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Abstract After a series of results on RC4 cryptanalysis in flagship cryptology conferences
and journals, one of the most significant recent attacks on the cipher has been the discovery
of vulnerabilities in the SSL/TLS protocol, by AlFardan et al. (USENIX 2013). Through
extensive computations, they identified some new significant short-term single-byte biases
in RC4 keystream sequence, and utilized those, along-with existing biases, towards the TLS
attack. The current article proves these new and unproved biases in RC4, and in the process
discovers intricate non-randomness within the cipher. In this connection, we also prove the
anomaly in the 128th element of the permutation after the key scheduling algorithm. Finally,
the proof for the extended key-length dependent biases inRC4keystream sequence, a problem
attempted and partially solved by Isobe et al. in FSE 2013, has also been completed in this
work.
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Fig. 1 KSA and PRGA of RC4. The additions are modulo N = 256

1 Introduction

Over the last three decades of research in stream ciphers, several designs have been proposed
and analyzed by the community. The RC4 stream cipher, ‘allegedly’ designed by Rivest in
1987, has sustained to be one of the most popular ciphers in this category for more than 25
years. The cipher has continued gaining its fabled popularity for