental probability distribu-
tions of Z1, where the experimental data is generated over 100 million runs of
RC4 PRGA using 256-byte (full length) secret keys1. The figure clearly shows
that our theoretical justification closely matches the experimental data, and
justifies the observation by Mironov [112].

0 32 64 96 128 160 192 224 255
Value v taken by the first output byte Z1 of RC4.

0.003885

0.003895

0.003905

0.003915

0.003925

0.003935

P
r
(Z

1
=
v)
.

Experimental (with 256-byte keys)
Theoretical (with KSA-generated S0)

Theoretical (with Random S0)

Figure 5.2: The probability distribution of the first output byte Z1.

As an alternative to the additive correction described above for estimating
the conditionals, one may consider multiplicative correction by normalizing the
probabilities as follows:

• Estimate Pr(S0[u′] = v′ | S0[u] = v) as Pr(S0[u′] = v′)
1− Pr(S0[u′] = v) .

1The typographic error ‘with 16 byte keys’ from [132, Fig.9] is corrected in this figure.

Chapter 5: Biases in Keystream Bytes of RC4

• Estimate Pr(S0[u′′] = v′′ | S0[u′] = v′ ∧ S0[u] = v) as

Pr(S0[u′′] = v′′)
1− Pr(S0[u′′] = v′)− Pr(S0[u′′] = v) .

We found that the numeric values of Pr(Z1 = v) estimated using the two
different models (additive and multiplicative) almost coincide and the graphs
fall right on top of one another.

If the initial permutation S0 of RC4 PRGA is considered to be random,
then we would have Pr(S0[u] = v) ≈ 1/N for all u, v, and the joint probabilities
can be computed directly (samples drawn without replacement). Substituting
all the relevant probability values, we get

Pr(Z1 = 0) ≈ Pr(Z1 = 1) ≈ 1
N
− 1
N(N − 1) , and

Pr(Z1 = v) ≈ 1
N

+ 1
N(N − 1)(N − 2) for 2 ≤ v ≤ 255,

which is almost a uniform distribution for 2 ≤ v ≤ 255. The dashed line
in Figure 5.2 shows the graph for this theoretical distribution, and it closely
matches our experimental data as well (we omit the experimental curve for
random S0 as it coincides with the theoretical one).

Remark 5.3. Theorem 5.1 is the special case v = 0 of Theorem 5.2 and hence
may seem redundant. However, we like to point out that the former has a
simple and straightforward proof assuming S0 to be random and the latter has
a rigorous general proof without any assumption on S0. The result of Theo-
rem 5.1 signifies that this negative bias is not an artifact of non-random S0

produced by RC4 KSA, rather it would be present, even if one starts PRGA
with a uniform random permutation.

5.2 Biases of initial bytes towards zero

In FSE 2001, Mantin and Shamir [103] proved the famous 2/N bias towards
the value 0 for the second byte of RC4 keystream. They also claimed that

• MS-Claim-1: Pr(Zr = 0) = 1
N

at PRGA rounds 3 ≤ r ≤ 255.

125 5.2 Biases of initial bytes towards zero

• MS-Claim-2: Pr(Zr = 0 | jr = 0) > 1
N

and Pr(Zr = 0 | jr 6= 0) < 1
N

at
PRGA rounds 3 ≤ r ≤ 255.

It is reasoned in [103] that the two biases in MS-Claim-2 cancel each other to
produce no bias in the event (Zr = 0) in rounds 3 to 255, thereby justifying MS-
Claim-1. In this section, contrary to MS-Claim-1, we show (in Theorem 5.5)
that Pr(Zr = 0) > 1

N
for all rounds r from 3 to 255. To prove the main result,

we will require Corollary 4.4. For ease of reference, we restate another version
of this corollary below.

Corollary 5.4 (same as Corollary 4.4). For PRGA rounds 3 ≤ r ≤ N − 1,

Pr(Sr−1[r] = r) ≈Pr(S1[r] = r)
(

1− 1
N

)r−2

+
r−1∑
t=2

r−t∑
w=0

Pr(S1[t] = r)
w! ·N

(
r − t− 1

N

)w (
1− 1

N

)r−3−w
.

5.2.1 Proof of biases in (Zr = 0) for 3 ≤ r ≤ N − 1

We shall assume the probabilistic model of uniform random keys to prove the
results. We assume actual RC4 next-state-function for the evolution of S and
i, j, and no randomness assumptions are made on the initial state S0 of PRGA.

Theorem 5.5. In PRGA rounds 3 ≤ r ≤ N − 1, probability Pr(Zr = 0) is:

Pr(Zr = 0) ≈ 1
N

+ cr
N2 ,

where cr =

N
N−1 (N · Pr(Sr−1[r] = r)− 1)− N−2

N−1 , for r = 3;

N
N−1 (N · Pr(Sr−1[r] = r)− 1) , otherwise.

Proof. The expression for cr has an extra term
(
−N−2
N−1

)
in the case r = 3, and

everything else is the same as in the general formula for 4 ≤ r ≤ N − 1. We
shall first prove the general formula for 4 ≤ r ≤ N − 1, and then justify the
extra term for the special case r = 3. We may write:

Pr(Zr = 0) = Pr (Zr = 0 ∧ Sr−1[r] = r) + Pr (Zr = 0 ∧ Sr−1[r] 6= r) . (5.1)

Chapter 5: Biases in Keystream Bytes of RC4

We will also use the expression Zr = Sr[Sr[ir] +Sr[jr]] = Sr[Sr[r] +Sr−1[ir]] =
Sr[Sr[r] + Sr−1[ir]], that is, Zr = Sr[Sr[r] + Sr−1[r]].

Calculation of Pr (Zr = 0 ∧ Sr−1[r] = r): In this case, Zr = 0, which
implies Sr[Sr[r] + r] = 0, and thus:

Pr (Zr = 0 ∧ Sr−1[r] = r) =
N−1∑
x=0

Pr (Sr[x+ r] = 0 ∧ Sr[r] = x ∧ Sr−1[r] = r) .

Now the events (Sr[x + r] = 0) and (Sr[r] = x) are both independent of
(Sr−1[r] = r), as a state update has occurred in the process, and Sr−1[r] = r

is one of the values that got swapped. Hence,

Pr (Zr = 0 ∧ Sr−1[r] = r)

=
N−1∑
x=0

Pr(Sr[x+ r] = 0) · Pr(Sr[r] = x | Sr[x+ r] = 0) · Pr (Sr−1[r] = r) .

We note that if there exists any bias in the event (Sr[x+ r] = 0), then it must
propagate from a similar bias in (S0[x+r] = 0), as was the case for (Sr−1[r] = r)
in Corollary 4.4. However, Pr(S0[x + r] = 0) = 1/N by Proposition 3.1, and
thus we assume Pr(Sr[x+r] = 0) ≈ 1/N as well. For Pr(Sr[r] = x | Sr[x+r] =
0), we have the following two cases:

x = 0 ⇒ x+ r = r, which gives (Sr[x+ r] = 0)⇔ (Sr[r] = x = 0), and

x 6= 0 ⇒ x+ r 6= r, which gives (Sr[x+ r] = 0)⇔ (Sr[r] = x 6= 0).

Moreover, in the second case, the value of Sr[r] is independent of Sr−1[r] be-
cause [r] = [ir] position got swapped to generate Sr from Sr−1. Thus,

Pr (Sr[x+ r] = 0 | Sr[r] = x) =

1, if x = 0;

1/(N − 1), if x 6= 0.
(5.2)

Combining all the above probability values, we get the probability of the con-

127 5.2 Biases of initial bytes towards zero

ditional event (Zr = 0 ∧ Sr−1[r] = r) as

Pr (Zr = 0 ∧ Sr−1[r] = r)

≈ 1
N
· Pr (Sr−1[r] = r) ·

N−1∑
x=0

Pr (Sr[x+ r] = 0 | Sr[r] = x)

= 1
N
· Pr(Sr−1[r] = r) ·

(
1 + (N − 1) · 1

N − 1

)
= 2
N
· Pr(Sr−1[r] = r). (5.3)

Now we only need to compute Pr (Zr = 0 ∧ Sr−1[r] 6= r) to complete this result.

Calculation of Pr (Zr = 0 ∧ Sr−1[r] 6= r): Similarly to the previous case,
we can derive Pr (Zr = 0 ∧ Sr−1[r] 6= r) as

∑
y 6=r

N−1∑
x=0

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x ∧ Sr−1[r] = y) .

In the above expression, we have y 6= r and x = r−y, which implies Sr[x+y] =
Sr[r] = 0 and Sr[r] = x = r − y 6= 0. This is a contradiction. Moreover, the
events (Sr[x + y] = 0) and (Sr[r] = x) are both independent of (Sr−1[r] = y),
as Sr−1[r] got swapped in the state update. Thus,

Pr (Zr = 0 ∧ Sr−1[r] 6= r)

=
∑
y 6=r

∑
x 6=r−y

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x) · Pr (Sr−1[r] = y) .

Similarly to the derivation of Equation (5.2), we obtain

Pr (Sr[x+ y] = 0 ∧ Sr[r] = x)

=

0 · (1/N) = 0, if x = 0;

(1/(N − 1)) · (1/N) = 1/(N(N − 1)), if x 6= 0.
(5.4)

The only difference occurs in the case x = 0. Here we get y 6= r and x = 0,
which implies Sr[x+ y] = Sr[y] = 0 and Sr[r] = x = 0. This is a contradiction
as y 6= r are distinct locations in the permutation Sr. In all other cases (x 6= 0),

Chapter 5: Biases in Keystream Bytes of RC4

the argument is same as before. Combining the above probabilities, we get

Pr (Zr = 0 ∧ Sr−1[r] 6= r)

≈
∑
y 6=r

Pr (Sr−1[r] = y)
0 +

∑
x 6=r−y,0

1
N(N − 1)

=
∑
y 6=r

Pr (Sr−1[r] = y) · (N − 2) · 1
N(N − 1)

= N − 2
N(N − 1) · (1− Pr (Sr−1[r] = r)) . (5.5)

Combining Equations (5.1), (5.3) and (5.5) should now produce the result.

Calculation for Pr(Zr = 0): Combining Equations (5.1), (5.3) and (5.5),
we obtain Pr(Zr = 0) as approximately equal to

2
N
· Pr(Sr−1[r] = r) + N − 2

N(N − 1) · (1− Pr(Sr−1[r] = r)) = 1
N

+ cr
N2 , (5.6)

where cr = N
N−1 (N · Pr(Sr−1[r] = r)− 1), as required in the general case.

Special case for r = 3: The expression for Pr (Zr = 0 ∧ Sr−1[r] = r) is
identical to that in the general case, that is, the same as in Equation (5.3).
However, for Pr (Zr = 0 ∧ Sr−1[r] 6= r), we have a special case. For r = 3,
if Sr−1[r] = S2[3] = 0, we have j3 = j2 + S2[3] = j2, and thus Z3 = 0 and
S2[3] = 0, which in turn implies

S3[S3[3]] = S3[S2[j3]] = S3[S2[j2]] = S3[S1[2]] = 0

S2[3] = S3[j3] = S3[j2] = S3[j1 + S1[2]] = 0.

This further implies j1 = S0[1] = 0, which poses a contradiction, as S0[1] =
S1[0] = 0 can only produce S2[i2] = S2[2] = 0 in the case j2 = 0, and may
never result in S2[3] = 0. Thus, for r = 3, Equation (5.5) changes as follows:

Pr (Zr = 0 ∧ Sr−1[r] 6= r)

≈ N − 2
N(N − 1) · (1− Pr (Sr−1[r] = r)− Pr (Sr−1[r] = 0))

= N − 2
N(N − 1) · (1− Pr (Sr−1[r] = r))− N − 2

N2(N − 1) , by Proposition 3.1.

129 5.2 Biases of initial bytes towards zero

This gives the special expression of cr = N
N−1 (N · Pr(Sr−1[r] = r)− 1)− N−2

N−1 .

The extra term does not appear in the general case 4 ≤ r ≤ N−1, because
we have Zr = 0 and Sr−1[r] = 0, which implies

Sr[Sr[r]] = Sr[Sr−1[jr]] = Sr[Sr−1[jr−1]] = Sr[Sr−2[r − 1]] = 0

Sr−1[r] = Sr[jr] = Sr[jr−1] = Sr[jr−2 + Sr−2[r − 1]] = 0

This further implies jr−2 = 0, which does not pose any contradiction for r >
3, as we can assume jr−2 to be random and independent to the condition
Sr−1[r] = y = 0 in these cases. Hence the complete result.

Corollary 5.6. For N = 256 and 3 ≤ r ≤ 255, the probability Pr(Zr = 0) is
bounded as follows:

1
N

+ 1.337057
N2 ≥ Pr(Zr = 0) ≥ 1

N
+ 0.242811

N2 .

Numerical calculation of cr for N = 256 and 3 ≤ r ≤ 255 gives that cr
decreases for 4 ≤ r ≤ 255 (as in Figure 5.3). Thus, c4 = 1.337057 ≥ cr ≥
0.242811 = c255 for 4 ≤ r ≤ 255, and the special case c3 = 0.351089 for r = 3
also falls within the same bounds. Hence the bounds on Pr(Zr = 0).

3 32 64 96 128 160 192 224 255
Index r of RC4 keystream bytes.

0.0

0.5

1.0

1.5

V
a
lu
e
 o
f
c r
.

Figure 5.3: Value of cr versus r during RC4 PRGA (N = 256 and 3 ≤ r ≤ 255).

Figure 5.4 depicts a comparison between the theoretical and experimental
values of Pr(Zr = 0) plotted against r, where N = 256 and 3 ≤ r ≤ 255,
and the experimentation is performed over 1 billion runs of RC4, each with a
randomly generated 16-byte key.

Chapter 5: Biases in Keystream Bytes of RC4

3 32 64 96 128 160 192 224 255
Index r of RC4 keystream bytes.

0.00390

0.00391

0.00392

0.00393

P
r
(Z

r
=
0
).

Experimental (16 byte key)
Theoretical
Probability 1/N (ideal case)

Figure 5.4: Pr(Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255).

Let Er denote the event (Zr = 0) for some 3 ≤ r ≤ 255. If we write p = 1/N
and q = cr/N , then to distinguish RC4 keystream from random sequence based
on event Er, one would need number of samples of the order of (1/N)−1 ·
(cr/N)−2 ∼ N3, which is quite high. However, a potential combination of
these biases for r = 3, . . . , 255 may be applicable towards an attack against
broadcast RC4, as suggested in [98, 132]. In a recent work [5], the authors
argued that the approach proposed in [98, 132] may be impractical. They
proposed a new method [5] to combine all biases in (Zr = 0) for r = 3, . . . , 255
towards a practical attack against broadcast RC4. The biases in (Zr = 0) have
also been exploited recently in [70] to mount an independent plaintext-recovery
attack on RC4 in broadcast mode.

In this section, we have contradicted MS-Claim-1 by proving the biases in
Pr(Zr = 0) for all 3 ≤ r ≤ 255. If the supporting statement MS-Claim-2 was
correct, then one would have a positive bias Pr(Zr = 0 | jr = 0) > 1

N
. However,

we have run extensive experiments to confirm that Pr(Zr = 0 | jr = 0) ≈ 1
N
,

thereby contradicting MS-Claim-2 as well.

5.2.2 Guessing state information using the bias in Zr

Mantin and Shamir [103] used the bias of the second byte of RC4 keystream
to guess some information regarding S0[2], based on the following:

Pr(S0[2] = 0 | Z2 = 0) = Pr(S0[2] = 0)
Pr(Z2 = 0) ·Pr(Z2 = 0 | S0[2] = 0) ≈ 1/N

2/N · 1 = 1
2 .

131 5.2 Biases of initial bytes towards zero

Note that in the above expression, no randomness assumption is required to
obtain Pr(S0[2] = 0) = 1/N . This probability is exact and can be derived
by substituting u = 2, v = 0 in Proposition 3.1. Hence, on every occasion we
obtain Z2 = 0 in the keystream, we can guess S0[2] with probability 1/2, and
this is significantly more than a random guess with probability 1/N .

In this section, we use the biases in bytes 3 to 255 (observed in Theo-
rem 5.5) to extract similar information about the state array Sr−1 using the
RC4 keystream byte Zr. In particular, we try to explore the conditional prob-
ability Pr(Sr−1[r] = r | Zr = 0) for 3 ≤ r ≤ 255, as follows:

Pr(Sr−1[r] = r | Zr = 0) = Pr(Zr = 0 ∧ Sr−1[r] = r)
Pr(Zr = 0) ≈

Pr(Sr−1[r] = r) · 2
N

1
N

+ cr

N2
.

In the above expression, cr is as in Theorem 5.5, and one may write:

Pr(Sr−1[r] = r)

=

1/N + (1/N − 1/N2) · (cr + (N − 2)/(N − 1)) , for r = 3;

1/N + (1/N − 1/N2) · cr, for 3 < r ≤ N − 1.

3 32 64 96 128 160 192 224 255
Index r of RC4 keystream bytes.

0.005

0.008

0.011

0.014

0.017

0.020

P
r
(S

r−
1
[r
]=

r
|Z

r
=
0
).

Experimental (16 byte key)
Theoretical
Probability 2/N

Figure 5.5: Pr(Sr−1[r] = r | Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255).

In Figure 5.5, we plot the theoretical values of Pr(Sr−1[r] = r | Zr = 0) for
3 ≤ r ≤ 255 and N = 256, and the corresponding experimental values over 1
billion runs of RC4 with random 16-byte keys. It clearly shows that all values
of Pr(Sr−1[r] = r | Zr = 0) for N = 256 and 3 ≤ r ≤ 255 (both theoretical
and experimental) are greater than 2/N . Thus, one can guess Sr−1[r] with

Chapter 5: Biases in Keystream Bytes of RC4

probability more than twice of that of a random guess, every time we obtain
Zr = 0 in the keystream.

Remark 5.7. In proving Corollary 4.4, we use the initial condition S1[r] = r

to branch out the probability paths, and not S0[r] = r as in [98, Lemma 1].
This is because the probability of S[r] = r takes a leap from around 1/N
in S0 to about 2/N in S1, and this turns out to be the actual cause behind
the bias in Sr−1[r] = r. Consideration of this issue eventually corrects the
mismatches observed in the graphs of [98, Figure 2 and Figure 3]. Note that
Theorem 5.5, Figure 5.4 and Figure 5.5 are, respectively, the corrected versions
of [98, Theorem 1, Figure 2 and Figure 3], and are also presented in [132].

5.3 Proof of some isolated short-term biases

In this section, we prove all open isolated short-term biases recently identified
through extensive experimentation by AlFardan, Bernstein, Paterson, Poetter-
ing and Schuldt [5] and Isobe, Ohigashi, Watanabe and Morii [70]. The case
of Z1 = 129 is related to the length of the secret key and the ‘anomaly pairs’,
and hence we treat it separately in Chapter 3. In this section, we present our
results from [128], as summarized in Table 5.1.

Table 5.1: Proved short-term single-byte keystream biases of RC4.

Biased event Discovered Theory [128] Experiment [5,14,70]
Z2 = 129 [5, 127] 1/N − 2/N2 1/N − 1.82/N2

Z2 = 172 [5] 1/N + 0.28/N2 1/N + 0.2/N2

Z4 = 2 [5] 1/N + 1/N2 1/N + 0.8/N2

Z256 = 0 [5, 70] 1/N − 0.36/N2 1/N − 0.38/N2

Z257 = 0 [70] 1/N + 0.36/N2 1/N + 0.35/N2

5.3.1 Proof of bias in (Z2 = 129)

We notice that the bias in (Z2 = 129) for N = 256 is a special case of the
general bias in (Z2 = N/2+1) for any even value of N . We present the general
result as follows.

133 5.3 Proof of some isolated short-term biases

Theorem 5.8. Suppose that the initial permutation S0 of RC4 PRGA is ran-
domly chosen from the set of all permutations of {0, 1, . . . , N − 1}, where N is
even. Then Pr(Z2 = N/2 + 1) ≈ 1/N − 2/N2.

Proof. We consider two mutually exclusive paths from the initial state S0.

Path 1: Consider S0[2] = 0 and S0[1] 6= 2. From the analysis of Mantin
and Shamir [103] for the bias in (Z2 = 0), we know that Z2 = 0 in this
situation. Thus, Z2 6= N/2 + 1.

Path 2: Consider S0[2] = N/2 + 1 and S0[1] 6= 2. After the first round,
j1 = S0[1] = X 6= 2, and thus S1[2] = N/2 + 1 and S1[X] = X. In
the second round, we get j2 = (N/2 + 1) + X, and let us say S1[j2] =
S1[(N/2 + 1) + X] = Z. Since S1 is a permutation, X = S1[X] 6=
S1[(N/2 + 1) + X] = Z. After the swap in the second round, we get
Z2 = S2[(N/2 + 1) + Z] 6= S2[(N/2 + 1) + X] = N/2 + 1. Figure 5.6
illustrates the scenario.

We denote the above mutually exclusive events as A = (S0[2] = 0 ∧ S0[1] 6= 2)
and B = (S0[2] = N/2 + 1∧ S0[1] 6= 2) to obtain Pr(Z2 = N/2 + 1) as follows.

Pr(Z2 = N/2 + 1 | A) · Pr(A) + Pr(Z2 = N/2 + 1 | B) · Pr(B)

+ Pr(Z2 = N/2 + 1 | A ∧B) · Pr(A ∧B)

≈ 0 + 0 + Pr(Z2 = N/2 + 1 | A ∧B) · (1− 2/N).

Assuming Pr(Z2 = N/2 + 1 | A∧B) ≈ 1/N due to random association, we get
Pr(Z2 = N/2 + 1) ≈ (1/N) · (1− 2/N) = 1/N − 2/N2.

5.3.2 Proof of bias in (Z2 = 172)

We shall assume the probabilistic model of uniform random keys to prove this
result. We assume actual RC4 next-state-function for the evolution of S and
i, j, and no randomness assumptions are made on the initial state S0 of PRGA.

Theorem 5.9. In RC4 with N = 256, Pr(Z2 = 172) ≈ 1/N + 0.28/N2.

Chapter 5: Biases in Keystream Bytes of RC4

X N/2 + 1 Y Z

0 1 2 X (N/2 + 1) +X

i, j

Y N/2 + 1 X Z

i j

Y Z X N/2 + 1 Z2

i j

Figure 5.6: First two rounds of PRGA when S0[2] = N/2 + 1 and S0[1] 6= 2.

Proof. We consider following mutually exclusive paths from initial state S0.

Path 1. Consider S0[2] = 0. If S0[1] 6= 2, from the second-byte bias of Mantin
and Shamir [103], we know that Z2 = 0 in this situation. Thus, Z2 6= 172.
In case S0[1] = 2, we may assume that Z2 = 172 occurs with probability
1/N . Thus, Pr(Z2 = 172 | S0[2] = 0) ≈ 1/N2.

Path 2. Consider S0[2] = 86. In this case, we have the following sub-paths.

1. Consider S0[1] = 172. In this case, j1 = S0[1] = 172 results in a
swap to produce S1[172] = 172, while S1[2] = 86 remains untouched.
In the next round, j2 = j1 +S1[2] = 172+86 = 258 = 2 = i2 ensures
that there is no swap in the S-array. Thus, Z2 = S2[S2[i2]+S2[j2]] =
S1[86 + 86] = S1[172] = 172. Note that this path is possible for any
X is S0[1] = X and S0[2] = X/2, and if X + X/2 = 2. Thus, this
path results in the modular equation 3X ≡ 4 mod N , which has a
unique solution X = 172 for N = 256.

2. Consider S0[1] 6= 172 and S0[S0[1] + 86] = 172. In the first round,
S1[2] = 86 remains untouched, and j2 = j1 + S1[2] = S0[1] + 86
results in a swap to produce S2[2] = S1[j2] = S1[S0[1] + 86] =
S0[S0[1] + 86] = 172 and S2[S0[1] + 86] = 86. Thus, in the second
round, we get Z2 = S2[S2[i2] +S2[j2]] = S2[172 + 86] = S2[2] = 172.
Figure 5.7 illustrates the scenario.

135 5.3 Proof of some isolated short-term biases

X 86 Y 172

0 1 2 X X + 86

i, j

Y 86 X 172

i j

Y 172 X 86 Z2

i j

Figure 5.7: The first two rounds of RC4 main cycle when S0[2] = 86, S0[1] 6= 2, 172
and S0[S0[1] + 86] = 172.

Let us denote the aforesaid events as B = (S0[2] = 86), C = (S0[1] =
172), and D = (S0[S0[1] + 86] = 172). This results in

Pr(Z2 = 172 | S0[2] = 86) = Pr(Z2 = 172 | B)

= Pr(Z2 = 172 | B ∧ C) · Pr(C) + Pr(Z2 = 172 | B ∧ C) · Pr(C)

≈ 1 · (1/N) +
(
Pr(Z2 = 172 | B ∧ C ∧D) · Pr(D)

+ Pr(Z2 = 172 | B ∧ C ∧D) · Pr(D)
)
· (1− 1/N)

≈ (1/N) + (1 · (1/N) + (1/N) · (1− 1/N)) · (1− 1/N) ≈ 3/N − 3/N2.

Path 3. Considering S0[2] = 172, Z2 = 172 if S0[1] = 2 and S0[4] = N−1, and
in all other cases, Z2 6= 172. Thus, Pr(Z2 = 172 | S0[2] = 172) ≈ 1/N2.

Let us combine the aforesaid paths to obtain Pr(Z2 = 172) as

Pr(Z2 = 172 | S0[2] = 0) · Pr(S0[2] = 0)

+ Pr(Z2 = 172 | S0[2] = 86) · Pr(S0[2] = 86)

+ Pr(Z2 = 172 | S0[2] = 172) · Pr(S0[2] = 172)

≈ (1/N2) · Pr(S0[2] = 0) + (3/N − 3/N2) · Pr(S0[2] = 86)

+ (1/N2) · Pr(S0[2] = 172).

In the above equation, computing the probability terms involving S0 using the

Chapter 5: Biases in Keystream Bytes of RC4

formula of Mantin [100], we get Pr(Z2 = 172) ≈ 1/N + 0.28/N2.

5.3.3 Proof of bias in (Z4 = 2)

Theorem 5.10. Suppose that the initial permutation S0 of RC4 PRGA is
randomly chosen from the set of all permutations of {0, 1, . . . , N − 1}, where
N = 256. Then Pr(Z4 = 2) ≈ 1/N + 1/N2.

Proof. We observe the main paths for this bias as follows.

Path 1. Consider j4 = 4. Then, Z4 = S4[S4[4] + S4[j4]] = S4[2 · S4[4]]. We
may further consider some sub-paths within this case.

Subpath 1: S4[4] = 2 gives Z4 = S4[4] = 2 with probability 1. However,
the event (S4[4] = 2 | j4 = 4) occurs with probability approximately
2/N , as follows.

• If S0[4] = 2 and j1, j2, j3 6= 4, then S4[4] = 2 is fixed during first
three rounds. Thus, Pr(S4[4] = 2 | j4 = 4 ∧ S0[4] = 2) ≈ 1.

• If S0[1] = 2 and j3 6= 4, it can be shown that S4[4] = 2 in first three
rounds. Thus, Pr(S4[4] = 2 | j4 = 4 ∧ S0[1] = 2) ≈ 1.

• Consider S0[4] 6= 2 and S0[1] 6= 2. In this case, we show that
S4[4] = 2 and j4 = 4 can not occur simultaneously. Suppose the
event (j4 = 4 ∧ S4[4] = 2) does occur. Then we have j3 = 0,
and hence S2[4] = S3[4] = S4[4] = 2. As we know S0[4] 6= 2,
this implies j1 = 4 and/or j2 = 4. If j1 = 4 and j2 = 4, we get
S2[4] = 0, contradiction, as S2[4] = 2. If j1 = 4 and j2 6= 4, we
get S1[4] = S2[4] = 4, contradiction, as S2[4] = 2. Consider j1 6= 4
and j2 = 4. Since j2 = S0[1] + S1[2] and S0[1] 6= 2, we must have
S2[4] = S1[2] 6= 2, a contradiction.

In summary, Pr(S4[4] = 2 | j4 = 4) ≈ 2/N , and Pr(Z4 = 2 ∧ S4[4] =
2 | j4 = 4) ≈ 2/N .

Subpath 2: S4[4] = N/2 + 2 gives Z4 = S4[N + 4] = S4[4] = N/2 + 2 6= 2.
So, Pr(Z4 = 2 ∧ S4[4] = N/2 + 2 | j4 = 4) = 0.

137 5.3 Proof of some isolated short-term biases

Subpath 3: S4[4] = 0 gives Z4 = S4[0] = 2 with probability 1/N . How-
ever, the event (S4[4] = 0 | j4 = 4) occurs with probability 2/N :

• If S0[1] = 2 and S0[3] = 0, then j1 = 2, S1[2] = S0[1] = 2, which
implies j2 = 4. This produces S2[4] = S1[2] = 2, and we get j3 =
j2 = 4 because of S2[3] = S1[3] = S0[3] = 0. After the third round,
S3[4] = S2[3] = 0, and in the next round, j4 = j3 = 4 ensures no
swap. Thus, we get both j4 = 4 and S4[4] = S3[4] = 0.

• In other situations, S4[4] = 0 and j4 = 4 occur randomly.

In summary,

Pr(S4[4] = 0 | j4 = 4) ≈ 2/N, and

Pr(Z4 = 2 ∧ S4[4] = 0 | j4 = 4) ≈ 2/N2.

Subpath 4: S4[4] 6= 0, 2, N/2 + 2 gives Z4 = 2 with probability approxi-
mately 1/N due to random association. Due to the previous subpaths,
we know that the event (S4[4] 6= 0, 2, N/2 + 2 | j4 = 4) occurs with
probability (1− 5/N). Thus,

Pr(Z4 = 2 ∧ S4[4] 6= 0, 2, N/2 + 2 | j4 = 4) ≈ (1/N) · (1− 5/N).

Combining all subpaths mentioned above, we get Pr(Z4 = 2∧ j4 = 4) as

Pr(Z4 = 2 ∧ S4[4] = 2 | j4 = 4) · Pr(j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] = N/2 + 2 | j4 = 4) · Pr(j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] = 0 | j4 = 4) · Pr(j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] 6= 0, 2, N/2 + 2 | j4 = 4) · Pr(j4 = 4)

= (2/N) · (1/N) + 0 + (2/N2) · (1/N) + (1/N − 5/N2) · (1/N)

= 3/N2 − 3/N3.

Path 2. Consider j4 6= 4. Then, Z4 = S4[S4[4]+S4[j4]] = S4[S4[4]+X], where
X = S4[j4] 6= S4[4], say. Here we may consider two subpaths, as follows.

Subpath 1: S4[4] = 2 gives Z4 = S4[2 + X] 6= S4[4] = 2, as X = S4[j4] 6=
S4[4] = 2 for j4 = 4. Thus we get Pr(Z4 = 2 ∧ S4[4] = 2 | j4 6= 4) = 0.

Chapter 5: Biases in Keystream Bytes of RC4

Subpath 2: S4[4] 6= 2 gives Z4 = 2 with due to random association. Thus
we get Pr(Z4 = 2∧S4[4] 6= 2 | j4 6= 4) ≈ 1/N ·(1−1/N) = (1/N−1/N2).

Combining the aforesaid subpaths, we have Pr(Z4 = 2 ∧ j4 6= 4) as

Pr(Z4 = 2 ∧ S4[4] = 2 | j4 6= 4) · Pr(j4 6= 4)

+ Pr(Z4 = 2 ∧ S4[4] 6= 2 | j4 6= 4) · Pr(j4 6= 4)

= 0 + (1/N − 1/N2) · (1− 1/N) = 1/N − 2/N2 + 1/N3.

Adding the contributions from the two mutually exclusive paths above, we get
the desired probability Pr(Z4 = 2) computed as

Pr(Z4 = 2)

= Pr(Z4 = 2 ∧ j4 = 4) + Pr(Z4 = 2 ∧ j4 6= 4)

= (3/N2 − 3/N3) + (1/N − 2/N2 + 1/N3) = 1/N + 1/N2 − 2/N3.

Thus we obtain Pr(Z4 = 2) ≈ 1/N + 1/N2.

5.3.4 Proof of bias in (Z256 = 0)

We shall assume the probabilistic model of uniform random keys to prove this
result. We assume actual RC4 next-state-function for the evolution of S and
i, j, and no randomness assumptions are made on the initial state S0 of PRGA.

Theorem 5.11. In RC4 with N = 256, Pr(ZN = 0) ≈ 1/N − 0.36/N2.

Proof. Let us consider the following two paths.

Path 1. Consider S1[0] = 0. In this case, if j2, . . . , jN−1 are all non zero,
then one can check that ZN 6= 0. In all other cases, one may consider
Pr(ZN = 0 | S1[0] = 0) ≈ 1/N due to random association. Thus,
Pr(ZN = 0 | S1[0] = 0) ≈

(
1− (1− 1/N)N−2

)
· (1/N).

Path 2. Consider S1[0] 6= 0. We may consider following sub-paths, depending

139 5.3 Proof of some isolated short-term biases

on state SN−3. Denote A := ZN = 0, B := S1[0] 6= 0 to get:

Pr(ZN = 0 | S1[0] 6= 0) = Pr(A | B)

= Pr(A | B ∧ SN−3[0] = 0) · Pr(SN−3[0] = 0 | S1[0] 6= 0)

+ Pr(A | B ∧ SN−3[N − 2] = 0) · Pr(SN−3[N − 2] = 0 | S1[0] 6= 0)

+ Pr(A | B ∧ SN−3[N − 1] = 0) · Pr(SN−3[N − 1] = 0 | S1[0] 6= 0)

+
N−3∑
x=1

Pr(A | B ∧ SN−3[x] = 0) · Pr(SN−3[x] = 0 | S1[0] 6= 0).

Case 1: If SN−3[0] = 0 and jN−2, jN−1 6= 0, we have SN−1[0] = 0, which
implies jN = jN−1 and SN−1[jN−1] 6= jN−1. Thus, ZN = SN [SN−1[jN] +
SN−1[0]] = SN [SN−1[jN−1]] 6= SN [jN−1] = SN [jN] = SN−1[0] = 0. Thus
for ZN = 0, we must have either jN−2 = 0 or jN−1 = 0 in this case,
and in each case, ZN = 0 will occur with probability 1/N of random
association. Hence Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[0] = 0) ≈ 2/N2.

Case 2: If SN−3[N − 2] = 0 and jN−2 = 0, we have SN−2[0] = 0 and
jN−1 = SN−2[N − 1] 6= 0. Thus, SN−1[0] = 0 and jN = jN−1, which gives
ZN = SN [SN−1[0] + SN−1[jN]] = SN [SN−1[jN−1]] = SN [SN−2[N − 1]] =
SN [jN−1] = SN [jN] = SN−1[0] = 0. So, Pr(ZN = 0 | S1[0] 6= 0∧SN−3[N−
2] = 0 ∧ jN−2 = 0) = 1. On the other hand, if SN−3[N − 2] = 0 and
jN−2 6= 0, then ZN 6= 0 where jN−1 6= 0 and SN−1[jN] = 0, and ZN = 0
due to random association in all other cases. So, Pr(ZN = 0 | S1[0] 6=
0 ∧ SN−3[N − 2] = 0 ∧ jN−2 6= 0) ≈ 1/N − 1/N2. Combining the two
items as above, we get

Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[N − 2] = 0) ≈ 2/N − 2/N2.

Case 3: Similarly for SN−3[N − 1] = 0, it can be proved that Pr(ZN =
0 | S1[0] 6= 0 ∧ SN−3[N − 1] = 0) ≈ 2/N − 2/N2.

Case 4: Now consider the case SN−3[x] = 0 for 1 ≤ x ≤ N − 3. If
jN−2 6= x, jN−1 6= x and jN = x, one can verify that ZN 6= 0. In all other
cases, ZN = 0 occurs with probability 1/N . Thus for 1 ≤ x ≤ N − 3,
Pr(ZN = 0 | S1[0] 6= 0 ∧ SN−3[x] = 0) ≈ 1/N − 1/N2.

Now, let us consider the conditional events (SN−3[x] = 0 | S1[0] 6= 0),

Chapter 5: Biases in Keystream Bytes of RC4

for 0 ≤ x ≤ N − 1, to complete the picture. Starting with S1[0] 6=
0, if j2, . . . , jN−3 are all non zero, we have SN−3[0] 6= 0 as well. So,
Pr(SN−3[0] = 0 | S1[0] 6= 0) =

(
1− (1− 1/N)N−4

)
· (1/N) = PA, say.

For all x 6= 0, we may now assume Pr(SN−3[x] = 0 | S1[0] 6= 0) ≈
(1−PA)/(N − 1) = PB, say. Taking into account the contributions from
all four sub-cases within this path, we get

Pr(ZN = 0 | S1[0] 6= 0)

= (2/N2) · PA + (2/N − 2/N2) · PB
+ (2/N − 2/N2) · PB + (1/N − 1/N2) · (1− PA − 2PB)

= (1/N − 1/N2)− (1/N − 3/N2) · PA + (2/N − 2/N2) · PB.

Combining the above two paths, we get Pr(ZN = 0) as

Pr(ZN = 0 | S1[0] = 0) · P (S1[0] = 0) + Pr(ZN = 0 | S1[0] 6= 0) · P (S1[0] 6= 0)

≈
(
1− (1− 1/N)N−2

)
· (1/N) · (2/N)

+ ((1/N − 1/N2)− (1/N − 3/N2) · PA
+ (2/N − 2/N2) · PB) · (1− 2/N).

For N = 256, as in the case with practical RC4, this result produces the value
Pr(ZN = 0) ≈ 1/N − 0.36/N2.

5.3.5 Proof of bias in (Z257 = 0)

We shall assume the probabilistic model of uniform random keys to prove this
result. We assume actual RC4 next-state-function for the evolution of S and
i, j, and no randomness assumptions are made on the initial state S0 of PRGA.

Theorem 5.12. In RC4 with N = 256, Pr(ZN+1 = 0) ≈ 1/N + 0.36/N2.

Proof. We write ZN+1 = SN+1[SN [1]+SN [jN+1]], and consider following paths.

Path 1. Consider the case SN [1] = 1, where we may write ZN+1 = SN+1[1 +
SN [jN+1]]. If SN [jN+1] = 0, we have ZN+1 = SN+1[1] = SN [jN+1] = 0.
Otherwise if SN [jN+1] = X 6= 0, we have ZN+1 = SN+1[1 + X] = 0 only

141 5.4 Periodic long-term bias in RC4

due to random association. Let us denote events A = (SN [1] = 1) and
B = (SN [jN+1] = 0) to get

Pr(ZN+1 = 0 | A)

= Pr(ZN+1 = 0 | A ∧B) · Pr(B) + Pr(ZN+1 = 0 | A ∧B) · Pr(B)

≈ 1 · (1/N) + (1/N) · (1− 1/N) = 2/N − 1/N2.

Path 2. Consider the case SN [1] = X 6= 1. Here we have ZN+1 = SN+1[X +
SN [jN+1]]. If SN [jN+1] = 0, we will get ZN+1 = SN+1[X] 6= SN+1[1] =
SN [jN+1] = 0. Otherwise, for SN [jN+1] = Y 6= 0, we may have ZN+1 =
SN+1[X + Y] = 0 due to random association. Let us denote events
A = (SN [1] = 1) and B = (SN [jN+1] = 0) to get

Pr(ZN+1 = 0 | A)

= Pr(ZN+1 = 0 | A ∧B) · Pr(B) + Pr(ZN+1 = 0 | A ∧B) · Pr(B)

≈ 0 + (1/N) · (1− 1/N) = 1/N − 1/N2.

From [132, Theorem 1], we get Pr(SN [1] = 1) ≈ 0.00532 for N = 256. Thus,

Pr(ZN+1 = 0)

= Pr(ZN+1 = 0 | A) · Pr(A) + Pr(ZN+1 = 0 | A) · Pr(A)

≈ (2/N − 1/N2) · (0.00532) + (1/N − 1/N2) · (1− 0.00532).

For N = 256, as in the case with practical RC4, this produces the value
Pr(ZN+1 = 0) ≈ 1/N + 0.36/N2.

5.4 Periodic long-term bias in RC4

The biases discussed so far are prevalent in the initial bytes of the RC4
keystream, and are generally referred to as the short-term biases. It is a
common practice to discard a few hundred initial bytes of the keystream to
avoid these biases, and this motivates the search for long-term biases in RC4
that are present even after discarding an arbitrary number of initial bytes.

Chapter 5: Biases in Keystream Bytes of RC4

The first result in this direction was observed in 1997 by Golic [52], where
certain correlation was found between the least significant bits of the two non-
consecutive output bytes Zr and Zr+2, for all rounds r of RC4. In 2000, a set
of results was proposed by Fluhrer and McGrew [45], where the biases depend
upon the frequency of occurrence of certain digraphs in the RC4 keystream.
Later in 2005, Mantin [102] improved these to obtain the ABSAB distin-
guisher, which depends on the repetition of digraph AB in the keystream after
a gap of string S having G bytes. This is the best long-term distinguisher
of RC4 to date. In 2008, Basu et al. [12] identified another conditional long-
term bias, depending on the relationship between two consecutive bytes in the
keystream.

In this section, we prove that the event (ZwN+2 = 0 ∧ ZwN = 0) is
positively biased for all w ≥ 1. After the first long-term bias observed by
Golic [52] in 1997, this is the only one that involves non-consecutive bytes of
RC4 keystream. Golic [52] proved a strong bitwise (only least significant bit)
correlation between ZwN and ZwN+2, while we prove a byte-wise correlation.

Theorem 5.13. For any integer w ≥ 1, assume that the permutation SwN is
randomly chosen from the set of all possible permutations of {0, . . . , N − 1}.
Then Pr(ZwN+2 = 0 ∧ ZwN = 0) ≈ 1/N2 + 1/N3.

Proof. The positive bias in Z2, proved in [103], propagates to round (wN + 2)
if jwN = 0. Mantin and Shamir’s observation [103, Theorem 1] implies

Pr(ZwN+2 = 0 | jwN = 0) ≈ 2/N − 1/N2. (5.7)

If jwN 6= 0, we observe that ZwN+2 does not take the value 0 by uniform
random association. In particular, we get the following:

Pr(ZwN+2 = 0 | jwN 6= 0) ≈ 1/N − 1/N2. (5.8)

For ZwN , we have iwN = 0, and when jwN = 0 (this happens with probability
1/N), no swap takes place and the output is ZwN = SwN [2 · SwN [0]]. Two
cases may arise from here. If SwN [0] = 0, then ZwN = SwN [0] = 0 for sure.
Otherwise if SwN [0] 6= 0, the output ZwN takes the value 0 only due to random

143 5.4 Periodic long-term bias in RC4

association. Combining the cases,

Pr(ZwN = 0 | jwN = 0) ≈ 1/N · 1 + (1− 1/N) · 1/N = 2/N − 1/N2. (5.9)

Similarly to Pr(ZwN+2 = 0 | jwN 6= 0), it is easy to show that

Pr(ZwN = 0 | jwN 6= 0) ≈ 1/N − 1/N2. (5.10)

Now, we may compute the joint probability Pr(ZwN+2 = 0 ∧ ZwN = 0) as

Pr(ZwN+2 = 0 ∧ ZwN = 0 ∧ jwN = 0) + Pr(ZwN+2 = 0 ∧ ZwN = 0 ∧ jwN 6= 0).

Given jwN = 0, bytes ZwN+2 and ZwN can be considered independent. Using
Equations (5.7) and (5.9), we get Pr(ZwN+2 = 0 ∧ ZwN = 0 ∧ jwN = 0) as

Pr(ZwN+2 = 0 | jwN = 0) · Pr(ZwN = 0 | jwN = 0) · Pr(jwN = 0)

≈ (2/N − 1/N2) · (2/N − 1/N2) · (1/N) ≈ 4/N3 − 4/N4.

From Equations (5.8), (5.10), we get Pr(ZwN+2 = 0 ∧ ZwN = 0 ∧ jwN 6= 0) as

Pr(ZwN+2 = 0 | jwN 6= 0) · Pr(ZwN = 0 | jwN 6= 0) · Pr(jwN 6= 0)

≈ (1/N − 1/N2)2 · (1− 1/N) ≈ 1/N2 − 3/N3 + 3/N4.

Adding the two expressions, Pr(ZwN+2 = 0 ∧ ZwN = 0) ≈ 1/N2 + 1/N3.

This is the first long-term byte-wise correlation to be observed between two
non-consecutive bytes (ZwN , ZwN+2). The gap between the related bytes in
this case is 1, and we could not find any other significant long-term bias with
this gap. An interesting direction for experimentation and analysis would be
to look for similar long-term biases with larger gaps between the related bytes.

this page intentionally left blank

Part II

Implementation of RC4 Stream
Cipher

145

Chapter 6
Overview of RC4 Implementation

In this part of the thesis, we study several aspects of the hardware implementa-
tion of RC4 stream cipher, with respect to its high-throughput implementation.
We present two new hardware designs in Chapters 7 and 8 that allow fast gen-
eration of RC4 keystream. The better of the two is the fastest known hardware
implementation of the cipher till date. To motivate our contribution, we first
discuss the current literature on RC4 hardware implementations.

6.1 Existing hardware implementations

We perform a survey of RC4 hardware implementations with a focus on its
throughput efficiency, where the throughput is defined as the average number
of cycles required to generate each byte of output keystream of the cipher.
Thus, throughout this thesis, we shall refer to the throughput in terms of
‘cycles-per-byte’ or ‘bytes-per-cycle’ keystream generation rate of RC4.

In 2003, a 3 cycles-per-byte implementation of RC4 on a custom pipelined
hardware was proposed by Kitsos, Kostopoulos, Sklavos and Koufopavlou [79].
In the same year, a patent by Matthews Jr. [106] was disclosed, which pro-
vided a similar 3 cycles-per-byte architecture using multi-port memory units.
Another patent by Matthews Jr. [105] was disclosed in 2008, which proposed
a new design for RC4 hardware using pipeline architecture. This increased the
efficiency of the cipher to obtain a 1 byte-per-cycle throughput.

147

Chapter 6: Overview of RC4 Implementation

6.1.1 Kitsos et al custom pipeline design [79]

In 2003, Kitsos, Kostopoulos, Sklavos and Koufopavlou [79] proposed a custom
pipelined architecture for RC4, as in Figure 6.1 (originally [79, Figure 3]).

Figure 6.1: RC4 architecture proposed by Kitsos et al [79, Figure 3].

The storage unit for the design proposed in [79] is based on a three-part
block RAM for the S-box, and a control unit is designed to synchronize the
operations of the storage architecture. The design provides a throughput of N
keystream bytes in 3N + 768 cycles, that is, 3 cycles-per-byte for large N .

149 6.1 Existing hardware implementations

6.1.2 Matthews Jr. multi-port memory units [106]

In 2003, a US patent published by Matthews Jr. [106] proposed a hardware
pipelined method for RC4 implementation using a circuit that includes at least
one dual port memory, as shown in Figure 6.2 (originally [106, Fig. 6]).

Figure 6.2: RC4 architecture proposed by Matthews Jr. [106, Fig. 6].

The design of RC4 hardware in [106] based on multi-port memory modules
provides a throughput of 3 cycles-per-byte if a single memory unit is used. The
throughput may be further improved to 2 cycles-per-byte if more multi-port
memory units are used simultaneously. However, the generic throughput of
the design, 3 cycles-per-byte, is same as that of Kitsos et al [79].

Chapter 6: Overview of RC4 Implementation

6.1.3 Matthews Jr. four-stage hardware pipeline [105]

In 2008, another US patent published by Matthews Jr. [105] proposed a better
hardware architecture for RC4, where a multiple ported memory is used to
allow pipelined read and write access to values in memory.

To improve the earlier design [106], this new design applies coherency check-
ing to maintain the consistency of read-after-write and write-after-write opera-
tions in RC4. Further, the initialization of the memory is improved in [105] so
that it occurs in a single cycle. The architecture of the RC4 hardware in [105]
is similar to that in Figure 6.2, but improves the pipeline structure to a four-
stage model, as in Table 6.1 (originally [105, Table 1]). Combination of these
improvements resulted in a throughput of 1 cycle-per-byte for the cipher.

Table 6.1: Pipeline stages for design proposed by Matthews Jr. [105, Table 1].

i1 = i0 + 1 i2 = i1 + 1 i3 = i2 + 1
Read S[i1] Read S[i2]
Store S[i1] into SI Store S[i2] into SI
j1 = j0 + S[i1] j2 = j1 + S[i2]

Read S[j1] Read S[j2]
Store S[j1] in SJ Store S[j2] in SJ

t1 = SI + S[j1] t2 = SI + S[j2]
Write SI into S[j1] Write SI into S[j2]

Read S[t1] Read S[t2]
Store S[t1] into K Store S[t2] into K
Write SJ into S[i1] Write SJ into S[i2]

6.2 New implementations of RC4 hardware

The RC4 hardware architecture proposed by Matthews Jr. [105] was the best
in terms of throughput, since 2008. Our recent works [129, 133] present new
designs for RC4 hardware with an improved throughput.

6.2.1 Sen Gupta et al loop unrolling approach [133]

In 2010, we proposed [133] an RC4 architecture that produces 1 byte per
cycle (or 1 cycle-per-byte), that is the same throughput as in the design by

151 6.2 New implementations of RC4 hardware

Matthews [105]. However, the model does not use hardware pipeline approach
to obtain this result.

Our main contribution in [133] was to take a new look at RC4 hardware
design and exploit the idea of loop unrolling in this context. We combined
consecutive pairs of cycles in a pipelined fashion, and read off the values of
one state of the S-box from previous or later rounds of the cipher. To the best
of our knowledge, the idea of loop unrolling in RC4 has never been exploited
in designing an efficient hardware. The comprehensive design strategy and
analysis of the design is presented in Chapter 7.

6.2.2 Sen Gupta et al hybrid approach [129]

One may note that the above design of [133], based on loop unrolling, is com-
pletely independent of the design idea of hardware pipelining in case of RC4.
Recently in 2013, we proposed [129] a completely new design of RC4 hardware
using efficient hardware pipeline and loop unrolling simultaneously. This model
provided a throughput of 2 bytes-per-cycle (or 1

2 cycle-per-byte) in RC4 PRGA,
without losing the clock performance compared to [133]. Detailed account of
the design strategy and circuit analysis is presented in Chapter 8.

6.2.3 Comparison with earlier designs

The implementation of both the designs of [129, 133] have been done using
VHDL description, synthesized with 90 nm and 65 nm technologies using Syn-
opsys Design Compiler in topographical mode. The improved design of [129]
has been synthesized with 130 nm technology as well for comparison. With
strict clock period constraints, we could device [129] a hybrid model based
on our design of simultaneous loop unrolling and hardware pipelining, which
offered the best throughput in hardware implementation:

10 Gbps (i.e., 1.25 GBps) on 130 nm technology
21.92 Gbps (i.e., 2.74 GBps) on 90 nm technology
30.72 Gbps (i.e., 3.84 GBps) on 65 nm technology

Chapter 6: Overview of RC4 Implementation

Section 8.3 presents the final implementation results of both the afore-
said designs [129, 133], including some intermediate design points. The opti-
mization includes experimentations with strict clock period constraints, and
some restructuring of the original model. The final architecture offers the best
throughput. Section 8.4 discusses the scope for efficiency improvement using
further loop unrolling, and illustrates the limitations regarding this approach.
Issues with storage access in terms of further hardware pipeline are also dis-
cussed in the same part of the thesis.

The throughput, in terms of cycles-per-byte of keystream generation, of the
loop-unrolled design proposed by us in [133] is the same as that of the designs
proposed by Kitsos, Kostopoulos, Sklavos and Koufopavlou [79] and Matthews
Jr. [106]. The throughput of the hybrid design proposed by us in [129] is
approximately six times that of the designs proposed by Kitsos, Kostopoulos,
Sklavos and Koufopavlou [79] and Matthews Jr. [106], and approximately twice
that of the design proposed by Matthews Jr. [105]. Table 6.2 summarizes the
comparative results in this regard.

Table 6.2: Throughput comparison of RC4 hardware implementations.

Year Technique Throughput Reference
Existing hardware implementations

2003 Custom pipeline 3 cycles-per-byte Kitsos et al [79]
2003 Multi-port mem-

ory
3 cycles-per-byte Matthews Jr. [106]

2008 Pipelining 1 cycle-per-byte Matthews Jr. [105]
New implementations of RC4 hardware

2010 Loop unrolling 1 byte per cycle Sen Gupta et al [133]
2013 Hybrid model 2 bytes per cycle Sen Gupta et al [129]

We discuss the new implementations of RC4 hardware in Chapters 7 and 8.

Chapter 7
Design 1 – One Byte per Clock

In retrospect of the existing hardware designs of RC4 by Kitsos et al [79]
and Matthews Jr. [105, 106], we consider the following research problem, as
discussed earlier in Section 1.4 of Chapter 1.

Problem 2a. Is it possible to provide a simpler alternative to the best existing
designs for RC4 hardware that would yield the same throughput?

This problem has been attempted and solved by us [133] in 2010, and the
details of the proposed solution is presented in this chapter.

To solve this problem, we exploit the idea of loop unrolling for RC4 hard-
ware implementation. We consider the generation of two consecutive values of
Z together, for the two consecutive plaintext bytes to be encrypted. To the
best of our knowledge, the idea of loop unrolling has never been exploited in
the literature to design RC4 hardware for high throughput.

Loop unrolling – the basic idea

Assume that the initial values of the variables i, j and S are i0, j0 and S0,
respectively. After the first execution of the PRGA loop, these values will be
i1, j1 and S1, respectively and the output byte is Z1, say. Similarly, after the
second execution of the PRGA loop, these will be i2, j2, S2 and Z2, respectively.
Thus, for the first two loops of execution to complete, we have to perform the
operations shown in Table 7.1.

153

Chapter 7: Design 1 – One Byte per Clock

Table 7.1: Two consecutive loops of RC4 Stream Generation

First Loop Second Loop
i1 = i0 + 1 i2 = i1 + 1 = i0 + 2
j1 = j0 + S0[i1] j2 = j1 +S1[i2] = j0 +S0[i1]+S1[i2]
Swap S0[i1]↔ S0[j1] Swap S1[i2]↔ S1[j2]
Z1 = S1[S0[i1] + S0[j1]] Z2 = S2[S1[i2] + S1[j2]]

7.1 Individual components of Design 1

To store S-array in hardware, we use a bank of 8-bit registers, 256 in total.
The output lines of any one of these 256 registers can be accessed through a
256 to 1 Multiplexer (MUX), with its control lines set to the required address
i1, j1, i2 or j2. Thus, we need 4 such 256 to 1 MUX units to simultaneously
read S[i1], S[i2], S[j1] and S[j2]. Before that, let us study how to compute the
increments of i and j at each level.

7.1.1 Step 1: Calculation of i1 and i2

Incrementing i0 by 1 and 2 can be done by the same clock pulse applied to
two synchronous 8-bit counters. The counter for i1 is initially loaded with
00000001 and the counter for i2 is loaded with 00000010, the initial states of
these two indices. This serves the purpose for the first two rounds of RC4, in
both KSA and PRGA.

Thereafter, in every other cycle, the clock pulse is applied to all the flip-
flops except the ones at the LSB position for both the counters, as shown in
Figure 7.1. This will result in proper increments of i1 that assumes only the
odd values 1, 3, 5, . . ., and that of i2 assuming only the even values 2, 4, 6, . . .,
as required in RC4. This is assured as the LSB of i1 will always be 1 and that
of i2 will always be 0, as shown in Figure 7.1.

155 7.1 Individual components of Design 1

i0

i2i1

1 0
Φ

Figure 7.1: [Circuit 1] Circuit to compute i1 and i2.

7.1.2 Step 2: Calculation of j1 and j2

The values of j1 and j2 will be computed and stored in two 8-bit registers.
To compute j1, we need a 2-input parallel adder unit. It may be one using
a carry lookahead adder, or one using scan operation as proposed by Sinha
and Srimani [140], or one using carry-lookahead-tree as proposed by Lynch and
Swarzlander, Jr. [94]. For computing j2, there are two special cases:

j2 = j0 + S0[i1] + S1[i2] =

j0 + S0[i1] + S0[i2] if i2 6= j1

j0 + S0[i1] + S0[i1] if i2 = j1

The only change from S0 to S1 is the swap S0[i1] ↔ S0[j1], and hence we
need to check if i2 is equal to either of i1 or j1. Now, i2 can not be equal to
i1 as they differ only by 1 modulo 256. Therefore, S1[i2] = S1[j1] = S0[i1] if
i2 = j1, and S1[i2] = S0[i2] otherwise. In both the cases, three binary numbers
are to be added.

Let us denote the kth bit of j0, S0[i1] and S1[i2] (either S0[i2] or S0[i1]) by
ak, bk and ck, respectively, where 0 ≤ k ≤ 7. We first construct two 9-bit
vectors R and C, where the kth bits (0 ≤ k ≤ 8) of R and C are given by

Rk = XOR(ak, bk, ck) for 0 ≤ k ≤ 7, R8 = 0, C0 = 0,

Ck = ak−1bk−1 + bk−1ck−1 + ck−1ak−1 for 1 ≤ k ≤ 8.

In RC4, all additions are done modulo 256. Hence, we can discard the 9th bit
(k = 8) of the vectors R,C while adding them together, and carry out normal
8-bit parallel addition considering 0 ≤ k ≤ 7. Therefore, one may add R and
C by a parallel full adder as used for j1. The circuit to compute j1 and j2 is
as shown in Figure 7.2.

Chapter 7: Design 1 – One Byte per Clock

Register bank S0Register bank S0

i1

i2

j0

j2j1

3 input

Adder

3 input

Adder

2 input

Adder

Comparator

(0 if equal)

256 to 1

MUX

256 to 1

MUX

2 to 1

MUX

Figure 7.2: [Circuit 2] Circuit to compute j1 and j2.

7.1.3 Step 3: Swapping the S values

In Table 7.1, the two swap operations in the third row results in one of the
following 8 possible data transfer requirements among the registers of the S-
register bank, depending on the different possible values of i1, j1, i2 and j2. We
have to check if i2 and j2 can be equal to i1 or j1 (we only know that i2 6= i1).
All the cases in this direction can be listed as in Table 7.2. A more detailed
explanation for each case is presented as follows.

Case 1: i2 6= j1 and j2 6= i1 and j2 6= j1

These data transfers are symbolically represented by the following permutation
on data in S0. (

i2 j2

j2 i2

)
◦
(
i1 j1

j1 i1

)

This involves four simultaneous register to register data transfers, as follows:
S0[i1]→ S0[j1], S0[j1]→ S0[i1], S0[i2]→ S0[j2] and S0[j2]→ S0[i2].

157 7.1 Individual components of Design 1

Table 7.2: Cases for the Register-to-Register transfers in the swap operation.

Condition Register-to-Register Transfers
1 i2 6= j1 & j2 6= i1 & j2 6= j1 S0[i1]→ S0[j1], S0[j1]→ S0[i1],

S0[i2]→ S0[j2], S0[j2]→ S0[i2]
2 i2 6= j1 & j2 6= i1 & j2 = j1 S0[i1]→ S0[i2],

S0[i2]→ S0[j1] = S0[j2], S0[j1]→ S0[i1]
3 i2 6= j1 & j2 = i1 & j2 6= j1 S0[i1]→ S0[j1],

S0[i2]→ S0[i1] = S0[j2], S0[j1]→ S0[i2]
4 i2 6= j1 & j2 = i1 & j2 = j1 S0[i1]→ S0[i2],

S0[i2]→ S0[i1] = S0[j1] = S0[j2]
5 i2 = j1 & j2 6= i1 & j2 6= j1 S0[i1]→ S0[j2],

S0[j2]→ S0[j1] = S0[i2], S0[j1]→ S0[i1]
6 i2 = j1 & j2 6= i1 & j2 = j1 S0[i1]→ S0[j1] = S0[i2] = S0[j2],

S0[j1]→ S0[i1]
7 i2 = j1 & j2 = i1 & j2 6= j1 This indicates an identity permutation,

and hence no data transfer occurs.
8 i2 = j1 & j2 = i1 & j2 = j1 This situation is impossible,

as this implies i1 = i2 = i1 + 1.

Case 2: i2 6= j1 and j2 6= i1 and j2 = j1

In this case the data transfers are represented by(
i2 j1

j1 i2

)
◦
(
i1 j1

j1 i1

)

This involves three data transfers, as follows: S0[i1]→ S0[i2], S0[i2]→ S0[j1] =
S0[j2] and S0[j1]→ S0[i1].

Case 3: i2 6= j1 and j2 = i1 and j2 6= j1

In this case the data transfers are represented by(
i2 i1
i1 i2

)
◦
(
i1 j1

j1 i1

)

Chapter 7: Design 1 – One Byte per Clock

This involves three data transfers, as follows: S0[i1]→ S0[j1], S0[i2]→ S0[i1] =
S0[j2] and S0[j1]→ S0[i2].

Case 4: i2 6= j1 and j2 = i1 and j2 = j1

In this case the data transfers are represented by(
i2 i1
i1 i2

)
◦
(
i1 i1
i1 i1

)

This involves two data transfers, as follows: S0[i1] → S0[i2] and S0[i2] →
S0[i1] = S0[j1] = S0[j2].

Case 5: i2 = j1 and j2 6= i1 and j2 6= j1

In this case the data transfers are represented by(
j1 j2

j2 j1

)
◦
(
i1 j1

j1 i1

)

This involves three data transfers, as follows: S0[i1]→ S0[j2], S0[j2]→ S0[j1] =
S0[i2] and S0[j1]→ S0[i1].

Case 6: i2 = j1 and j2 6= i1 and j2 = j1

In this case the data transfers are represented by(
j1 j1

j1 j1

)
◦
(
i1 j1

j1 i1

)

This involves two data transfers, as follows: S0[i1] → S0[j1] = S0[i2] = S0[j2]
and S0[j1]→ S0[i1].

Case 7: i2 = j1 and j2 = i1 and j2 6= j1

In this case the data transfers are represented by(
j1 i1
i1 j1

)
◦
(
i1 j1

j1 i1

)

This is the identity permutation, and hence does not involve any data transfer.

Case 8: i2 = j1 and j2 = i1 and j2 = j1

This case cannot occur, as it implies i1 = i2, which is impossible because
i2 = i0 + 2 = i1 + 1.

159 7.1 Individual components of Design 1

After the swap operation is completed successfully, one obtains S2 from S0.
From the point of view of the receiving registers (in the S-register bank) in
case of the above mentioned register-to-register transfers, we can summarize
the cases as follows.

S2[i1] receives data from S0[i1], S0[j1] or S0[i2]
S2[j1] receives from S0[i1], S0[j1], S0[i2] or S0[j2]
S2[i2] receives from S0[i1], S0[j1], S0[i2] or S0[j2]
S2[j2] receives from S0[i1], S0[i2] or S0[j2].

In view of the above, the input data (1 byte) for each of the 256 registers in the
S-register bank will be taken from the output of an 8 to 1 MUX unit, whose
data inputs are taken from S0[i1], S0[j1], S0[i2], S0[j2], and the control inputs
are taken from the outputs of three comparators comparing (i) i2 and j1, (ii)
j2 and i1, (iii) j2 and j1. The circuit in Figure 7.3 realizes the swap.

8 to 1

MUX

Comp

1 if eq

i2
j1

Comp

1 if eq

j2
i1

Comp

1 if eq

j2
j1

8

options

for

S2[i1]

8 to 1

MUX

8

options

for

S2[j1]

8 to 1

MUX

8

options

for

S2[i2]

8 to 1

MUX

8

options

for

S2[j2]

8 to 256
Decoder

i1
8 to 256
Decoder

j1
8 to 256
Decoder

i2
8 to 256
Decoder

j2

k -th

line

k -th

line

k -th

line
k -th

line

S[k]

registerInput for S2[k]

Output for

next round

8
8 8

8

Figure 7.3: [Circuit 3] Circuit to swap S values (data lines for a fixed k).

For the simultaneous register-to-register data transfer during the swap op-
eration, we propose the use of Master-Slave JK flip-flops to construct the regis-
ters in the S-register bank. This way, the read and write operations will respect
the required order of functioning, and the synchronization can be performed
at the end of each clock cycle to update the S-state.

Chapter 7: Design 1 – One Byte per Clock

7.1.4 Step 4: Calculation of Z1 and Z2

To get the most out of loop unrolling, we need to completely bypass the gen-
eration of S1, and move directly from S0 to S2, as discussed right before.
However, note that we require the state S1 for computing the output byte
Z1 = S1 [S0[j1] + S0[i1]]. We apply the trick of cross-loop look-back to resolve
this issue. We can rewrite Z1 = S1 [S1[i1] + S1[j1]] = S1 [S0[j1] + S0[i1]] as

Z1 =

S2[i2], if S0[j1] + S0[i1] = j2;

S2[j2] if S0[j1] + S0[i1] = i2;

S2[S0[j1] + S0[i1]] otherwise.

Computing Z1 involves adding S0[i1] and S0[j1] first, which can be done using a
2-input parallel adder. The 256 to 1 MUX, which is used to extract appropriate
data from S2, will be controlled by another 4 to 1 MUX. This 4 to 1 MUX is in
turn controlled by the outputs of two comparators comparing (i) S0[j1]+S0[i1]
and i2, and (ii) S0[j1] +S0[i1] and j2, as illustrated in the circuit of Figure 7.4.

Register bank S2

256 to 1

MUX
i2

j2

S0[i1]

2 input

Adder

4 to 1

MUX

Comparator
(0 if equal)

Comparator
(0 if equal)

S0[j1]

Z1

Figure 7.4: [Circuit 4] Circuit to compute Z1.

Computation of the second keystream output byte Z2, however, involves
adding S1[i2], S1[j2], as in the following formula:

Z2 = S2 [S2[i2] + S2[j2]] = S2 [S1[j2] + S1[i2]] .

In this case, we unwrap one cycle of RC4 and gather the values of S1[i2]

161 7.2 Complete architecture of Design 1

and S1[j2] from the S0 state. S1[i2] and S1[j2] receive the values from the
appropriate registers of S0 as given below, depending on the conditions:

i2 6= j1, j2 6= i1, j2 6= j1: S1[i2] = S0[i2], S1[j2] = S0[j2]
i2 6= j1, j2 6= i1, j2 = j1: S1[i2] = S0[i2], S1[j2] = S0[i1]
i2 6= j1, j2 = i1, j2 6= j1: S1[i2] = S0[i2], S1[j2] = S0[j1]
i2 6= j1, j2 = i1, j2 = j1: S1[i2] = S0[i2], S1[j2] = S0[j1]
i2 = j1, j2 6= i1, j2 6= j1: S1[i2] = S0[i1], S1[j2] = S0[j2]
i2 = j1, j2 6= i1, j2 = j1: S1[i2] = S0[i1], S1[j2] = S0[i1]
i2 = j1, j2 = i1, j2 6= j1: S1[i2] = S0[i1], S1[j2] = S0[j1]

These conditions can be realized using an 8 to 1 MUX unit controlled by the
outputs of three comparators comparing (i) i2 and j1, (ii) j2 and i1, (iii) j2 and
j1. We can use the same control lines as in case of the swapping operation.
The circuit is as shown in Figure 7.5.

Register bank S2

256 to 1

MUX

2

8 to 1
MUX

0 i2

0 j2

0 i2

0 i1

0 i1

0 j1

Comp

1 if eq

2 input

Adder

i2

j1

Comp

1 if eq

j2

i1

Comp

1 if eq

j2

j1

2 input

Adder

2 input

Adder

Figure 7.5: [Circuit 5] Circuit to compute Z2.

7.2 Complete architecture of Design 1

The complete circuit for PRGA algorithm of Design 1 is shown in Figure 7.6.

We shall henceforth denote the clock by φ and its cycles numbered as φ1,
φ2, etc., where φ0 refers to the clock pulse that initiates PRGA. In Figure 7.6,
Li denote the latches operated by the trailing edge of φ2n+i, i.e., the (2n+ i)th

cycle of the master clock φ where n ≥ 0. For example, the latches labeled L1

Chapter 7: Design 1 – One Byte per Clock

S
0i 2 j 1

S
n

S
n
+

2

j ni n

S
n

S
n
+

2

j n
+
1

j n
+
2

i n
+
1

i n
+
2

j n
+
2

j n
+
2

i n
+
2

L
1

L
2

L
1

L
1

L
1

C
ir
c
u
it
 1 C

ir
c
u
it
 2

C
ir
c
u
it
 3

(S
w

a
p
)

C
ir
c
u
it
 4

C
ir
c
u
it
 5

Z
n
+

2

Z
n
+

1

Figure 7.6: Circuit for RC4 PRGA in the proposed architecture (Design 1).

163 7.3 Timing analysis of Design 1

(four of them) are released at the trailing edge of φ1, φ3, φ5, . . . and the latches
labeled L2 (eight of them) are released at the trailing edge of φ2, φ4, φ6, . . . etc.
In the final implementation, these latches have been replaced by edge-triggered
flip-flops which operate at the trailing edge of the clock.

7.3 Timing analysis of Design 1

The timing analysis for the complete PRGA circuit (shown in Figure 7.6) is
as shown in the three-stage pipeline diagram of Figure 7.7. We illustrate the
first two iterations, and the rest falls along similar lines.

i1 = i0 + 1;
j1 = j0 + S0[i1];
i2 = i1 + 1;
j2 = j1 + S1[i2];

Z1 = S1[S1[i1] + S1[j1]]
Z2 = S2[S2[i2] + S2[j2]]

i3 = i2 + 1;
j3 = j2 + S2[i3];
i4 = i3 + 1;
j4 = j3 + S3[i4];

Cycle 1

Cycle 2

Cycle 3

Stage 1 Stage 2

Swap S0[i1], S0[j1];
Swap S1[i2], S1[j2];

Swap S2[i3], S2[j3];
Swap S3[i4], S3[j4];

Z3 = S3[S3[i3] + S3[j3]]
Z4 = S4[S4[i4] + S4[j4]]

Cycle 4

Stage 3

Cycle 5

Figure 7.7: Pipeline structure for the proposed Design 1.

The combinational logics operate between the clock pulses and all read,
swap and increment operations are done at the trailing edges of the clock
pulses. The first two bytes Z1, Z2 are obtained at the end of the third clock
cycle and the next two bytes Z3, Z4 are obtained at the fifth clock cycle. A
detailed explanation follows.

Chapter 7: Design 1 – One Byte per Clock

7.3.1 Throughput of PRGA in Design 1

We can generalize the previous observations to claim that

The hardware proposed for the PRGA stage of RC4 in Design 1, as
shown in Figure 7.6, produces “one byte per clock” after an initial
delay of two clock cycles.

Let us call the stage of the PRGA circuit shown in Figure 7.6 the nth stage.
This actually denotes the nth iteration of our model, which produces the output
bytes Zn+1 and Zn+2. The first block (Circuit 1) operates at the trailing edge
of φn, and increments in to in+1, in+2. During cycle φn+1, the combinational
part of Circuit 2 operates to produce jn+1, jn+2. The trailing edge of φn+1

releases the latches of type L1, and activates the swap circuit (Circuit 3).

The combinational logic of the swap circuit functions during cycle φn+2 and
the actual swap operation takes place at the trailing edge of φn+2 to produce
Sn+2 from Sn. Simultaneously, the latch of type L2 is released to activate the
Circuits 4 and 5. The combinational logic of these two circuits operate during
φn+3, and we get the outputs Zn+1 and Zn+2 at the trailing edge of φn+3.

This complete block of architecture performs in a cascaded pipeline fashion,
as the indices i2, j2 and the state Sn+2 are fed back into the system at the end
of φn+2 (actually, in+2 is fed back at the end of φn+1 to allow for the increments
at the trailing edge of φn+2). The operational gap between two iterations (e.g.,
nth and (n+ 2)th) of the system is thus two clock cycles (e.g., φn to φn+2), and
we obtain two output bytes per iteration.

Hence, the PRGA architecture of Design 1, as shown in Figure 7.6, produces
2N bytes of output stream in N iterations, over 2N clock cycles. Note that
the initial clock pulse φ0 is an extra one, and the production of the output
bytes lag the feedback cycle by one clock pulse in every iteration (e.g., φn+3

in case of nth iteration). Therefore, our model practically produces 2N output
bytes in 2N clock cycles, that is “one byte per clock”, after an initial lag of
two clock cycles.

165 7.3 Timing analysis of Design 1

7.3.2 Throughput of KSA in Design 1

Note that the general KSA routine runs for 256 iterations to produce the initial
permutation of the S-box. Moreover, the steps of KSA are quite similar to the
steps of PRGA, apart from the following:

• Calculation of j involves key K along with S and i.

• Computing Z1, Z2 is neither required nor advised.

We propose the use of our loop-unrolled PRGA architecture (Figure 7.6) for
the KSA as well, with some minor modifications, as follows:

1. K-register bank: Introduce a new register bank for key K. It will contain
l number of 8-bit registers, where 8 ≤ l ≤ 15 in practice.

2. K-register MUX: To read key values K[i1 mod l] and K[i2 mod l] from
the K-registers, we introduce two 16 to 1 multiplexer unit. The first l
input lines of this MUX will be fed data from registers K[0] to K[l− 1],
and the rest (16 − l) inputs can be left floating (recall that 8 ≤ l ≤
15). The control lines of these MUX units will be i1 mod l and i2 mod l
respectively, and hence the floating inputs will never be selected.

3. Modular Counters: To obtain modular indices i1 mod l and i2 mod l, we
incorporate two modular counters (modulo l) for the indices. These are
synchronous counters and the one for i2 will have no clock input for the
LSB position, similar to Figure 7.1.

4. Extra 2-input Parallel Adders: Two 2-input parallel adders are appended
to Figure 7.2 for adding K[i1 mod l] and K[i2 mod l] to j1 and j2 respec-
tively.

5. No Outputs: Circuits of Figure 7.4 and Figure 7.5 are removed from the
overall structure, so that no output byte is generated during KSA. If any
such byte is generated, the key K may be compromised.

Using this modified hardware configuration, one can implement two rounds
of KSA in 2 clock cycles, that is “one round per clock”, after an initial lag of
1 cycle. Total time required for KSA is 256 + 1 = 257 clock cycles.

Chapter 7: Design 1 – One Byte per Clock

7.4 Implementation of Design 1

We have implemented Design 1, the proposed structure for RC4 stream cipher,
using synthesizable VHDL description. The S-register box and K-register
box are implemented as array of master-slave flip-flops, and are synthesized
as standard-cell memory architecture (register-based implementation). The
entire VHDL code consists of approximately 1500 lines.

A major area impact of the circuit originates from the large number of
accesses to the S-box and the K-box from the KSA and PRGA circuit. Since
the PRGA and KSA will not run in parallel, we shared the read and write ports
of S-box and K-box between PRGA and KSA. From KSA, 1 read access to K-
box, 2 read accesses to S-box and 2 write accesses to S-box are needed. From
PRGA, 6 read accesses to S-box and 4 write accesses to S-box are needed.
The 2 read accesses correspond to simultaneous generation of two Z values at
the last step of PRGA. The 4 read and write accesses correspond to the double
swap operation. While sharing the mutually exclusive accesses, all the accesses
from KSA can be merged amongst the PRGA accesses. Therefore, the total
number of read ports to K-box is 1, the total number of read ports to S-box
is 6 and the total number of write ports to S-box is 4. This sharing of storage
access is as shown in Figure 7.8.

S-‐box	 K-‐box	

KSA	 PRGA	

1 read port

2 read, 2 write port 6 read, 4 write port

port	 sharing	 logic	

6 read, 4 write port

Figure 7.8: Access sharing of KSA and PRGA in Design 1.

The VHDL code is synthesized with 90 nm and 65 nm fabrication tech-
nologies using Synopsys Design Compiler in topographical mode. The detailed
implementation results are presented in Table 8.1 of Section 8.3, along with
proper comparisons with existing designs of RC4 hardware in Table 8.2.

167 7.5 Comparison with existing designs

7.5 Comparison with existing designs

Let us compare the proposed design with the ones that existed for RC4 hard-
ware till date. We only consider existing designs that are focused towards
improved throughput, and not any other hardware considerations.

7.5.1 Kitsos et al [79] and Matthews Jr. [106]

Combining our KSA and PRGA architectures, we can obtain 2N output-
stream bytes in 2N + 259 clock cycles, counting the initial delay of 1 cycle
for KSA and 2 cycles for PRGA. The hardware implementation of RC4 de-
scribed in [79] or [106] provides an output of N bytes in 3N + 768 clock cycles.
A formal comparison of the timings is shown in Table 8.2. One can easily
observe that for large N , the throughput of our RC4 architecture is 3 times
compared to that of the designs proposed in [79] and [106].

Exact area comparison with [79] is not possible since, we do not have access
to the FPGA board for which the area figures of [79] is reported. Considering
the design idea, both [79] and [106] modeled their storage using block RAMs.
This implementation restricts the number of port accesses per cycle. To over-
come that, three 256-byte dual-port RAM blocks are used in [79]. Even then,
the design requires 3 cycles to produce 1 byte of data. An improved design
is reported in [106] where only two 256-byte dual-port RAM blocks are used.
Note that we utilize register-based storage for the S and K arrays instead of
RAM, as a RAM based storage would incorporate port-access restrictions and
latency issues, resulting in a compromise of throughput. An alternative tech-
nique to maintain the high throughput with RAM based implementation may
be partitioning the arrays according to the accesses, and optimize accordingly.

7.5.2 Comparison with the design of Matthews Jr. [105]

This design proposes a 1 byte-per-cycle design of RC4 hardware using an ap-
proach different from ours, and achieves the claimed throughput by means of
hardware pipeline. Instead of two, only one iteration per cycle in PRGA is
performed. The pipeline design is shown in Table 7.3 (same as [105, Table 1]).

Chapter 7: Design 1 – One Byte per Clock

Table
7.3:

Pipeline
stages

for
the

design
proposed

in
[105].

1st
stage

i1
=

i0 +
1

i2
=

i1 +
1

i3
=

i2 +
1

2nd
stage

R
ead

S[i1]
R
ead

S[i2]
R
ead

S[i3]
Store

S[i1]into
S

I
Store

S[i2]into
S

I
Store

S[i3]into
S

I

j1
=

j0 +
S[i1]

j2
=

j1 +
S[i2]

j3
=

j2 +
S[i3]

3rd
stage

R
ead

S[j1]
R
ead

S[j2]
R
ead

S[j3]
Store

S[j1]in
S

J
Store

S[j2]in
S

J
Store

S[j3]in
S

J

t1
=

S
I

+
S[j1]

t2
=

S
I

+
S[j2]

t3
=

S
I

+
S[j3]

W
rite

S
I
into

S[j1]
W
rite

S
I
into

S[j2]
W
rite

S
I
into

S[j3]
4th

stage
R
ead

S[t1]
R
ead

S[t2]
R
ead

S[t3]
Store

S[t1]into
K

Store
S[t2]into

K
Store

S[t3]into
K

W
rite

S
J
into

S[i1]
W
rite

S
J
into

S[i2]
W
rite

S
J
into

S[i3]

169 7.5 Comparison with existing designs

In terms of throughput, this design provides 1 cycle-per-byte output in
PRGA and completes KSA in 256 cycles, with an initial lag of 3 cycles due to
the four-stage pipeline (as in Table 7.3). Thus, N bytes of output is produced
in approximately N+259 clock cycles, which is comparable to the performance
of Design 1. Detailed comparative results are presented in Table 8.2.

7.5.3 Study of the design by Matthews Jr. [105]

Main advantage of the design proposed by Matthews Jr. [105] is compactness.
It provides a 1 byte-per-cycle throughput without resorting to loop unrolling.
We have studied this design closely and have implemented similar idea on our
own to understand the time and area constraints better. This is required since
the documentation in [105] does not report area or timing figures corresponding
to any technology node. Instead a figurative summary of the logic structure
is reported. We implemented a similar design, named Pipelined-A, to closely
study the design of Matthews Jr. [105], which helps us further to fuse the ideas
of loop unrolling and hardware pipelining to obtain a better design.

Pipelined-A: Design based on hardware pipelining

Our first design motivated by hardware pipelining is an architecture pipelined
in two stages, as in Figure 7.9. While [105] proposed a deep pipelining with
bypass and data-forwarding, our schemes allow a simpler two-stage pipelin-
ing with the same throughput of 1 byte-per-cycle and similar memory port
restrictions.

The first pipeline stage is devoted for calculation of j and performing the
swap, the second pipeline stage computes the value of Z. To minimize the
read and write accesses to S-box, the index to be used for second pipeline is
computed at the first stage itself. Note that, the index computation at first
stage does not alter the result as S[i] and S[j] are swapped, thus the addition
result S[i] + S[j] remains intact.

With the aforementioned structure, the pipeline in PRGA circuit is con-
siderably simplified with respect to Design 1. We further study the circuit in
order to improve its area and timing. To that effect, we first re-organized the

Chapter 7: Design 1 – One Byte per Clock

i1 = i0 + 1;
j1 = j0 + S0[i1];
Swap S0[i1], S0[j1]

Z1 = S1[S0[i1] + S0[j1]]
i2 = i1 + 1;
j2 = j1 + S1[i2];
Swap S1[i2], S1[j2];

Z2 = S2[S1[i2] + S1[j2]]

Cycle 1

Cycle 2

Cycle 3

Stage 1 Stage 2

Figure 7.9: 1 byte-per-cycle by Hardware Pipeline (Pipelined-A).

KSA circuit to merge 2 iterations of key generation in 1 cycle. The benefit of
this will be to have the S-box created in 128 cycles instead of 256 cycles.

This is done in similar fashion to the unrolling of KSA iterations as per
the design discussed earlier. The logic for the two consecutive KSA loops
in shown in Table 7.4, and the design idea follows that of Design 1. For
this design, the K-box is optimized away as it had constant reset inputs.
In the improvements discussed later, the K-box values are controlled from
external input. We synthesized the circuit without port-sharing, using 90 nm
technology at a strict clock frequency, and the synthesis results are as presented
in Section 8.3. The throughput is the same as that of Design 1.

Table 7.4: Two consecutive loops of RC4 Key Scheduling.

First Loop Second Loop
i1 = i0 + 1 i2 = i1 + 1 = i0 + 2
j1 = j0 + S0[i1] +K[i1] j2 = j1 + S1[i2] +K[i2]

= j0 + S0[i1] + S1[i2] +K[i2]
Swap S0[i1]↔ S0[j1] Swap S1[i2]↔ S1[j2]

One may prefer Pipelined-A over Design 1 because of its obvious simplicity.
However, in Chapter 8, we look into the possibility of improving the architec-
ture even further by incorporating loop unrolling into the design.

Chapter 8
Design 2 – Two Bytes per Clock

In retrospect of the existing hardware designs of RC4 by Kitsos et al [79]
and Matthews Jr. [105, 106], we consider the following research problem, as
discussed earlier in Section 1.4 of Chapter 1.

Problem 2b. Is it possible to design a new RC4 hardware that would yield
a better throughput compared to the best existing architecture?

This problem has been recently studied and solved by us in [129], and the
details of the proposed solution are presented in this chapter.

In this chapter, we present a novel design for RC4 hardware which provides
the best throughput till date. We have already proposed a design in Chapter 7
to obtain a throughput of 1 byte-per-cycle. We have also designed and studied
a hardware pipeline architecture, namely Pipelined-A (based on [105]), that
provides the same. Now we will analyze the two models from a more detailed
implementation point of view for potential improvement in the design.

8.1 Optimization of previous designs

Note that in the hardware pipeline based Pipelined-A, as discussed in the
Chapter 7 (Figure 7.9), we had fused the idea of loop unrolling to merge two
consecutive rounds of KSA. As a result, the number of read accesses to K-box
from KSA grew to 2. The number of read and write accesses from KSA to S-

171

Chapter 8: Design 2 – Two Bytes per Clock

box are both 4 due to the double swap in one cycle. We propose the following
optimized designs based on Pipelined-A to probe further into the design for
potential improvements.

8.1.1 Pipelined-B: Optimized version of Pipelined-A

We modified Pipelined-A to implement access sharing (read and write) for S-
box between KSA and PRGA. In case of Pipelined-A, KSA contains 4 read,
4 write accesses and PRGA contains 3 read and 2 write accesses to the S-
box. Naturally, all the accesses from PRGA can be shared with accesses from
KSA, resulting in total 4 read and 4 write accesses. The synthesis indicated a
compact circuit with the same throughput.

8.1.2 Pipelined-C: Optimized version of Pipelined-A

Another idea, exploited to reduce the circuit size further, is to perform only
one iteration of KSA per cycle. In this approach, KSA will require 256 cycles
to initialize the S-box. However, the number of both read and write accesses to
S-box will become 2 per cycle. By applying access sharing on top of that, total
number of read and write accesses to S-box is reduced to 3 and 2 respectively.
Furthermore, the number of read accesses to K-box also dropped to 1. The
synthesis of this circuit also indicated a more compact design.

We observed a sharp reduction in S-box and KSA areas for Pipelined-C, in
comparison with the previous designs. The reduction in the area for S-box is
most prominent as Pipelined-C directly reduces the area requirements for the
address decoders and multiplexers, due to less number of S-box access ports.
However, the reduction in K-box access ports costs us 256 cycles for KSA,
instead of 128 as in the previous two designs. Later, we shall present final
synthesis results for all the designs to compare the mutual pros and cons.

In the next section, we extend our analysis on the area and timing improve-
ments of hardware pipelining to propose a completely new and considerably
improved design for the RC4 implementation.

173 8.2 Architecture for Design 2

8.2 Architecture for Design 2

Recall the design based on the hardware pipeline approach (Pipelined-A) as
shown in Figure 7.9, and also the main idea of Chapter 7 (Design 1) where a
completely new approach to RC4 hardware design gave rise to a one-byte-per-
clock architecture based on the technique of loop unrolling. In case of hardware
pipeline, we used the idea of pipeline registers to control the read-after-write
sequence during S-box swaps, and that resulted in a natural two stage pipeline
model for RC4 PRGA. In case of loop unrolling, this idea of pipeline registers
was not used at all, but the same throughput was obtained by merging two
consecutive rounds of RC4 PRGA. Two obvious questions in this direction are:

1. Can these two techniques be combined?

2. Will that provide any better result at all?

This is the main motivation driving the implementation of the next design,
which answers both the aforesaid questions in affirmative.

Fusing two design paradigms

We fused the idea of 2-stage hardware pipeline with that of loop unrolling to
generate an RC4 circuit with maximum throughput to date. This is obtained
for the case with 2-stage PRGA pipeline and KSA circuit with double iterations
per cycle in each case. In this case, 128 cycles for S-box preparation is needed
at the KSA stage, and then onwards after a gap of one cycle, 2 bytes per cycle
are generated for encryption purposes. This shows significant improvements
over the previously published RC4 implementations in literature.

8.2.1 Designing the pipeline structure

For an intuitive pipeline architecture and timing analysis of this new design,
one needs to recall the pipeline structures of the individual designs based on
loop unrolling and hardware pipelining. Notice that the loop unrolling ap-
proach of Design 1 used a 3-stage pipeline, as in Figure 7.7:

1. Increment of indices i and j

Chapter 8: Design 2 – Two Bytes per Clock

2. Swap operation in the S-register

3. Read output byte Z from S-register

Alternatively, the hardware pipeline idea of Pipelined-A, as in Figure 7.9,
achieved the same using a 2-stage pipeline:

1. Increment of i, j, and Swap in the S-register

2. Read output byte Z from S-register

In the design for 2 bytes per clock cycle throughput, we propose a fusion of the
two ideas, to generate a 2-stage pipeline architecture, as shown in Figure 8.1.

i1 = i0 + 1;
j1 = j0 + S0[i1];
i2 = i1 + 1;
j2 = j1 + S1[i2];
Swap S0[i1], S0[j1];
Swap S1[i2], S1[j2];

Z1 = S1[S1[i1] + S1[j1]]
Z2 = S2[S2[i2] + S2[j2]]

i3 = i2 + 1;
j3 = j2 + S2[i3];
i4 = i3 + 1;
j4 = j3 + S3[i4];
Swap S2[i3], S2[j3];
Swap S3[i4], S3[j4];

Cycle 1

Cycle 2

Cycle 3

Stage 1 Stage 2

Z3 = S3[S3[i3] + S3[j3]]
Z4 = S4[S4[i4] + S4[j4]]

Figure 8.1: Pipeline structure for Design 2.

The double swap operation starts at Stage 1 in this case, and takes the help
of pipeline registers to maintain the read-after-write ordering during the swap
operations. This part of the operation is same as in the hardware pipelined

175 8.2 Architecture for Design 2

approach for one-byte-per-clock design (Pipelined-A/B/C). The Z values are
read from the S-registers after the completion of the double-swap, and using
the loop unrolling logic from the first one-byte-per-clock design. That is, two
consecutive values of the output byte Z are read from the same state S by using
some suitable combinational logic. Similarly, the increment of two consecutive
i and j values are done simultaneously using the combinational logic of the
original one-byte-per-clock design.

This design obviously provides 2 output bytes per clock cycle, after an
initial lag of 1 cycle, as is evident from Figure 8.1. Thus for the generation of
2N keystream bytes in RC4 PRGA, the circuit has to operate for just N + 1
clock cycles, thereby producing an asymptotic throughput of 2 bytes-per-clock.
In KSA, we simply omit Stage 2 of the pipeline structure, and obtain a speed
of 2 KSA rounds per clock cycle. Thus, KSA is completed within 128 cycles
in this design. In Section 8.4, we will discuss about the issues with further
pipelining to obtain better throughput using a similar architecture.

8.2.2 Designing the storage access

Since the PRGA and KSA will not run in parallel, we shared the read and write
ports of S-box andK-box between PRGA and KSA. From KSA, 2 read accesses
to K-box are required as two loops are merged per cycle. Further, 4 read and
4 write accesses to S-box are needed for the double swap operation. From
PRGA, 6 read accesses to S-box and 4 write accesses to S-box are required.
The 2 read accesses correspond to simultaneous generation of two Z values at
the last stage of PRGA, while the 4 read and 4 write accesses correspond to
the double swap operation. While sharing the mutually exclusive accesses, all
the accesses from KSA can be merged amongst the PRGA accesses. Therefore,
the total number of read ports to K-box is 2, the total number of read ports to
S-box is 6 and the total number of write ports to S-box is 4. This port-sharing
logic is as in Figure 8.2.

The port sharing logic reduces the multiplexer area significantly. It should
be noted that the multiplexer logic to the register banks claims the major share
of area. The port sharing logic, as shown in Figure 8.2, reduces a major share
of this combinational area in our design. In Figure 8.3, we illustrate the circuit

Chapter 8: Design 2 – Two Bytes per Clock

S-‐box	 K-‐box	

KSA	 PRGA	

2 read port

4 read, 4 write port 6 read, 4 write port

port	 sharing	 logic	

6 read, 4 write port

Figure 8.2: Read-write access sharing of KSA and PRGA.

structure for the port sharing logic that operates with the S-box during KSA
and PRGA. Note that K-box accesses are only made by KSA, and there is no
question of port sharing in that context. In Figure 8.3, we illustrate the port
sharing logic, using just 1 read and 1 write port for simplicity.

S-‐box	

6 read, 4 write

4 read, 4 write

6 read, 4 write

en_read_1

en_read_2

addr_read_1

data_read_1
data_read_2

addr_read_2

en_write_1

en_write_2

addr_write_1

addr_write_2

data_write_1

data_write_2

Figure 8.3: Port-sharing of KSA and PRGA for S-box access.

The main storage for the RC4 hardware, as before, is centered around the
S-register array and the K-register array. The S-register box comprises of 8
bit registers made of edge-triggered master-slave flip-flops, with a total of 256
such registers to maintain the RC4 states.

To accommodate the read and write accesses to the S-box, we use write-

177 8.2 Architecture for Design 2

access decoders and read-access decoders which in turn control 256-to-1 mul-
tiplexer units associated to each location of the state array. The K-register
box, that holds the RC4 key, is also designed in a similar fashion, but with the
exception that no write accesses are required for the K-registers.

8.2.3 Structure of PRGA and KSA circuits

The schematic diagrams for PRGA and KSA circuits in the proposed design
are shown in Figure 8.4 and Figure 8.5 respectively.

counter	
(2-‐step)	

jn	

S-‐box	

1

in

in+1

S[in]

adder	 jn_local

comparator	

S[in+1]
mux	

adder	

jn+1_local

S[jn_local]
S[jn+1_local]

adder	

adder	

zn_addr	

zn+1_addr	

S-‐box	 access	 for	 	
output	 bytes	

	 	
Zn	 =	 S[zn_addr]	

Zn+1	 =	 S[zn+1_addr]	

Figure 8.4: PRGA circuit structure for Design 2.

The PRGA circuit operates as per the 2-stage pipeline structure, where
the increment of indices take place in the first stage, and so does the double-
swap operation for the S-box. In the same stage, the addresses for the two
consecutive output bytes Zn and Zn+1 are calculated as the swap does not
change the outcomes of the additions S[in] + S[jn] or S[in+1] + S[jn+1]. In the
second stage of the pipeline, the output addresses zn_addr and zn+1_addr are
used to read the appropriate keystream bytes from the updated S-box.

The circuit for KSA operates similarly, but has no pipeline feature as the

Chapter 8: Design 2 – Two Bytes per Clock

counter	
(2-‐step)	

jn	

S-‐box	

K-‐box	

1

in

in+1

S[in]

K[in]

adder	 jn_local

comparator	

S[in+1]

mux	

K[in+1]

adder	

jn+1_local

S[jn_local]
S[jn+1_local]

Figure 8.5: KSA circuit structure for Design 2.

operation happens in a single stage. Here, the increment of indices and swap
are done for two consecutive rounds of KSA in a single clock cycle, thereby
producing a speed of 2 rounds-per-cycle.

Based on this schematic diagram for the PRGA and KSA circuits, and the
port sharing logic described earlier, we now attempt the hardware implemen-
tation of our new design – Design 2.

8.2.4 Implementation of Design 2

We have implemented the proposed structure for RC4 stream cipher using
synthesizable VHDL description. The S-register box and K-register box are
implemented as array of master-slave flip-flops, as discussed earlier, and are
synthesized as standard-cell memory architecture.

The VHDL code is synthesized with 130 nm, 90 nm and 65 nm fabrication
technologies using Synopsys Design Compiler in topographical mode. The
synthesis results for Design 2 are presented in Section 8.3.

179 8.3 Implementation Results

8.3 Implementation Results

In this section, we describe our attempts to optimize our designs and obtain the
best throughput in implementation. The gate-level synthesis was carried out
using Synopsys Design Compiler Version D-2010.03-SP4, using topographical
mode for 130 nm, 90 nm and 65 nm target technology libraries. The area
results are reported using equivalent two-input NAND gates.

8.3.1 Hardware performance of our designs

Implementation in 90 nm technology

We experimented with the synthesis of designs in the following order:

1 byte-per-clock design using loop unrolling (Design 1)
1 byte-per-clock by hardware pipelining (Pipelined-A)
1 byte-per-clock by hardware pipelining (Pipelined-B)
1 byte-per-clock by hardware pipelining (Pipelined-C)
2 bytes-per-clock design combining the two (Design 2)

In order to get the best throughput out of our proposed designs, we performed a
few experiments with varying clock speed. This included running of all synthe-
sis at 90 nm with strict clock period constraints until no further improvement
was possible. The synthesis results are shown in Table 8.1. The clock period in
Pipelined-B is higher than that for Pipelined-A, due to the port sharing logic
that we introduced in Pipelined-B.

Optimizing the critical path for Design 2

After the initial implementations of the designs, we found that the critical path
for Design 2 is through the KSA read access of the S-array, followed by the
additions for updating j values in the first stage of Figure 8.1.

We tried two mechanisms to reduce this critical path. First, we attempted
reduced port sharing, as port sharing puts longer delay in the multiplexers.
Second, we attempted a modified design with 3 pipeline stages; the first stage

Chapter 8: Design 2 – Two Bytes per Clock

to load the S and K values and put those in pipeline registers, the second
stage to perform the additions for j update, and the last one for the swap in
KSA. This not only made the design 3-stage pipelined instead of 2-stages, but
also required additional bypass logic, which did not help reduce the critical
path. So, we finally kept the 2-stage pipeline as in Figure 8.1, and avoided
some port sharing along the critical path. This shifted the critical path to
the S-box write access from KSA. By removing the port sharing, the clock
frequency could be improved even further.

Currently, the critical path is in the S-box read access from PRGA. That
could also be improved by removing some port sharing, but only by causing a
heavy increase in area. Therefore, we chose to avoid it.

Implementation in 65 nm technology

We used the same designs which yielded best clock frequencies in 90 nm, and
mainly focused at the following three designs:

1 byte-per-clock design using loop unrolling (Design 1)
1 byte-per-clock design by hardware pipelining (Pipelined-C)
2 bytes-per-clock design combining the two (Design 2)

The synthesis results provide us the best throughput for these three designs,
obtained by using strict clock period constraints during the implementation.
We pushed the clock period until no further improvement could be made, that
is until the point that it could generate a valid gate-level netlist. The synthesis
results are presented in Table 8.1.

Implementation in 130 nm technology

In order to benchmark against comparable technology libraries, we have syn-
thesized using 130 nm fabrication technology since, several stream ciphers from
eSTREAM project [40] have reported their performance in 130 nm and 250
nm technologies [59, 61]. We used the same designs which yielded best clock
frequencies in 65 nm and 90 nm design, and have just implemented our best
proposal – Design 2. The synthesis results are presented in Table 8.1.

181 8.3 Implementation Results

Ta
bl
e
8.
1:

Sy
nt
he

sis
re
su
lts

fo
r
op

tim
iz
ed

de
sig

ns
w
ith

di
ffe

re
nt

ta
rg
et

te
ch
no

lo
gy

lib
ra
rie

s.

Te
ch

.
D

es
ig

n
A

re
a

(N
A

N
D

ga
te

eq
ui

va
le

nt
)

M
ax

.
C

lo
ck

K
SA

P
R

G
A

Sp
ee

d
(n

m
)

K
SA

P
R

G
A

S
-b

ox
K

-b
ox

Se
qu

en
ti

al
C

om
bi

na
ti

on
al

To
ta

l
Fr

eq
.

(G
H

z)
(c

yc
le

s)
(b

yt
es

/c
yc

le
)

(G
bp

s)
13

0
D

es
ig

n
2

31
0

10
00

57
43

5
11

80
13

81
9

46
10

6
59

92
5

0.
62

5
25

6
2

10
.0

0
90

D
es

ig
n

1
31

0
11

99
48

66
9

10
84

10
94

2
40

32
0

51
26

2
1.

22
25

6
1

9.
76

P
ip

el
in

ed
-A

56
0

42
8

52
13

3
10

84
10

64
4

43
56

1
54

20
5

1.
37

12
8

1
10

.9
6

P
ip

el
in

ed
-B

52
7

42
8

43
45

4
10

84
10

61
1

34
88

2
45

49
3

1.
25

12
8

1
10

.0
0

P
ip

el
in

ed
-C

48
4

61
2

39
23

1
10

84
10

80
1

30
61

0
41

41
1

1.
49

25
6

1
11

.9
2

D
es

ig
n

2
31

0
98

5
52

55
7

10
84

10
95

5
43

98
1

54
93

6
1.

37
25

6
2

21
.9

2
65

D
es

ig
n

1
31

0
12

40
53

63
8

11
80

14
10

9
42

25
9

56
36

8
1.

85
25

6
1

14
.8

0
P

ip
el

in
ed

-C
55

0
69

0
48

15
9

11
80

13
62

2
36

95
7

50
57

9
2.

22
25

6
1

17
.7

6
D

es
ig

n
2

31
0

92
7

52
99

8
11

80
13

48
4

41
93

1
55

41
5

1.
92

25
6

2
30

.7
2

Ta
bl
e
8.
2:

T
im

in
g
co
m
pa

ris
on

of
D
es
ig
n
1
an

d
D
es
ig
n
2
w
ith

ex
ist

in
g
de

sig
ns
.

O
pe

ra
ti

on
s

N
um

be
r

of
cl

oc
k

cy
cl

es
re

qu
ir

ed
fo

r
ea

ch
op

er
at

io
n

[7
9]

an
d

[1
06

]
[1

05
]

D
es

ig
n

1
D

es
ig

n
2

P
er

K
SA

ro
un

d
3

1
1

1
C

om
pl

et
e

K
SA

25
6
×

3
=

76
8

25
6

+
3

=
25

9
25

6
+

1
=

25
7

25
6

+
1

=
25

7
N

by
te

s
of

P
R

G
A

3N
N

+
3

N
+

2
N
/
2

+
2

N
by

te
s

of
R

C
4

3N
+

76
8

25
9

+
(N

+
3)

=
N

+
26

2
25

7
+

(N
+

2)
=
N

+
25

9
25

7
+

(N
/
2

+
2)

=
N
/
2

+
25

9
C

yc
le

s
pe

r
by

te
3

+
76

8
N

1
+

26
2

N
1

+
25

9
N

1/
2

+
25

9
N

Chapter 8: Design 2 – Two Bytes per Clock

Best throughput for Design 1 and Design 2

To summarize, the optimized synthesis offers us the best throughput (in giga-
bits per second) for hardware implementation of RC4 cipher to date.

Design 1 (one-byte-per-clock):

9.76 Gbps in 90 nm technology
14.8 Gbps in 65 nm technology

Design 2 (two-bytes-per-clock):

10 Gbps in 130 nm technology
21.92 Gbps in 90 nm technology
30.72 Gbps in 65 nm technology

8.3.2 Comparison with existing designs

We compare our proposed designs Design 1 (from Chapter 7) and Design 2
(from Chapter 8) with the ones that existed for RC4 hardware to date. We only
consider the existing designs [79, 105, 106] that are focused towards improved
throughput, and not any other hardware considerations.

Comparison of throughput

In Chapter 7, we have already seen the main RC4 designs proposed in the
literature: 3 cycles-per-byte designs of [79] and [106] and 1 cycle-per-byte
design of [105]. Chapter 7 presents our 1 byte-per-cycle architecture Design
1, and in Chapter 8 we propose the first 2 bytes-per-cycle RC4 architecture
Design 2.

Design 2 requires 257 cycles to complete KSA and generates 2 bytes-per-
cycle in PRGA, with an initial lag of 2 cycles. Thus, Design 2 produces N
keystream bytes in approximately 257+(N/2+2) = N/2+259 clock cycles. For
large N , this is twice in comparison with Design 1 and the hardware proposed
in [105]. Detailed comparison of throughput is presented in Table 8.2.

183 8.3 Implementation Results

Comparison of area

As discussed earlier in Chapter 7, a precise comparison of area requirements
with [79] could not be made due to mismatch in implementation platforms,
and [106] does not specify any area figures at all. However, [106] uses two
256-byte dual-port RAM blocks for the storage, and for the purpose of com-
parison we synthesized the RAM using 65 nm technology. This resulted in
approximately 11.3 KGates of storage area (without considering the associ-
ated circuitry), which is comparable to the total sequential area (approxi-
mately 13.5-14.0 KGates for Design 1 and Design 2 in 65 nm technology, as
shown in Table 8.1) of our designs with register-based storage. Fair comparison
with [105] could not be done due to lack of relevant area figures.

8.3.3 Comparison with other stream ciphers

To put our results in perspective, we surveyed the throughputs of a few popular
hardware stream ciphers. The current eSTREAM portfolio of hardware stream
ciphers contain three ciphers: Grain_v1, MICKEY_v2 and Trivium. Accord-
ing to a hardware performance evaluation of the ciphers (as in [59] and [61]),
these ciphers achieve the following throughputs, with maximum possible opti-
mization and parallelization.

• Grain128: 14.48 Gbps (130 nm), 4.475 Gbps (250 nm)

• MICKEY: 0.413 Gbps (130 nm), 0.287 Gbps (250 nm)

• Trivium: 22.3 Gbps (130 nm), 18.568 Gbps (250 nm)

In the data above, the current version Grain128_v1 is tested on 130 nm tech-
nology, whereas the result for 250 nm technology is with Grain128_v0, as
in [61].

One may observe that in context of the eSTREAM hardware stream ci-
phers, the optimized implementation of RC4 that we provide fares quite well
in terms of throughput (10 Gbps), although RC4 is never claimed to be a
hardware cipher. It should also be noted that the area requirements for the
proposed RC4 designs (50-60 KGates for Designs 1 and 2) are fairly high com-
pared to those in case of the aforementioned eSTREAM ciphers, as evaluated

Chapter 8: Design 2 – Two Bytes per Clock

in [59] (3.2 KGates for Grain128, 5.0 KGates for MICKEY and 4.9 KGates
for Trivium). However, compared to processors or co-processors in embedded
systems, this area is quite reasonable, and is small enough to be integrated in
modern embedded processors.

The optimization is between the efficiency-requirement and the area-
constraint on the user end. If high throughput is required for the time-tested
and widely accepted stream cipher RC4, the user may go for a slightly high-
area implementation as we have proposed in this chapter, and if the area
constraints are stricter, the user may go for the RAM-based implementation
proposed in [46], or prefer the new lightweight stream ciphers over RC4.

The techniques of loop unrolling and hardware pipelining discussed in this
thesis may be adopted in general for any stream cipher based on the paradigm
of extracting pseudorandom words from pseudorandom permutations; namely
VMPC [154], RC4A [122], RC4+ [95,116], RC4(n,m) [114], GGHN [58], Py [19]
and the HC-family of stream ciphers from the eSTREAM project [40].

8.4 Further improvements in throughput

Based on Design 2, the fastest known hardware implementation of RC4 till
date, one may be tempted to push the architecture even further so as to increase
its throughput. We tried to venture in this direction as well, and noticed that
a better throughput can be obtained via one of the two following avenues:

1. Unroll more loops of the algorithm

2. Increase the pipeline depth

First, we shall take a look at issues with further loop unrolling, starting with
the idea of Design 1, as detailed in Chapter 7.

8.4.1 Unrolling three or more loops of RC4

In hardware design, the idea of loop unrolling proves to be most effective when
the parameters involved in each of the loops are independent. In case of KSA or

185 8.4 Further improvements in throughput

PRGA in RC4 stream cipher, we are not quite so lucky. The interdependencies
between consecutive loops of RC4 originate from the following ordering of steps:

Update indices→ Swap S-values→ Output Z

This order has to be obeyed at all circumstances to maintain the correctness
of the PRGA routine in the RC4 stream cipher.

Recall Design 1 (Chapter 7) where we first introduced the concept of loop
unrolling in case of RC4. To implement this idea, we had to take into account
all dependencies between two consecutive loops. As the Swap and Output
stages depend directly upon the indices i and j, we only needed to consider
the interplay between the indices of the two rounds, i.e., i1, i2 and j1, j2. We
had a total of

(
4
2

)
= 6 pairs to deal with, but the equality or inequality of 3

of these (i1, i2; i1, j1; i2, j2) did not matter, as they were either impossible to
occur, or were anyway expected in the RC4 algorithm. So, we had to worry
about the comparison between 3 pairs of indices

(i1, j2) and (i2, j1) and (j1, j2)

in case of S-box swaps as well as the computations for Z1 and Z2. These 3
pairs gave rise to 23 = 8 choices in each case, and that in turn contributed to
the large area for the combinational logic in our architecture.

Now, if we try to unroll another loop of RC4, i.e., three consecutive rounds
of the cipher at a time, we will have to deal with 6 indices i1, i2, i3 and j1, j2, j3.
There are

(
6
2

)
= 15 pairs, out of which we will have to consider 9 pairs for

comparison:
(i1, j2), (i1, j3), (i2, j1), (i2, j3), (i3, j1), (i3, j2)

and (j1, j2), (j2, j3), (j1, j3)

These pairs will give rise to 29 = 512 choices of S-box swaps and output
computation, and will require combinational logic to take care of the choices.

In the hardware implementation of Design 1 and Design 2, one may ob-
serve that the combinational area already figures quite high. With three loops
unrolled, it will be impossible to manage as the logic requirement grows expo-
nentially (8 choices for 2 loops to 512 choices for 3 loops). Hence, the idea of

Chapter 8: Design 2 – Two Bytes per Clock

further loop unrolling in RC4 does not seem feasible in practice.

8.4.2 Increasing depth of the pipeline

In this case, the motivation was to check if deeper hardware pipelining can
further improve the throughput for our RC4 architecture. During our experi-
ments with the design, we observed that the critical path in the architecture
is due to S-box access, which cannot be improved by whatever deep pipelining
one may design. The only way to reduce the critical path in S-box access logic
is to explore either of the following choices.

Hand-optimizing the multiplexer logic, or
Partitioned S-box to reduce multiplexing logic

The first option is hard to perform from the RTL and the multiplexer logic is
anyway highly optimized by the synthesis tools. One may however investigate
the second option further, but most likely such a structure will require pre-
dictable access pattern for different partitions of the S-box. This ‘predictable
access pattern’ might lead to undesirable compromise of cryptographic security.

In summary, we have considered all intuitive avenues to further increase the
throughput of the RC4 hardware, but have realized that accomplishing the task
with loop unrolling and increased pipeline depth may be highly improbable.
Hence, we end the quest for solving Problem 2b with our best (2 bytes-per-
cycle) architecture Design 2, proposed in [129] and discussed in Chapter 8.

Part III

Conclusion and Bibliography

187

Chapter 9
Conclusion and Open Problems

In this chapter, we conclude the thesis. We studied the analysis of RC4 stream
cipher in Chapters 3, 4 and 5, and implementation of RC4 in Chapters 7 and 8.

Section 9.1 revisits the individual chapters to summarize the thesis. We
mention the existing results, specific research problems, and our results pre-
sented in each chapter. In Section 9.2, we present a consolidated account of
our contributions in this thesis. The conclusion ends in Section 9.3 with an
account of the future scope for research and open problems.

9.1 Summary of the thesis

This thesis constitutes of two parts, discussing the analysis and implementation
of RC4 stream cipher. Chapter 1 presented the basic structure of stream
ciphers, details of our target cipher RC4, and our motivation to consider the
research problems for this thesis. Chapter 2 acted as an introduction to Part
I of this thesis, and presented a comprehensive overview of RC4 cryptanalysis
to date. Chapter 6 played the same role for Part II, and presented the details
of current state-of-the-art in hardware implementation of RC4.

The original technical content of this thesis spanned over Chapters 3, 4, 5, 7
and 8, and dealt with ten problems in total: Problems 1a–1h in Part I and
Problems 2a–2b in Part II. The individual problems, their respective motiva-
tion, and our results on each of them are summarized as follows.

189

Chapter 9: Conclusion and Open Problems

9.1.1 Chapter 3 – RC4 biases based on keylength

This chapter dealt with two problems: Problem 1a and Problem 1b.

Problem 1a – Keylength and extended keylength dependent biases

Some of the empirical biases observed by Sepehrdad, Vaudenay and
Vuagnoux [136] seem to be related to the length of the secret key used
in RC4. If this is the case, is it possible to identify and prove such
general relations between the keylength to the keystream biases?

Our motivation arose from the bias Pr(S16[j16] = 0 | Z16 = −16) ≈ 0.038488
observed by Sepehrdad, Vaudenay and Vuagnoux [136]. A related KSA version
of this bias (of the same order) was reported in [134, Section 6.1] for the event
(SK17[16] = 0 | Z16 = −16), but neither was proved in the literature.

Keylength dependent conditional biases: While exploring these conditional bi-
ases in RC4 PRGA, we ran extensive experiments with N = 256 and keylength
5 ≤ l ≤ 32. We observed that the biases correspond to the keylength l:

Pr (Sl[jl] = 0 | Zl = −l) ≈ η
(1A)
l /256,

Pr
(
SKl+1[l] = 0 | Zl = −l

)
≈ η

(1B)
l /256,

where each of η(1A)
l and η(1B)

l decreases from 12 to 7 (approx.) as l increases
from 5 to 32. We proved both the results in Chapter 3. We also observed and
proved a family of new conditional biases in this direction:

Pr (Zl = −l | Sl[jl] = 0) ≈ η
(2)
l /256,

Pr (Sl[l] = −l | Sl[jl] = 0) ≈ η
(3)
l /256,

Pr (tl = −l | Sl[jl] = 0) ≈ η
(4)
l /256,

Pr (Sl[jl] = 0 | tl = −l) ≈ η
(5)
l /256,

where η(2)
l decreases from 12 to 7 (approx.), each of η(3)

l and η(4)
l decreases from

34 to 22 (approx.), and η(5)
l decreases from 30 to 20 (approx.) as l increases

from 5 to 32. Proofs of all these new biases are also presented in Chapter 3.

191 9.1 Summary of the thesis

Keylength dependent bias in keystream: One of the main results in Chapter 3
was to find a keylength dependent bias in the following event in RC4 keystream:

(Zl = −l) for 5 ≤ l ≤ 32.

We proved that the estimate of Pr(Zl = −l) is always greater than 1/N +
1/N2 ≈ 0.003922 for N = 256 and 5 ≤ l ≤ 32. In Figure 9.1 (same
as Figure 3.2), we plot the theoretical as well as the experimental values of
Pr(Zl = −l) against l for 5 ≤ l ≤ 32 (experiments with 1 billion trials).

Figure 9.1: Keylength dependent bias in (Zl = −l) for 5 ≤ l ≤ 32.

Extended keylength dependent bias in keystream: Isobe, Ohigashi, Watanabe
and Morii [70] observed that similar biases also exist in the class of events
(Zxl = −xl) for positive integer x = 1, . . . , bN/lc. In an attempt to prove
these biases, they explored certain paths, but could not prove all of them.
Hence in [70], the authors substituted experimental values to compute what
they referred to as semi-theoretical values.

We observed that instead of following the approach of [70], if one follows
the approach proposed by us in [132], then the theoretical derivations of the
extended keylength dependent biases become much simpler. In Chapter 3,
we generalized all the keylength dependent biases of [132] for any keylength
3 ≤ l ≤ N − 1 and any integer x = 1, 2, . . . , bN

l
c, and thereby completed

the proof of extended keylength biases that was left open in [70]. In fact, the
keylength dependent bias of [132] becomes a special case (for x = 1) of our
general proof of extended keylength dependent biases.

Chapter 9: Conclusion and Open Problems

In Figure 9.2 (same as Figure 3.3), we compare the experimental values
of (Zxl = −xl), obtained from the data of [5, 14], with our theoretical values
derived in Chapter 3, for keylength l = 16 and x = 1, 2, . . . , 15. We have
obtained similar results for other practical keylengths (5 ≤ l ≤ 32) as well.

Figure 9.2: Bias in (Zxl = −xl) for l = 16 and x = 1, 2, . . . , 15.

The data-point x = 2 produced certain mismatch between the theoretical
estimates and the experimental observations for l = 8, 12, as in Figures 3.4
and 3.5. We leave these as minor open problems for potential future work.

Problem 1b – Keylength dependent bias in Z1 and anomalies

Investigate the negative bias of Z1 towards 129 (N = 256),
as observed by AlFardan, Bernstein, Paterson, Poettering and
Schuldt [5], and identify its keylength dependence characteristics.

We attempted to solve the negative bias in the event (Z1 = 129), which was
observed by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5, 14],
but neither by Mironov [112] nor in our earlier work [132]1. Our experiments
showed that the negative bias of (Z1 = 129) is prominent only for keylength l

1The graphical representation of the complete probability distribution of Z1 presented
in [132, Fig.9] had a typographic error stating that the experimental values are ‘with 16 byte
keys’, whereas the experimental values were actually recorded for full-length 256 byte secret
keys. This is why the curve for Z1 in [132] missed the prominent, but keylength dependent,
bias in (Z1 = 129). We correct the typographic error in Figure 5.2 of Chapter 5.

193 9.1 Summary of the thesis

equal to non-trivial factors of 256, that is, for l = 2, 4, 8, 16, 32, 64, 128. This
behavior is depicted in Figure 9.3 (same as Figure 3.10).

Figure 9.3: Bias in the event (Z1 = 129) for keylength 1 ≤ l ≤ 256.

We observed that the keylength dependence pattern of (Z1 = 129) is amaz-
ingly similar to the keylength dependence of Pr(S0[128] = 127), an anomaly
observed by Mantin [100] and Paul [116], but not proved in the literature. We
tried to relate the bias in (Z1 = 129) with the long-standing open ‘anomaly’ in
(S0[128] = 127), and could finally prove the anomaly in Chapter 3. We could
not settle the proof of the bias in (Z1 = 129), and leave it as an open problem.

9.1.2 Chapter 4 – RC4 biases involving state variables

This chapter dealt with two problems: Problem 1c and Problem 1d.

Problem 1c – Identification and proof of significant biases

Prove all known significant biases of RC4 involving the state vari-
ables, as empirically observed in [136]. In addition, is it possible
to identify and prove other interesting biases of similar nature?

We investigated the significant empirical biases discovered and reported by
Sepehrdad, Vaudenay and Vuagnoux [136], and provided theoretical justifica-
tion for all biases involving the state variables, of the approximate order of 2/N
or more. The proofs are presented in Chapter 4 under the following categories.

Chapter 9: Conclusion and Open Problems

Biases at specific initial rounds: We proved the following results.

Pr(j1 + S1[i1] = 2) = Pr(S0[1] = 1) +
∑
X 6=1

Pr(S0[X] = 2−X ∧ S0[1] = X),

Pr(j2 + S2[j2] = 6) ≈ Pr(S0[1] = 2) +
∑

X even, X 6=2
(2/N) · Pr(S0[1] = X),

Pr(j2 + S2[j2] = S2[i2]) ≈ 2/N − 1/N2,

Pr(j2 + S2[j2] = S2[i2] + Z2) ≈ 2/N − 1/N2.

Round-independent biases at initial rounds: We proved the following results
for any round r ≥ 1 of RC4 PRGA.

Pr(jr + Sr[jr] = ir + Sr[ir]) ≈ 2/N,

Pr(jr + Sr[ir] = ir + Sr[jr]) ≈ 2/N.

Round-dependent biases at all initial rounds: We proved the r-dependent biases
in the following events for all initial rounds 3 ≤ r ≤ N − 1.

Pr(Sr[jr] = ir) ≈ Pr(S1[r] = r)
(

1− 1
N

)r−2

+
r−1∑
t=2

r−t∑
w=0

Pr(S1[t] = r)
w! ·N

(
r − t− 1

N

)w (
1− 1

N

)r−3−w
,

Pr(Sr[ir] = jr) ≈ Pr(Sr[tr] = tr)

≈ r

N2 +
N−1∑
X=r

1
N

(
Pr(S1[X] = X)

(
1− 1

N

)r−2

+
r−1∑
u=2

r−u∑
w=0

Pr(S1[u] = r)
w! ·N

(
r − u− 1

N

)w (
1− 1

N

)r−3−w)
.

The above biases were tagged by specific labels in [136], as summarized in
Table 9.1 (similar to Table 4.1). In Chapter 4, we proved all these biases.

Problem 1d – Characterization of non-randomness in index j

It seems that the index j exhibits certain non-random behavior in
the initial rounds of RC4 PRGA. Is it possible to completely char-
acterize the (non-)randomness of index j throughout RC4 PRGA?

195 9.1 Summary of the thesis

Table 9.1: Significant biases observed in [136] and proved in Chapter 4.

Type of Bias Label as in [136] Biases proved in Chapter 4
“New_004” j2 + S2[j2] = S2[i2] + Z2

Specific “New_noz_007” j2 + S2[j2] = 6
Initial Rounds “New_noz_009” j2 + S2[j2] = S2[i2]

“New_noz_014” j1 + S1[i1] = 2
All Rounds “New_noz_001” jr + Sr[ir] = ir + Sr[jr]
(r-independent) “New_noz_002” jr + Sr[jr] = ir + Sr[ir]
All Initial “New_000” Sr[tr] = tr

Rounds “New_noz_004” Sr[ir] = jr

(r-dependent) “New_noz_006” Sr[jr] = ir

Index j depends on the values of i and S[i] simultaneously, and the pseudoran-
domness of the permutation S causes the pseudorandomness in j. However, we
know that the initial PRGA states S0 and S1 of RC4 show certain non-random
behavior, as discussed earlier by Mantin [100], as well as by us [132]. This
motivated us to analyze the non-randomness of j.

In Chapter 4, we identified and proved the following non-random charac-
teristics of index j, especially prominent in the initial rounds of RC4 PRGA.

Pr(j1 = v) =

1
N
, if v = 0;

1
N

(
N−1
N

+ 1
N

(
N−1
N

)N−2
)
, if v = 1;

1
N

((
N−1
N

)N−2
+
(
N−1
N

)v)
, if v > 1.

Pr(j2 = v) =

Pr(S0[1] = 2)

+∑
w 6=2 Pr(S0[1] = w ∧ S0[2] = v − w), if v = 4;∑

w 6=2 Pr(S0[1] = w ∧ S0[2] = v − w), if v 6= 4.

We did not explicitly analyze or provide closed form expressions of jr for r ≥
3 as our experiments clearly showed that jr becomes closer to random as r
increases beyond 2. This is depicted in Figure 9.4 (same as Figure 4.3).

Chapter 9: Conclusion and Open Problems

0 4 32 64 96 128 160 192 224 255
0.0025

0.0039

0.005

0.0075

0.01

Value v, from 0 to 255.

P
r(

 j
 r =

 v
)

.

Distribution of j
1

Distribution of j
2

Distribution of j
3

Figure 9.4: Probability distribution of jr for 1 ≤ r ≤ 3.

Glimpse into the state from the keystream

In connection with the state biases and the non-randomness of j proved in
Chapter 4, we further investigated for relations between the state variables of
RC4 to its keystream bytes. These type of relations are termed as ‘glimpse’
correlations, as they provide the facility for identifying a state variable using
some keystream bytes with probability more than that of random guessing. In
Chapter 4, we identified and proves the following glimpse correlations.

Short-term glimpse: We exploited the significant bias in (j2 = 4) to prove the
following correlation between the state byte S2[2] and the keystream byte Z2.

Pr (S2[2] = 4− Z2) ≈ 1
N

+ 4/3
N2 .

Long-term glimpse: In 1996, Jenkins [75] pointed out that the RC4 keystream
provides a long-term glimpse of the RC4 state, based on the biased relation
Pr(Sr[jr] = ir−Zr) = Pr(Sr[ir] = jr−Zr) ≈ 2/N . While exploring for further
long-term glimpse in RC4, we identified the proved the following result.

Pr(Sr[r + 1] = N − 1 | Zr+1 = Zr ∧ Zr+1 = r + 2) ≈ 3
N
.

Note that no other long-term glimpse bias of magnitude more than 2/N has
been reported in the literature since Jenkins [75].

197 9.1 Summary of the thesis

9.1.3 Chapter 5 – RC4 biases in keystream bytes

This chapter dealt with four problems: Problems 1e–1h.

Problem 1e – Justification of the sinusoidal distribution of Z1

Theoretically justify the sinusoidal probability distribution of Z1 and
its negative bias towards zero, as observed by Mironov [112].

In Chapter 5, we proved the complete sinusoidal distribution of the first
keystream byte Z1, observed by Mironov [112]. We got the following result.

Complete distribution of the first keystream byte Z1:

Pr(Z1 = v) = Qv +
∑
X∈Lv

∑
Y ∈Tv,X

Pr(S0[1] = X ∧ S0[X] = Y ∧ S0[X + Y] = v),

with Qv =

Pr(S0[1] = 1 ∧ S0[2] = 0), if v = 0;

Pr(S0[1] = 0 ∧ S0[0] = 1), if v = 1;

Pr(S0[1] = 1 ∧ S0[2] = v)

+ Pr(S0[1] = v ∧ S0[v] = 0)

+ Pr(S0[1] = 1− v ∧ S0[1− v] = v), otherwise,

where v ∈ {0, . . . , N − 1}, Lv = {0, 1, . . . , N − 1} \ {1, v} and Tv,X =
{0, 1, . . . , N − 1} \ {0, X, 1−X, v}, and the probabilities involving S0 are cal-
culated based on the results of Mantin [100].

The above result on the complete distribution of Z1 produced a theoretical
curve that closely matched the observed sinusoidal pattern of the first byte for
a full-length (l = 256) secret key. The theoretical and experimental results
(for l = 256) are shown in Figure 9.5 (same as Figure 5.2).

Our analysis of the complete distribution of Z1 also proved its negative bias
towards zero, Pr(Z1 = 0) ≈ 1/N − 1/N2, observed by Mironov [112] in 2002.

Chapter 9: Conclusion and Open Problems

0 32 64 96 128 160 192 224 255
Value v taken by the first output byte Z1 of RC4.

0.003885

0.003895

0.003905

0.003915

0.003925

0.003935

P
r
(Z

1
=
v)
.

Experimental (with 256-byte keys)
Theoretical (with KSA-generated S0)

Theoretical (with Random S0)

Figure 9.5: The probability distribution of the first output byte Z1.

Problem 1f – Identification and proof of zero bias in initial bytes

Identify all significant biases towards zero in the initial bytes of
RC4 keystream (Z3 to Z255), and prove all subsequent results.

In 2001, Mantin and Shamir [103] proved the famous 2/N bias towards the
value 0 for the second byte of RC4 keystream, and also claimed that Pr(Zr =
0) = 1

N
at PRGA rounds 3 ≤ r ≤ 255. In Chapter 5, contrary to this claim,

we showed (in Theorem 5.5) that Pr(Zr = 0) > 1
N

for all rounds r from 3 to
255. In fact, we explicitly proved that in PRGA rounds 3 ≤ r ≤ N − 1,

Pr(Zr = 0) ≈ 1
N

+ cr
N2 ,

where cr =

N
N−1 (N · Pr(Sr−1[r] = r)− 1)− N−2

N−1 , for r = 3;

N
N−1 (N · Pr(Sr−1[r] = r)− 1) , otherwise.

This result produced a theoretical distribution of (Zr = 0) as shown in Fig-
ure 9.6 (same as Figure 5.4), which closely matched the experimentally ob-
served values of Pr(Zr = 0) for N = 256 and 3 ≤ r ≤ 255.

We further used the biases in bytes Z3 to Z255 to extract information about
the state array Sr−1 using the RC4 keystream byte Zr. This was done by
exploiting the conditional probability Pr(Sr−1[r] = r | Zr = 0) for 3 ≤ r ≤ 255.

199 9.1 Summary of the thesis

3 32 64 96 128 160 192 224 255
Index r of RC4 keystream bytes.

0.00390

0.00391

0.00392

0.00393

P
r
(Z

r
=
0
).

Experimental (16 byte key)
Theoretical
Probability 1/N (ideal case)

Figure 9.6: Pr(Zr = 0) versus r during RC4 PRGA (3 ≤ r ≤ 255).

Problem 1g – Proof of significant empirical short-term biases

Prove all significant biases in initial bytes of RC4 keystream, iden-
tified by AlFardan, Bernstein, Paterson, Poettering and Schuldt [5].

Recently there have been two independent attempts at identifying all signifi-
cant biases in the initial keystream bytes of RC4; one by AlFardan, Bernstein,
Paterson, Poettering and Schuldt [5], targeted towards attacking TLS protocol,
and the other by Isobe, Ohigashi, Watanabe and Morii [70], targeted towards
a generalized broadcast attack on RC4. The major one is [5], which produced
an extensive list of around 65536 single-byte biases [14] in the initial keystream
of RC4, out of which around 256 were reported in [70], and one in [127].

In Chapter 5, we considered only the significant biases from the list of [5],
with a deviation of around O(1/N2) from the probability 1/N of random occur-
rence. We proved all open (hitherto unproved in literature) isolated short-term
biases from this list, as summarized in Table 9.2 (same as Table 5.1).

Problem 1h – Identification and proof of long-term biases

Experimentally discover and prove biases in RC4 keystream which
remain effective even after discarding the initial bytes.

It is a common practice to discard a few hundred initial bytes of the keystream
to avoid the aforesaid biases; thus motivating the search for long-term biases
that are present even after discarding an arbitrary number of initial bytes.

Chapter 9: Conclusion and Open Problems

Table 9.2: Proved short-term single-byte keystream biases of RC4.

Biased event Discovered Proof (Chapter 5) Experiment [5,14,70]
Z2 = 129 [5, 127] 1/N − 2/N2 1/N − 1.82/N2

Z2 = 172 [5] 1/N + 0.28/N2 1/N + 0.2/N2

Z4 = 2 [5] 1/N + 1/N2 1/N + 0.8/N2

Z256 = 0 [5, 70] 1/N − 0.36/N2 1/N − 0.38/N2

Z257 = 0 [70] 1/N + 0.36/N2 1/N + 0.35/N2

In Chapter 5, we proved that the event (ZwN+2 = 0 ∧ ZwN = 0) is
positively biased for all w ≥ 1. In fact, we proved that for any integer w ≥ 1,
if we assume that the permutation SwN is truly random, then

Pr(ZwN+2 = 0 ∧ ZwN = 0) ≈ 1/N2 + 1/N3.

After the first long-term bias observed by Golic [52] in 1997, this is the only
one that involves non-consecutive bytes of RC4 keystream. Golic [52] proved a
strong bitwise (only least significant bit) correlation between ZwN and ZwN+2,
while we proved a byte-wise correlation.

9.1.4 Chapter 7 – One byte per clock RC4 hardware

This chapter dealt with Problem 2a.

Problem 2a – hardware design matching existing best throughput

Is it possible to provide a simpler alternative to the best existing
designs for RC4 hardware that would yield the same throughput?

Throughput of an RC4 circuit can be measured in terms of the average number
of cycles required to produce one keystream byte as output. In 2003, a 3
cycles-per-byte implementation of RC4 on a custom pipelined hardware was
proposed by Kitsos, Kostopoulos, Sklavos and Koufopavlou [79]. In the same
year, a patent by Matthews Jr. [106] was disclosed, which provided a similar
3 cycles-per-byte architecture using multi-port memory units. Another patent

201 9.1 Summary of the thesis

by Matthews Jr. [105] was disclosed in 2008, which proposed a new design
for RC4 hardware using pipeline architecture to increase the efficiency of the
cipher to obtain a 1 byte-per-cycle throughput. In this direction, we attempted
a simpler hardware design for RC4 that would provide the same throughput.

Design 1: In Chapter 7, we proposed a new design principle – loop unrolling
– which has never been used in RC4 hardware earlier. We unrolled and fused
two rounds of RC4 PRGA into a single step to achieve a throughput of 1 byte-
per-cycle in our design, Design 1, matching the throughput of the best existing
architecture proposed by Matthews Jr. [105].

9.1.5 Chapter 8 – Two bytes per clock RC4 hardware

This chapter dealt with Problem 2b.

Problem 2b – hardware design improving existing best throughput

Is it possible to design a new RC4 hardware that would yield a better
throughput compared to the best existing architecture?

While carefully studying the existing designs based on hardware pipelining,
we noticed that the hardware pipelining approach to obtain 1 byte-per-cycle
in RC4 hardware, as in Matthews Jr. [105], is entirely independent of our loop
unrolling idea. This motivated us to target for an even better architecture.

Design 2: In Chapter 8, we combined the two approaches – loop unrolling and
hardware pipelining – into a single design. On top of an optimized 1 byte-
per-cycle structure based on hardware pipeline, we implemented our earlier
loop unrolling design to get a combined architecture, Design 2, which offered
2 bytes-per-cycle keystream throughput with the same clock frequency.

We implemented our designs on various technology platforms, and the final
hybrid design provided the best throughput compared to any RC4 hardware
implementation to date: 10 Gbps on 130 nm technology, 21.92 Gbps on 90
nm technology, and 30.72 Gbps on 65 nm technology. Table 9.3 (similar to
Table 8.2) summarizes the throughput of both our designs.

Chapter 9: Conclusion and Open Problems

Table 9.3: Throughput of Design 1 and Design 2.

Operations Number of clock cycles required for each operation
Design 1 Design 2

Per KSA round 1 1
Complete KSA 256 + 1 = 257 256 + 1 = 257
N bytes of PRGA N + 2 N/2 + 2
N bytes of RC4 257 + (N + 2) = N + 259 257 + (N/2 + 2) = N/2 + 259
Cycles per byte 1 + 259

N 1/2 + 259
N

9.2 Contribution of our work

In this section, we outline the major contributions of our work included in this
thesis by placing them on a time-line, in retrospect with the state-of-the-art
literature of RC4 analysis and implementation.

9.2.1 Analysis of RC4 stream cipher

Settling long-standing open problems

We settled a few long-standing open questions in RC4 cryptanalysis:

1. Keylength dependent anomaly: The mysterious observations regarding
‘anomaly pairs’ were made by Mantin [100] back in 2002, and again by
Paul [116] in 2009. The relation between the anomalies and the length
of the secret key of RC4 was only speculated, but not proved in the liter-
ature. We settled this long-standing question by proving the keylength
dependent bias of the anomaly pair (S0[128] = 127) in our paper [128].
The details are presented in Chapter 3 of this thesis.

2. Long-term conditional glimpse: Jenkins [75] was the first to report a
glimpse into RC4 state from the keystream with probability 2/N , and it
has since been the best one that persists in the long-term evolution of the
PRGA. In this direction, we proved a new long-term conditional glimpse
correlation in the event (Sr[r+ 1] = N − 1 | Zr+1 = Zr ∧ Zr+1 = r+ 2),
which has a magnitude of 3/N , the best to date. On a similar note, in

203 9.2 Contribution of our work

one of our works [98], we also characterized the non-random behavior
of the index j, identified a hitherto unknown strong bias in (j2 = 4),
and exploited this bias in proving a new glimpse bias depending on the
second keystream byte Z2. The details are presented in Chapter 4.

3. Distribution of Z1: The observation of the sinusoidal distribution of Z1,
and its negative bias towards zero, was made in 2002 by Mironov [112].
We solved it after a decade [132], and the details are in Chapter 5.

4. Bias of initial keystream bytes towards zero: In 2001, Mantin and
Shamir [103] identified a strong bias of Z2 towards zero. However, the
existence of any similar bias in the other initial bytes was not investi-
gated ever since. About a decade later, we extended the observation
of the second-byte bias [103] to all initial bytes Z3 to Z255 in the RC4
keystream [98]. The details are presented in Chapter 5.

5. Long-term bias in non-consecutive keystream bytes: After the first long-
term bias observed by Golic [52] in 1997, we identified and proved the
only long-term bias of RC4 that involves non-consecutive bytes of the
keystream. While Golic [52] proved a strong bitwise correlation between
the least significant bits of ZwN and ZwN+2, we proved a byte-wise cor-
relation between ZwN and ZwN+2 in [132]. The details are in Chapter 5.

Providing theoretical validation for practical attacks

Majority of the recent results in RC4 analysis have targeted experimental iden-
tification of biases and their subsequent application towards practical attacks
on RC4 based protocols like WEP, WPA and TLS. This has given rise to an
array of interesting open problems, some of which were answered by us.

1. Proving biases involved in recent WEP and WPA attacks: In 2010, the
work of Sepehrdad, Vaudenay and Vuagnoux [136] produced several em-
pirical (observed experimentally, but not proved) biases in linear relations
involving RC4 variables within a single round, which were used to mount
practical WEP and WPA attacks. We proved all significant biases of this
kind in [131, 132], to complement and complete the state-of-the-art pic-
ture of practical WEP and WPA attacks. The details are in Chapter 4.

Chapter 9: Conclusion and Open Problems

2. Proving biases involved in recent TLS attacks: Quite recently in 2013, Al-
Fardan, Bernstein, Paterson, Poettering and Schuldt [5,14] ran extensive
experiments to identify about 65536 single-byte biases in the initial RC4
keystream, and have used those to mount an attack on the TLS protocol.
In [128] and Chapter 5, we have proved almost all open short-term single-
byte biases that have been exploited in this recent TLS attack [5,14], to
provide due theoretical justification towards the observations.

Initiating a new direction of RC4 analysis

The most important contribution of our results obtained during the course of
this thesis is to initiate a completely new direction of research in RC4 crypt-
analysis – keylength dependent biases. The details are presented in Chapter 3.

1. Discovery of keylength dependent biases: While proving an empirical bias
in the event (S16[j16] = 0 | Z16 = −16), observed by Sepehrdad, Vaude-
nay and Vuagnoux [136], we found the bias dependent on the length of
the secret key l. We identified the general pattern (Sl[jl] = 0 | Zl = −l)
as well as several other similar conditional biases. These in turn led to
the discovery of the first keylength dependent keystream bias of RC4, in
the event (Zl = −l), for every practical keylength 5 ≤ l ≤ 32.

2. Proof of extended keylength dependent biases: After our discovery of
keylength dependent biases, a recent work of Isobe, Ohigashi, Watan-
abe and Morii [70] identified the extended version of the same in 2013.
The extended keylength dependent biases, present in (Zxl = −xl) for
5 ≤ l ≤ 32 and 1 ≤ x ≤ bN/lc, were conclusively proved by us in [128].

3. Discovery of keylength dependence in Z1 bias: In 2013, AlFardan, Bern-
stein, Paterson, Poettering and Schuldt [5, 14] observed a negative bias
in (Z1 = 129), which seemed to be prominent for 16-byte secret keys, but
not for full 256-byte keys. We discovered [128] the keylength dependent
pattern of this bias, and found that the bias is present only when the
keylength l is a non-trivial divisor of N = 256, i.e., when l = 2, 4, . . . , 128.

Table 9.4 depicts the impact of our work in retrospect of the current literature.
The shaded rows in the table indicate our results discussed in this thesis.

205 9.2 Contribution of our work

Table 9.4: Contributions of the thesis with respect to the time-line of related results
in the literature of RC4 cryptanalysis.

Year Result in RC4 cryptanalysis Ref.

Earlier results in RC4 analysis that motivate our work in this thesis.
1996 Discovery of glimpse correlations [75]
1997 Long-term bitwise correlation in non-consecutive bytes [52]
2001 Proof of bias in (Z2 = 0) [103]
2002 Observation of sinusoidal distribution of Z1 [112]
2002 Observation of ‘anomaly’ in initial state S0 [100]

Contemporary results in RC4 analysis including our work in this thesis.
2009 Discussion on ‘anomaly pairs’ in state S0 [116]
2010 Empirical biases discovered for WEP and WPA attacks [136]
2011 Proof of biases in (Zr = 0) for 3 ≤ r ≤ 255 [98]
2011 Non-randomness in j and related glimpse [98]
2011 Practical attacks on WEP and WPA [137]
2011 Proof of biases related to WEP and WPA attacks [131]
2011 Discovery and proof of keylength dependent biases [131]
2012 Revised and improved attacks on WEP and WPA [134]
2012 Proof of sinusoidal distribution of Z1 [132]
2012 Long-term correlation in non-consecutive bytes [132]
2013 Proof of some short-term single-byte biases [127]
2013 Observation of extended keylength dependent biases [70]
2013 Further improvements in practical attacks on WEP [135]
2013 Empirical biases discovered for TLS attack [5, 14]
2013 Proof of extended keylength dependent biases [128]
2013 Proof of biases related to TLS attack [128]
2013 Proof of ‘anomaly’ in the event (S0[128] = 127) [128]
2013 Discovery of keylength dependence in (Z1 = 129) [128]
2013 Discovery and proof of new long-term glimpse [99]

Chapter 9: Conclusion and Open Problems

Implications towards practical attacks

The results that we have discovered and/or proved in this thesis are based on
the basic model of RC4 stream cipher. This takes as input a key (typically 16
bytes long), and outputs a keystream of arbitrary length, as per the generic
model of a pseudo-random generator (PRG). However, the three celebrated
protocols using RC4 for encryption, namely WEP, WPA and TLS, use RC4 in
a way that had not been prescribed by the RC4 author.

In all these protocols, RC4 takes as input an IV along with a random key.
In case of WEP, the protocol uses RC4 with a pre-shared key appended to
the IV for self-synchronization. Using the technique of related key attacks on
RC4, this scheme has been broken through passive full-key recovery attacks,
and thus WEP is considered insecure in practice. The goal of WPA was to
resolve all security threats of WEP, by introducing a key fixing function to
feed the RC4 core with different unrelated keys for each packet. In addition
to this, WPA incorporated a packet integrity protection scheme to prevent
replay and alteration of the initialization vector, which is a main tool in active
attacks. TLS however, hashes the IV and the secret key together to produce a
completely random key for RC4 to use. This is the closest model to the original
RC4, and one may practically consider this as RC4 with the probabilistic model
of uniform random keys.

As most of our results on statistical weaknesses of RC4 are based on the
above probabilistic model of uniform random keys, we may consider these bi-
ases to hold in TLS. In fact, the most prominent recent attack [5] on the
protocol exploits quite a few biases proved in this thesis. In case IV is used
in any RC4 protocol, and the base model differs from the uniform random
key setup, some of these results get surprisingly stronger. Recent attacks on
WPA [115, 130] corroborate this fact by identifying stronger statistical weak-
nesses in RC4 keystream resulting due to weak construction of the IV through
the WPA/TKIP key schedule.

In summary, the results on RC4 analysis presented in this thesis provide
significant insight towards systematic investigation for statistical weaknesses
in practical protocols based on RC4.

207 9.2 Contribution of our work

9.2.2 Implementation of RC4 stream cipher

Exploiting loop unrolling idea in RC4 hardware

In the literature of RC4 hardware implementation, there are a few high-
throughput designs [79,105,106], all of which rely on efficient hardware pipelin-
ing to increase the performance. For the first time in this literature, we ex-
ploited the concept of ‘loop unrolling’, or combining two rounds of RC4 into
a single-stage operation. The design based on this idea, first proposed in our
paper [133], provides the same throughput as that of the best existing de-
sign [105]. The details are presented in Chapter 7 of this thesis.

Designing high-throughput hybrid hardware for RC4

Through an extensive survey of the RC4 architectures designed using efficient
hardware pipelining, we identified the independence of this approach with re-
spect to our loop unrolling idea. Thus in our paper [129], we proposed a fusion
of the two methods into a single platform. This produced the best through-
put (2 bytes-per-cycle) in the literature of RC4 implementation to date. The
details are presented in Chapter 8 of this thesis.

The time-line in Table 9.5 depicts the major contributions and impact of our
work in retrospect of the earlier literature in RC4 implementation. The shaded
rows in the table indicate our results discussed in this thesis.

Table 9.5: Contributions of the thesis with respect to the time-line of related results
in the literature of RC4 implementation.

Year Result in RC4 implementation Ref.
2003 3 cycles-per-byte design based on custom pipeline [79]
2003 3 cycles-per-byte design based on multi-port memory [106]
2008 1 cycle-per-byte design based on hardware pipelining [105]
2010 1 byte-per-cycle design based on loop unrolling [133]
2013 2 bytes-per-cycle design based on hardware pipelining

combined with loop unrolling in a hybrid model
[129]

Chapter 9: Conclusion and Open Problems

9.3 Open problems in RC4

RC4 stream cipher has always been a delight for analysts and practitioners
due to its surprising robustness packed within the intriguingly simple design.
Even after 25 years of analysis and implementation, the cipher continues to
offer research problems of interest to both amateurs and seasoned researchers.
The following is a list of few interesting open problems in the RC4 literature.

Key collisions in RC4 keystream

The strongest practical results on full-key collisions were published in 2011, by
Chen and Miyaji [31]. This work did not device theoretical constructions of
related keys, but experimentally found a 22-byte colliding key pair, the shortest
to date. However, two questions in this direction remain open:

1. Give a theoretical construction of short key pairs, of size 22 bytes or less.

2. Find a collision with 16-byte key pairs, the practical keylength of RC4.

Key recovery attacks on WPA

WEP attacks have been discussed quite seriously in the literature, but there
are not so many attacks on the revised version of the protocol – WPA. During
2011-12, Sepehrdad, Vaudenay and Vuagnoux [134, 137] presented the first
practical key recovery attack on WPA. The authors presented a new attack
to recover the full 128-bit temporary key of WPA by using only 238 packets.
However, the time complexity of this key-recovery attack was theoretically
estimated as 296 in [134,137]. Hence there remains an open question:

3. Is it possible to improve the theoretical complexity of key recovery attack
on WPA to bring it closer to the complexity of the practical attack?

Anomaly pairs and keylength

The anomaly pairs had been first identified by Mantin [100], and later discussed
by Paul [116]. We proved the anomaly in (S0[128] = 127) and conclusively

209 9.3 Open problems in RC4

showed a connection with the keylength of RC4. We also attempted to connect
this anomaly to the keylength dependent negative bias of (Z1 = 129), which
seemed surprisingly similar in pattern. However, we did not settle the issue
completely, and it is interesting to pose the following problems:

4. Completely characterize the keylength dependent anomalies in RC4.

5. Identify and prove all keystream biases resulting from the anomalies.

State recovery attacks on RC4

State recovery attacks on RC4 seem to be most illusive. After a series of
attempts [54,81,113,139,148], the best attack was published by Maximov and
Khovratovich [107]. However, a contemporary result by Golic and Morgari [57]
made some critical remarks on [107], and claimed to improve the attack of [107]
even further. However, both the attacks claimed a theoretical complexity of
2200 or more for N = 256, and hence no practical verification of the attacks on
full-sized RC4 was possible ever since. It will be nice to have the following.

6. Comprehensive analysis of both the works [107] and [57] to obtain exact
complexity bounds for N = 256, and practical attacks for smaller N .

Short cycles in RC4 keystream

RC4 state evolution may be considered as a finite state machine, with the state
consisting of a 256-byte permutation array and two indices i, j of size 1 byte
each. It is natural to investigate for cycles within this state evolution pattern of
RC4, as short cycles in the state would result in short cycles in the keystream.
However, apart from an ‘impossible’ cycle of RC4 discovered by Finney [42],
later discussed in [75,113], there exists no other cycle in the cipher. Thus it is
interesting to ask the following questions:

7. Is there a lower bound on the length of ‘possible’ cycles in RC4?

8. Is it possible to explicitly find a short cycle in the cipher evolution?

Chapter 9: Conclusion and Open Problems

Search for keystream biases

Throughout the thesis, we have observed the existence of numerous keystream
biases in RC4. In recent times, there have been a few attempts at experimen-
tally identifying short-term biases in the keystream [5,70,136]. However, even
for the first N = 256 bytes of the keystream, the search space for identifying
all possible biases grows exponentially. Thus it is not possible to enumer-
ate all significant biases through experimentation. One may however, try the
following problem through extensive experimentation.

9. Enumerate all significant biases of the form (Zr ?Zr+x = v) in the initial
keystream bytes, where x = 1, 2, . . . , N − r and v = 0, . . . , N − 1, and
the operation ‘?’ may denote either byte-wise addition or multiplication
modulo N , or bitwise logical operations like AND, OR, XOR etc.

Area optimization for high-throughput designs

The best-throughput RC4 hardware to date is Design 2, as we proposed in [129]
and Chapter 8. But there may still be some room for improvement, especially
in terms of its hardware footprint and the frequency of operation. These could
be further improved if we use macro memory units instead of the register file
currently used for the S-box. However, macro memories have port restrictions,
typically 2 read-write ports, which makes it impossible to accommodate our
loop-unrolled design that requires 6 read and 4 write ports for the S-box. One
may refer to Figure 8.3 for the port-sharing model of Design 2.

One solution would be to divide the S-box storage into smaller memory
banks and check the probability with which each memory bank is accessed
within a clock-cycle. The probability of accessing a single memory bank may
be computed by considering the access due to index j to be random, while
the one due to index i is deterministic. When the accesses come to different
memory banks, we obtain the same throughput as proposed for Design 2. But
when two accesses collide, we will have to stall one of them, at least for one
pipeline stage. This will give us less than ideal performance in terms of the
throughput, but would reduce the hardware area. It will be interesting to
attempt the following problem in this direction.

211 9.3 Open problems in RC4

10. Find the hardware footprint and expected throughput of Design 2, pro-
posed in Chapter 8, if the storage for the S-box is distributed over a
certain number of memory banks consisting of macro memory units.

This idea for splitting up the storage unit into disjoint memory banks may also
be used for similar hardware designs [30] of the HC-family of stream ciphers.

Analysis and implementation of RC4-like ciphers

Note that analysis and implementation of major RC4-like ciphers, namely
VMPC [154], RC4A [122], RC4+ [95,116], RC4(n,m) (also called NGG) [114],
GGHN [58], Py (pronounced Roo) [19], also generate equally interesting re-
search problems. However, we do not cover the these RC4-like ciphers and
related problems within the scope of this thesis.

In a nutshell

In this thesis, we presented our results from the last three years (2010–2013)
on analysis and implementation of RC4 stream cipher. We identified long-
standing open problems as well as contemporary results from the literature,
and provided answers to ten research problems in this thesis. During the
course of this thesis, we have also studied several related problems in RC4,
and have presented ten open problems towards potential future directions in
RC4 research. We believe that the plethora of problems arising from the
surprisingly simple structure of the RC4 stream cipher will continue to amaze
and motivate the community for years to come.

this page intentionally left blank

Bibliography

[1] 3rd Generation Partnership Project. Specification of the 3GPP confi-
dentiality and integrity algorithms 128-EEA3 & 128-EIA3. ETSI/SAGE
Specification – Document 2: ZUC Specification, v1.6, June 28, 2011.

[2] 3rd Generation Partnership Project. Specification of the 3GPP confi-
dentiality and integrity algorithms UEA2 & UIA2. ETSI/SAGE Spec-
ification – Document 2: SNOW 3G Specification, v1.1, September 6,
2006.

[3] 3rd Generation Partnership Project. Long term evaluation release 10
and beyond (LTE-Advanced). Proposed to ITU at 3GPP TSG RAN
Meeting, Spain, 2009.

[4] Mete Akgün, Pinar Kavak, and Hüseyin Demirci. New results on the key
scheduling algorithm of RC4. In Dipanwita Roy Chowdhury, Vincent
Rijmen, and Abhijit Das, editors, INDOCRYPT, volume 5365 of Lecture
Notes in Computer Science, pages 40–52. Springer, 2008.

[5] Nadhem AlFardan, Dan Bernstein, Kenneth G. Paterson, Bertram Po-
ettering, and Jacob C.N. Schuldt. On the security of RC4 in TLS. In
USENIX Security Symposium, 2013. Presented at FSE 2013 as an invited
talk [14] by Dan Bernstein. Full version of the research paper and relevant
results are available online at http://www.isg.rhul.ac.uk/tls/.

[6] Frederik Armknecht and Matthias Krause. Algebraic attacks on com-
biners with memory. In Dan Boneh, editor, CRYPTO, volume 2729 of
Lecture Notes in Computer Science, pages 162–175. Springer, 2003.

213

http://www.isg.rhul.ac.uk/tls/

BIBLIOGRAPHY

[7] Subhadeep Banik and Subhamoy Maitra. A differential fault attack on
MICKEY 2.0. In Guido Bertoni and Jean-Sébastien Coron, editors,
CHES, volume 8086 of Lecture Notes in Computer Science, pages 215–
232. Springer, 2013.

[8] Subhadeep Banik, Subhamoy Maitra, and Santanu Sarkar. A differential
fault attack on the Grain family of stream ciphers. In Emmanuel Prouff
and Patrick Schaumont, editors, CHES, volume 7428 of Lecture Notes in
Computer Science, pages 122–139. Springer, 2012.

[9] Elad Barkan and Eli Biham. Conditional estimators: An effective attack
on A5/1. In Bart Preneel and Stafford E. Tavares, editors, Selected Areas
in Cryptography, volume 3897 of Lecture Notes in Computer Science,
pages 1–19. Springer, 2005.

[10] Elad Barkan, Eli Biham, and Nathan Keller. Instant ciphertext-only
cryptanalysis of GSM encrypted communication. In Dan Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer Science, pages
600–616. Springer, 2003.

[11] Elad Barkan, Eli Biham, and Nathan Keller. Instant ciphertext-
only cryptanalysis of GSM encrypted communication. J. Cryptology,
21(3):392–429, 2008.

[12] Riddhipratim Basu, Shirshendu Ganguly, Subhamoy Maitra, and
Goutam Paul. A complete characterization of the evolution of RC4
pseudo random generation algorithm. J. Mathematical Cryptology,
2(3):257–289, 2008.

[13] Riddhipratim Basu, Subhamoy Maitra, Goutam Paul, and Tanmoy
Talukdar. On some sequences of the secret pseudo-random index j in
RC4 key scheduling. In Maria Bras-Amorós and Tom Høholdt, editors,
AAECC, volume 5527 of Lecture Notes in Computer Science, pages 137–
148. Springer, 2009.

[14] Daniel Bernstein. Failures of secret-key cryptography. Invited talk at
FSE 2013. Session chaired by Bart Preneel, 2013.

215 BIBLIOGRAPHY

[15] Eli Biham and Yaniv Carmeli. Efficient reconstruction of RC4 keys from
internal states. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture
Notes in Computer Science, pages 270–288. Springer, 2008.

[16] Eli Biham and Orr Dunkelman. Cryptanalysis of the A5/1 GSM stream
cipher. In Bimal K. Roy and Eiji Okamoto, editors, INDOCRYPT, vol-
ume 1977 of Lecture Notes in Computer Science, pages 43–51. Springer,
2000.

[17] Eli Biham and Orr Dunkelman. Differential cryptanalysis in stream ci-
phers. IACR Cryptology ePrint Archive, 2007:218, 2007.

[18] Eli Biham, Louis Granboulan, and Phong Q. Nguyen. Impossible fault
analysis of RC4 and differential fault analysis of RC4. In Henri Gilbert
and Helena Handschuh, editors, FSE, volume 3557 of Lecture Notes in
Computer Science, pages 359–367. Springer, 2005.

[19] Eli Biham and Jennifer Seberry. Py (Roo): A fast and secure stream
cipher using rolling arrays. IACR Cryptology ePrint Archive, 2005:155,
2005.

[20] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. In Alfred Menezes and Scott A. Vanstone, editors, CRYPTO,
volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer,
1990.

[21] Eli Biham and Adi Shamir. Differential cryptanalysis of the full 16-round
DES. In Ernest F. Brickell, editor, CRYPTO, volume 740 of Lecture
Notes in Computer Science, pages 487–496. Springer, 1992.

[22] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryp-
tosystems. In Burton S. Kaliski Jr., editor, CRYPTO, volume 1294 of
Lecture Notes in Computer Science, pages 513–525. Springer, 1997.

[23] Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data trade-
offs for stream ciphers. In Tatsuaki Okamoto, editor, ASIACRYPT, vol-
ume 1976 of Lecture Notes in Computer Science, pages 1–13. Springer,
2000.

BIBLIOGRAPHY

[24] Alex Biryukov, Adi Shamir, and David Wagner. Real time cryptanalysis
of A5/1 on a PC. In Bruce Schneier, editor, FSE, volume 1978 of Lecture
Notes in Computer Science, pages 1–18. Springer, 2000.

[25] Richard E. Blahut. Principles and Practice of Information Theory.
Addison-Wesley, 1983.

[26] BluetoothTM. Bluetooth specification, v4.0, June 2010. E0 encryption
algorithm described in volume 2, pages 1072–1081. Available online at
http://www.bluetooth.org.

[27] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the impor-
tance of checking cryptographic protocols for faults (extended abstract).
In Walter Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

[28] Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical im-
plementation of the GSM A5/1 and A5/2 “voice privacy” encryption
algorithms. Available online at http://www.scard.org/gsm/a51.html,
1998.

[29] Anne Canteaut and Michaël Trabbia. Improved fast correlation attacks
using parity-check equations of weight 4 and 5. In Bart Preneel, edi-
tor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science,
pages 573–588. Springer, 2000.

[30] Anupam Chattopadhyay, Ayesha Khalid, Subhamoy Maitra, and Shash-
wat Raizada. Designing high-throughput hardware accelerator for stream
cipher HC-128. In ISCAS, pages 1448–1451. IEEE, 2012.

[31] Jiageng Chen and Atsuko Miyaji. How to find short RC4 colliding key
pairs. In Xuejia Lai, Jianying Zhou, and Hui Li, editors, ISC, volume
7001 of Lecture Notes in Computer Science, pages 32–46. Springer, 2011.

[32] Philippe Chose, Antoine Joux, and Michel Mitton. Fast correlation at-
tacks: An algorithmic point of view. In Lars R. Knudsen, editor, EU-
ROCRYPT, volume 2332 of Lecture Notes in Computer Science, pages
209–221. Springer, 2002.

http://www.bluetooth.org
http://www.scard.org/gsm/a51.html

217 BIBLIOGRAPHY

[33] Nicolas Courtois. Fast algebraic attacks on stream ciphers with linear
feedback. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 176–194. Springer, 2003.

[34] Nicolas Courtois and Willi Meier. Algebraic attacks on stream ciphers
with linear feedback. In Eli Biham, editor, EUROCRYPT, volume 2656
of Lecture Notes in Computer Science, pages 345–359. Springer, 2003.

[35] Joan Daemen and Paris Kitsos. The self-synchronizing stream cipher
MOSQUITO. Submission to ECRYPT call for stream ciphers, 2005.
Report 2005/018, eSTREAM, the ECRYPT Stream Cipher Project.

[36] Joan Daemen and Paris Kitsos. The self-synchronizing stream cipher
moustique. In Matthew J. B. Robshaw and Olivier Billet, editors, The
eSTREAM Finalists, volume 4986 of Lecture Notes in Computer Science,
pages 210–223. Springer, 2008.

[37] Christophe Devine and Thomas d’Otreppe. Aircrack-ng. Available online
at http://www.aircrack-ng.org/.

[38] Orr Dunkelman and Nathan Keller. Treatment of the initial value in
time-memory-data tradeoff attacks on stream ciphers. Inf. Process. Lett.,
107(5):133–137, 2008.

[39] Patrik Ekdahl and Thomas Johansson. Another attack on A5/1. IEEE
Transactions on Information Theory, 49(1):284–289, 2003.

[40] ECRYPT Stream Cipher Project eSTREAM. The current eSTREAM
portfolio. Available online at http://www.ecrypt.eu.org/stream/
index.html.

[41] ECRYPT Stream Cipher Project eSTREAM. Software performance re-
sults from the eSTREAM project. Available online at http://www.
ecrypt.eu.org/stream/perf/#results.

[42] Hal Finney. An RC4 cycle that can’t happen. Post in sci.crypt, 1994.

[43] Wieland Fischer, Berndt M. Gammel, O. Kniffler, and J. Velten. Differ-
ential power analysis of stream ciphers. In Masayuki Abe, editor, CT-

http://www.aircrack-ng.org/
http://www.ecrypt.eu.org/stream/index.html
http://www.ecrypt.eu.org/stream/index.html
http://www.ecrypt.eu.org/stream/perf/#results
http://www.ecrypt.eu.org/stream/perf/#results

BIBLIOGRAPHY

RSA, volume 4377 of Lecture Notes in Computer Science, pages 257–270.
Springer, 2007.

[44] Scott R. Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the key
scheduling algorithm of RC4. In Serge Vaudenay and Amr M. Youssef,
editors, Selected Areas in Cryptography, volume 2259 of Lecture Notes in
Computer Science, pages 1–24. Springer, 2001.

[45] Scott R. Fluhrer and David A. McGrew. Statistical analysis of the alleged
RC4 keystream generator. In Bruce Schneier, editor, FSE, volume 1978
of Lecture Notes in Computer Science, pages 19–30. Springer, 2000.

[46] Michalis D. Galanis, Paris Kitsos, Giorgos Kostopoulos, Nicolas Sklavos,
and Constantinos E. Goutis. Comparison of the hardware implementa-
tion of stream ciphers. Int. Arab J. Inf. Technol., 2(4):267–274, 2005.

[47] Ian Goldberg and David Wagner. Lucky green – the (real-time) crypt-
analysis of A5/2. Presented at the Rump Session of Crypto, 1999.

[48] Jovan Dj. Golic. Intrinsic statistical weakness of keystream generators.
In Josef Pieprzyk and Reihaneh Safavi-Naini, editors, ASIACRYPT, vol-
ume 917 of Lecture Notes in Computer Science, pages 91–103. Springer,
1994.

[49] Jovan Dj. Golic. Towards fast correlation attacks on irregularly clocked
shift registers. In Louis C. Guillou and Jean-Jacques Quisquater, editors,
EUROCRYPT, volume 921 of Lecture Notes in Computer Science, pages
248–262. Springer, 1995.

[50] Jovan Dj. Golic. Correlation properties of a general binary combiner
with memory. J. Cryptology, 9(2):111–126, 1996.

[51] Jovan Dj. Golic. Cryptanalysis of alleged A5 stream cipher. In Walter
Fumy, editor, EUROCRYPT, volume 1233 of Lecture Notes in Computer
Science, pages 239–255. Springer, 1997.

[52] Jovan Dj. Golic. Linear statistical weakness of alleged RC4 keystream
generator. In Walter Fumy, editor, EUROCRYPT, volume 1233 of Lec-
ture Notes in Computer Science, pages 226–238. Springer, 1997.

219 BIBLIOGRAPHY

[53] Jovan Dj. Golic. Linear models for a time-variant permutation generator.
IEEE Transactions on Information Theory, 45(7):2374–2382, 1999.

[54] Jovan Dj. Golic. Iterative probabilistic cryptanalysis of RC4 keystream
generator. In Ed Dawson, Andrew Clark, and Colin Boyd, editors,
ACISP, volume 1841 of Lecture Notes in Computer Science, pages 220–
233. Springer, 2000.

[55] Jovan Dj. Golic. Correlation analysis of the shrinking generator. In Joe
Kilian, editor, CRYPTO, volume 2139 of Lecture Notes in Computer
Science, pages 440–457. Springer, 2001.

[56] Jovan Dj. Golic and Miodrag J. Mihaljevic. A generalized correlation
attack on a class of stream ciphers based on the Levenshtein distance. J.
Cryptology, 3(3):201–212, 1991.

[57] Jovan Dj. Golic and Guglielmo Morgari. Iterative probabilistic recon-
struction of RC4 internal states. IACR Cryptology ePrint Archive,
2008:348, 2008.

[58] Guang Gong, Kishan Chand Gupta, Martin Hell, and Yassir Nawaz. To-
wards a general RC4-like keystream generator. In Dengguo Feng, Dong-
dai Lin, and Moti Yung, editors, CISC, volume 3822 of Lecture Notes in
Computer Science, pages 162–174. Springer, 2005.

[59] Tim Good and Mohammed Benaissa. ASIC hardware performance. In
Matthew J. B. Robshaw and Olivier Billet, editors, The eSTREAM Fi-
nalists, volume 4986 of Lecture Notes in Computer Science, pages 267–
293. Springer, 2008.

[60] Alexander L. Grosul and Dan S. Wallach. A related-key cryptanalysis
of RC4. Technical Report TR-00-358, Department of Computer Science,
Rice University, 2000.

[61] Frank K. Gurkaynak, Peter Luethi, Nico Bernold, Rene Blattmann,
Victoria Goode, Marcel Marghitola, Hubert Kaeslin, Norbert Felber,
and Wolfgang Fichtner. Hardware evaluation of eSTREAM candidates:
Achterbahn, Grain, MICKEY, MOSQUITO, SFINKS, Trivium, VEST,

BIBLIOGRAPHY

ZK-Crypt. Report 2006/015, eSTREAM, the ECRYPT Stream Cipher
Project, 2006.

[62] Panu Hamalainen, Marko Hannikainen, Timo Hamalainen, and
Jukka Saarinen. Hardware implementation of the improved
WEP and RC4 encryption algorithms for wireless terminals. In
European Signal Processing Conference, pages 2289–2292, 2000.
Available online at http://www.eurasip.org/Proceedings/Eusipco/
Eusipco2000/SESSIONS/FRIPM/SS3/CR1539.PDF.

[63] Philip Hawkes and Gregory G. Rose. Rewriting variables: The complex-
ity of fast algebraic attacks on stream ciphers. In Matthew K. Franklin,
editor, CRYPTO, volume 3152 of Lecture Notes in Computer Science,
pages 390–406. Springer, 2004.

[64] Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier.
The grain family of stream ciphers. In Matthew J. B. Robshaw and
Olivier Billet, editors, The eSTREAM Finalists, volume 4986 of Lecture
Notes in Computer Science, pages 179–190. Springer, 2008.

[65] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher
for constrained environments. IJWMC, 2(1):86–93, 2007.

[66] Martin E. Hellman. A cryptanalytic time-memory trade-off. IEEE Trans-
actions on Information Theory, 26(4):401–406, 1980.

[67] Jonathan J. Hoch and Adi Shamir. Fault analysis of stream ciphers. In
Marc Joye and Jean-Jacques Quisquater, editors, CHES, volume 3156 of
Lecture Notes in Computer Science, pages 240–253. Springer, 2004.

[68] Michal Hojsík and Bohuslav Rudolf. Differential fault analysis of Triv-
ium. In Kaisa Nyberg, editor, FSE, volume 5086 of Lecture Notes in
Computer Science, pages 158–172. Springer, 2008.

[69] Jin Hong and Palash Sarkar. New applications of time memory data
tradeoffs. In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of Lecture
Notes in Computer Science, pages 353–372. Springer, 2005.

http://www.eurasip.org/Proceedings/Eusipco/Eusipco2000/SESSIONS/FRIPM/SS3/CR1539.PDF
http://www.eurasip.org/Proceedings/Eusipco/Eusipco2000/SESSIONS/FRIPM/SS3/CR1539.PDF

221 BIBLIOGRAPHY

[70] Takanori Isobe, Toshihiro Ohigashi, Yuhei Watanabe, and Masakatu
Morii. Full plaintext recovery attack on broadcast RC4. In Fast Software
Encryption (FSE), 2013. To appear.

[71] Thomas Johansson and Fredrik Jönsson. Fast correlation attacks based
on turbo code techniques. In Michael J. Wiener, editor, CRYPTO,
volume 1666 of Lecture Notes in Computer Science, pages 181–197.
Springer, 1999.

[72] Thomas Johansson and Fredrik Jönsson. Improved fast correlation at-
tacks on stream ciphers via convolutional codes. In Jacques Stern, edi-
tor, EUROCRYPT, volume 1592 of Lecture Notes in Computer Science,
pages 347–362. Springer, 1999.

[73] Antoine Joux and Frédéric Muller. Loosening the KNOT. In Thomas
Johansson, editor, FSE, volume 2887 of Lecture Notes in Computer Sci-
ence, pages 87–99. Springer, 2003.

[74] Antoine Joux and Frédéric Muller. Chosen-ciphertext attacks against
MOSQUITO. In Matthew J. B. Robshaw, editor, FSE, volume 4047 of
Lecture Notes in Computer Science, pages 390–404. Springer, 2006.

[75] Robert J. Jenkins Jr. ISAAC and RC4. Published on the Internet at
http://burtleburtle.net/bob/rand/isaac.html, 1996.

[76] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptogra-
phy. Chapman and Hall/CRC Press, 2007.

[77] Shahram Khazaei and Willi Meier. On reconstruction of RC4 keys from
internal states. In Jacques Calmet, Willi Geiselmann, and Jörn Müller-
Quade, editors, MMICS, volume 5393 of Lecture Notes in Computer Sci-
ence, pages 179–189. Springer, 2008.

[78] Aviad Kipnis and Adi Shamir. Cryptanalysis of the HFE public key cryp-
tosystem by relinearization. In Michael J. Wiener, editor, CRYPTO, vol-
ume 1666 of Lecture Notes in Computer Science, pages 19–30. Springer,
1999.

http://burtleburtle.net/bob/rand/isaac.html

BIBLIOGRAPHY

[79] Paraskevas Kitsos, Giorgos K. Kostopoulos, Nicolas Sklavos, and
Odysseas G. Koufopavlou. Hardware implementation of the RC4 stream
cipher. In 46th IEEE Midwest Symposium on Circuits & Systems,
volume 3, pages 1363–1366, Cairo, Egypt, 2003. Available online at
http://dsmc.eap.gr/en/members/pkitsos/papers/Kitsos_c14.pdf.

[80] Andreas Klein. Attacks on the RC4 stream cipher. Des. Codes Cryptog-
raphy, 48(3):269–286, 2008. Published online in 2006, and accepted in
WCC 2007 workshop.

[81] Lars R. Knudsen, Willi Meier, Bart Preneel, Vincent Rijmen, and Sven
Verdoolaege. Analysis methods for (alleged) RC4. In Kazuo Ohta and
Dingyi Pei, editors, ASIACRYPT, volume 1514 of Lecture Notes in Com-
puter Science, pages 327–341. Springer, 1998.

[82] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman,
RSA, DSS, and other systems. In Neal Koblitz, editor, CRYPTO, volume
1109 of Lecture Notes in Computer Science, pages 104–113. Springer,
1996.

[83] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Michael J. Wiener, editor, CRYPTO, volume 1666 of Lecture
Notes in Computer Science, pages 388–397. Springer, 1999.

[84] Korek. Need security pointers. Published online at http://www.
netstumbler.org/showthread.php?postid=89036#pos%t89036, 2004.

[85] Korek. Next generation of WEP attacks? Published online at http://
www.netstumbler.org/showpost.php?p=93942&postcount=%35, 2004.

[86] S. Kullback and R. A. Leibler. On information and sufficiency. Annals
of Mathematical Statistics, 22(1):79–86, 1951. Available online at http:
//projecteuclid.org/euclid.aoms/1177729694.

[87] Joseph Lano, Nele Mentens, Bart Preneel, and Ingrid Verbauwhede.
Power analysis of synchronous stream ciphers with resynchronization
mechanism. In Workshop Record of SASC 2004 – The State of the
Art of Stream Ciphers, pages 327–333, 2004. Available online at http:
//www.ecrypt.eu.org/stvl/sasc/record.html.

http://dsmc.eap.gr/en/members/pkitsos/papers/Kitsos_c14.pdf
http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036
http://www.netstumbler.org/showthread.php?postid=89036#pos%t89036
http://www.netstumbler.org/showpost.php?p=93942&postcount=%35
http://www.netstumbler.org/showpost.php?p=93942&postcount=%35
http://projecteuclid.org/euclid.aoms/1177729694
http://projecteuclid.org/euclid.aoms/1177729694
http://www.ecrypt.eu.org/stvl/sasc/record.html
http://www.ecrypt.eu.org/stvl/sasc/record.html

223 BIBLIOGRAPHY

[88] Gregor Leander, Erik Zenner, and Philip Hawkes. Cache timing analysis
of LFSR-based stream ciphers. In Matthew G. Parker, editor, IMA Int.
Conf., volume 5921 of Lecture Notes in Computer Science, pages 433–
445. Springer, 2009.

[89] Jun-Dian Lee and Chih-Peng Peng Fan. Efficient low-latency RC4 archi-
tecture designs for IEEE 802.11i WEP/TKIP. In International Sympo-
sium on Intelligent Signal Processing and Communication Systems (IS-
PACS) 2007, pages 56–59, 2007.

[90] Yi Lu, Willi Meier, and Serge Vaudenay. The conditional correlation
attack: A practical attack on Bluetooth encryption. In Victor Shoup,
editor, CRYPTO, volume 3621 of Lecture Notes in Computer Science,
pages 97–117. Springer, 2005.

[91] Yi Lu and Serge Vaudenay. Cryptanalysis of Bluetooth keystream gen-
erator two-level E0. In Pil Joong Lee, editor, ASIACRYPT, volume 3329
of Lecture Notes in Computer Science, pages 483–499. Springer, 2004.

[92] Yi Lu and Serge Vaudenay. Faster correlation attack on Bluetooth
keystream generator E0. In Matthew K. Franklin, editor, CRYPTO,
volume 3152 of Lecture Notes in Computer Science, pages 407–425.
Springer, 2004.

[93] Yi Lu and Serge Vaudenay. Cryptanalysis of an E0-like combiner with
memory. J. Cryptology, 21(3):430–457, 2008.

[94] Thomas Lynch and Earl E. Swartzlander Jr. A spanning tree carry
lookahead adder. IEEE Trans. Computers, 41(8):931–939, 1992.

[95] Subhamoy Maitra and Goutam Paul. Analysis of RC4 and proposal of
additional layers for better security margin. In Dipanwita Roy Chowd-
hury, Vincent Rijmen, and Abhijit Das, editors, INDOCRYPT, volume
5365 of Lecture Notes in Computer Science, pages 27–39. Springer, 2008.

[96] Subhamoy Maitra and Goutam Paul. New form of permutation bias and
secret key leakage in keystream bytes of RC4. In Kaisa Nyberg, editor,
FSE, volume 5086 of Lecture Notes in Computer Science, pages 253–269.
Springer, 2008.

BIBLIOGRAPHY

[97] Subhamoy Maitra, Goutam Paul, Santanu Sarkar, Michael Lehmann,
and Willi Meier. New results on generalization of Roos-type biases and
related keystreams of RC4. In Amr Youssef, Abderrahmane Nitaj, and
Aboul Ella Hassanien, editors, AFRICACRYPT, volume 7918 of Lecture
Notes in Computer Science, pages 222–239. Springer, 2013.

[98] Subhamoy Maitra, Goutam Paul, and Sourav Sen Gupta. Attack on
broadcast RC4 revisited. In Antoine Joux, editor, FSE, volume 6733 of
Lecture Notes in Computer Science, pages 199–217. Springer, 2011.

[99] Subhamoy Maitra and Sourav Sen Gupta. New long-term glimpse of
RC4 stream cipher. In Aditya Bagchi and Indrakshi Ray, editors, ICISS,
volume 8303 of Lecture Notes in Computer Science, pages 230–238.
Springer, 2013.

[100] Itsik Mantin. Analysis of the stream cipher RC4. Master’s thesis, The
Weizmann Institute of Science, Israel, 2001. Available online at http:
//www.wisdom.weizmann.ac.il/~itsik/RC4/RC4.html.

[101] Itsik Mantin. A practical attack on the fixed RC4 in the WEP mode.
In Bimal K. Roy, editor, ASIACRYPT, volume 3788 of Lecture Notes in
Computer Science, pages 395–411. Springer, 2005.

[102] Itsik Mantin. Predicting and distinguishing attacks on RC4 keystream
generator. In Ronald Cramer, editor, EUROCRYPT, volume 3494 of
Lecture Notes in Computer Science, pages 491–506. Springer, 2005.

[103] Itsik Mantin and Adi Shamir. A practical attack on broadcast RC4. In
Mitsuru Matsui, editor, FSE, volume 2355 of Lecture Notes in Computer
Science, pages 152–164. Springer, 2001.

[104] Mitsuru Matsui. Key collisions of the RC4 stream cipher. In Orr Dunkel-
man, editor, FSE, volume 5665 of Lecture Notes in Computer Science,
pages 38–50. Springer, 2009.

[105] Donald P. Matthews, Jr. Methods and apparatus for accelerating ARC4
processing. Patent, 07 2008. US 7403615.

[106] Donald P. Matthews, Jr. and Campbell CA. System and method for a
fast hardware implementation of RC4. Patent, 04 2003. US 6549622.

http://www.wisdom.weizmann.ac.il/~itsik/RC4/RC4.html
http://www.wisdom.weizmann.ac.il/~itsik/RC4/RC4.html

225 BIBLIOGRAPHY

[107] Alexander Maximov and Dmitry Khovratovich. New state recovery at-
tack on RC4. In David Wagner, editor, CRYPTO, volume 5157 of Lecture
Notes in Computer Science, pages 297–316. Springer, 2008.

[108] Matthew E. McKague. Design and analysis of RC4-like stream ciphers.
Master’s thesis, University of Waterloo, Canada, 2005.

[109] Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain
stream ciphers. J. Cryptology, 1(3):159–176, 1989.

[110] Willi Meier and Othmar Staffelbach. Correlation properties of combiners
with memory in stream ciphers. J. Cryptology, 5(1):67–86, 1992.

[111] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Hand-
book of Applied Cryptography. CRC Press, August 2011 edition, 1996.
Fifth Printing.

[112] Ilya Mironov. (Not So) random shuffles of RC4. In Moti Yung, editor,
CRYPTO, volume 2442 of Lecture Notes in Computer Science, pages
304–319. Springer, 2002.

[113] Serge Mister and Stafford E. Tavares. Cryptanalysis of RC4-like ciphers.
In Stafford E. Tavares and Henk Meijer, editors, Selected Areas in Cryp-
tography, volume 1556 of Lecture Notes in Computer Science, pages 131–
143. Springer, 1998.

[114] Yassir Nawaz, Kishan Chand Gupta, and Guang Gong. A 32-bit RC4-
like keystream generator. IACR Cryptology ePrint Archive, 2005:175,
2005.

[115] Kenneth G. Paterson, Bertram Poettering, and Jacob C.N. Schuldt.
Plaintext recovery attacks against WPA/TKIP. IACR Cryptology ePrint
Archive, 2013:748, 2013.

[116] Goutam Paul. Analysis and Design of RC4 and Its Variants. PhD
thesis in Engineering, Jadavpur University, 2009. Work done at Indian
Statistical Institute, thesis submitted at Jadavpur University.

[117] Goutam Paul and Subhamoy Maitra. Permutation after RC4 key
scheduling reveals the secret key. In Carlisle M. Adams, Ali Miri, and

BIBLIOGRAPHY

Michael J. Wiener, editors, Selected Areas in Cryptography, volume 4876
of Lecture Notes in Computer Science, pages 360–377. Springer, 2007.

[118] Goutam Paul and Subhamoy Maitra. On biases of permutation and
keystream bytes of RC4 towards the secret key. Cryptography and Com-
munications, 1(2):225–268, 2009.

[119] Goutam Paul and Subhamoy Maitra. RC4 Stream Cipher and Its Vari-
ants. CRC Press, Taylor & Francis Group, A Chapman & Hall Book,
2012.

[120] Goutam Paul, Subhamoy Maitra, and Rohit Srivastava. On non-
randomness of the permutation after RC4 key scheduling. In Serdar
Boztas and Hsiao feng Lu, editors, AAECC, volume 4851 of Lecture
Notes in Computer Science, pages 100–109. Springer, 2007.

[121] Goutam Paul, Siddheshwar Rathi, and Subhamoy Maitra. On non-
negligible bias of the first output byte of RC4 towards the first three
bytes of the secret key. Des. Codes Cryptography, 49(1-3):123–134, 2008.
Initial version in proceedings of WCC 2007.

[122] Souradyuti Paul and Bart Preneel. A new weakness in the RC4
keystream generator and an approach to improve the security of the
cipher. In Bimal K. Roy and Willi Meier, editors, FSE, volume 3017 of
Lecture Notes in Computer Science, pages 245–259. Springer, 2004.

[123] Souradyuti Paul and Bart Preneel. On the (in)security of stream ciphers
based on arrays and modular addition. In Xuejia Lai and Kefei Chen, ed-
itors, ASIACRYPT, volume 4284 of Lecture Notes in Computer Science,
pages 69–83. Springer, 2006.

[124] Ronald L. Rivest. RSA security response to weaknesses in key scheduling
algorithm of RC4. Technical note, RSA Data Security, Inc., 2001. [The
structure of RC4 was never published officially, it was leaked in 1994 to
the Internet. This note confirms that the leaked code is indeed RC4.].

[125] Andrew Roos. A class of weak keys in the RC4 stream cipher.
Two posts in sci.crypt, message-id 43u1eh$1j3@hermes.is.co.za and

43u1eh$1j3@hermes.is.co.za

227 BIBLIOGRAPHY

44ebge$llf@hermes.is.co.za, 1995. Available online at http://www.
impic.org/papers/WeakKeys-report.pdf.

[126] Markku-Juhani Olavi Saarinen. A time-memory tradeoff attack against
LILI-128. In Joan Daemen and Vincent Rijmen, editors, FSE, volume
2365 of Lecture Notes in Computer Science, pages 231–236. Springer,
2002.

[127] Santanu Sarkar. Further non-randomness in RC4, RC4A and VMPC. In
International Workshop on Coding and Cryptography (WCC), 2013.

[128] Santanu Sarkar, Sourav Sen Gupta, Goutam Paul, and Subhamoy
Maitra. Proving TLS-attack related open biases of RC4. IACR Cryptol-
ogy ePrint Archive, 2013:502, 2013.

[129] Sourav Sen Gupta, Anupam Chattopadhyay, Koushik Sinha, Subhamoy
Maitra, and Bhabani P. Sinha. High-performance hardware implemen-
tation for RC4 stream cipher. IEEE Trans. Computers, 62(4):730–743,
2013.

[130] Sourav Sen Gupta, Subhamoy Maitra, Willi Meier, Goutam Paul, and
Santanu Sarkar. Some results on RC4 in WPA. IACR Cryptology ePrint
Archive, 2013:476, 2013.

[131] Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu
Sarkar. Proof of empirical RC4 biases and new key correlations. In
Ali Miri and Serge Vaudenay, editors, Selected Areas in Cryptography,
volume 7118 of Lecture Notes in Computer Science, pages 151–168.
Springer, 2011.

[132] Sourav Sen Gupta, Subhamoy Maitra, Goutam Paul, and Santanu
Sarkar. (Non–)random sequences from (non–)random permutations –
analysis of RC4 stream cipher. Journal of Cryptology, 2013. To appear.
Published online in December 2012. DOI: 10.1007/s00145-012-9138-1.

[133] Sourav Sen Gupta, Koushik Sinha, Subhamoy Maitra, and Bhabani P.
Sinha. One byte per clock: A novel RC4 hardware. In Guang Gong and
Kishan Chand Gupta, editors, INDOCRYPT, volume 6498 of Lecture
Notes in Computer Science, pages 347–363. Springer, 2010.

44ebge$llf@hermes.is.co.za
http://www.impic.org/papers/WeakKeys-report.pdf
http://www.impic.org/papers/WeakKeys-report.pdf

BIBLIOGRAPHY

[134] Pouyan Sepehrdad. Statistical and Algebraic Cryptanalysis of
Lightweight and Ultra-Lightweight Symmetric Primitives. PhD thesis No.
5415, École Polytechnique Fédérale de Lausanne (EPFL), 2012. Available
online at http://lasecwww.epfl.ch/~sepehrdad/Pouyan_Sepehrdad_
PhD_Thesis.pdf.

[135] Pouyan Sepehrdad, Petr Susil, Serge Vaudenay, and Martin Vuagnoux.
Smashing WEP in a passive attack. In Fast Software Encryption (FSE),
2013. To appear.

[136] Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux. Discovery
and exploitation of new biases in RC4. In Alex Biryukov, Guang Gong,
and Douglas R. Stinson, editors, Selected Areas in Cryptography, volume
6544 of Lecture Notes in Computer Science, pages 74–91. Springer, 2010.

[137] Pouyan Sepehrdad, Serge Vaudenay, and Martin Vuagnoux. Statistical
attack on RC4 - distinguishing WPA. In Kenneth G. Paterson, edi-
tor, EUROCRYPT, volume 6632 of Lecture Notes in Computer Science,
pages 343–363. Springer, 2011.

[138] Claude E. Shannon. Communication theory of secrecy systems. Bell
Systems Technical Journal, 28(4):656–715, 1949.

[139] Yoshiaki Shiraishi, Toshihiro Ohigashi, and Masakatu Morii. An im-
proved internal-state reconstruction method of a stream cipher RC4. In
M.H. Hamza, editor, Communication, Network, and Information Secu-
rity, Track 440–088, New York, USA, December 2003.

[140] Bhabani P. Sinha and Pradip K. Srimani. Fast parallel algorithms for
binary multiplication and their implementation on systolic architectures.
IEEE Trans. Computers, 38(3):424–431, 1989.

[141] François-Xavier Standaert, Eric Peeters, Cédric Archambeau, and Jean-
Jacques Quisquater. Towards security limits in side-channel attacks.
In Louis Goubin and Mitsuru Matsui, editors, CHES, volume 4249 of
Lecture Notes in Computer Science, pages 30–45. Springer, 2006.

[142] Douglas R. Stinson. Cryptography: Theory and Practice. CRC Press,
third (November 2005) edition, 1995.

http://lasecwww.epfl.ch/~sepehrdad/Pouyan_Sepehrdad_PhD_Thesis.pdf
http://lasecwww.epfl.ch/~sepehrdad/Pouyan_Sepehrdad_PhD_Thesis.pdf

229 BIBLIOGRAPHY

[143] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. Using the
Fluhrer, Mantin, and Shamir attack to break WEP. In NDSS. The
Internet Society, 2002.

[144] Adam Stubblefield, John Ioannidis, and Aviel D. Rubin. A key recovery
attack on the 802.11b wired equivalent privacy protocol (WEP). ACM
Trans. Inf. Syst. Secur., 7(2):319–332, 2004.

[145] Erik Tews. Attacks on the WEP protocol. IACR Cryptology ePrint
Archive, 2007:471, 2007.

[146] Erik Tews and Martin Beck. Practical attacks against WEP and WPA.
In David A. Basin, Srdjan Capkun, and Wenke Lee, editors, WISEC,
pages 79–86. ACM, 2009.

[147] Erik Tews, Ralf-Philipp Weinmann, and Andrei Pyshkin. Breaking 104
bit WEP in less than 60 seconds. In Sehun Kim, Moti Yung, and Hyung-
Woo Lee, editors, WISA, volume 4867 of Lecture Notes in Computer
Science, pages 188–202. Springer, 2007.

[148] Violeta Tomasevic, Slobodan Bojanic, and Octavio Nieto-Taladriz. Find-
ing an internal state of RC4 stream cipher. Inf. Sci., 177(7):1715–1727,
2007.

[149] Serge Vaudenay and Martin Vuagnoux. Passive-only key recovery at-
tacks on RC4. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener,
editors, Selected Areas in Cryptography, volume 4876 of Lecture Notes in
Computer Science, pages 344–359. Springer, 2007.

[150] David A. Wagner. My RC4 weak keys. Post in sci.crypt, message-
id 447o1l$cbj@cnn.Princeton.EDU, 1995. Available online at http:
//www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys.

[151] Hongjun Wu and Bart Preneel. Differential cryptanalysis of the stream
ciphers Py, Py6 and Pypy. In Moni Naor, editor, EUROCRYPT, volume
4515 of Lecture Notes in Computer Science, pages 276–290. Springer,
2007.

447o1l$cbj@cnn.Princeton.EDU
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys
http://www.cs.berkeley.edu/~daw/my-posts/my-rc4-weak-keys

BIBLIOGRAPHY

[152] Hongjun Wu and Bart Preneel. Differential-linear attacks against the
stream cipher Phelix. In Alex Biryukov, editor, FSE, volume 4593 of
Lecture Notes in Computer Science, pages 87–100. Springer, 2007.

[153] Erik Zenner. A cache timing analysis of HC-256. In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, Selected Areas in
Cryptography, volume 5381 of Lecture Notes in Computer Science, pages
199–213. Springer, 2008.

[154] Bartosz Zoltak. VMPC one-way function and stream cipher. In Bimal K.
Roy and Willi Meier, editors, FSE, volume 3017 of Lecture Notes in
Computer Science, pages 210–225. Springer, 2004.

	Abstract
	Contents
	List of Tables
	List of Figures
	Preliminaries and Motivation
	Scope of this Thesis
	Stream Ciphers
	Motivation of the Thesis
	Organization of the Thesis

	I Analysis of RC4 Stream Cipher
	Overview of RC4 Analysis
	Weak keys and Key recovery from state
	Key recovery from keystream
	State recovery attacks
	Biases and Distinguishers

	Biases Based on RC4 Keylength
	Keylength dependent biases
	Extended keylength dependent biases
	Keylength dependent bias in first byte

	Biases Involving State Variables of RC4
	Proof of biases involving state variables
	(Non-)Randomness of j at initial rounds
	Long-term glimpse correlation in RC4

	Biases in Keystream Bytes of RC4
	Probability distribution of first byte
	Biases of initial bytes towards zero
	Proof of some isolated short-term biases
	Periodic long-term bias in RC4

	II Implementation of RC4 Stream Cipher
	Overview of RC4 Implementation
	Existing hardware implementations
	New implementations of RC4 hardware

	Design 1 – One Byte per Clock
	Individual components of Design 1
	Complete architecture of Design 1
	Timing analysis of Design 1
	Implementation of Design 1
	Comparison with existing designs

	Design 2 – Two Bytes per Clock
	Optimization of previous designs
	Architecture for Design 2
	Implementation Results
	Further improvements in throughput

	III Conclusion and Bibliography
	Conclusion and Open Problems
	Summary of the thesis
	Contribution of our work
	Open problems in RC4

	Bibliography

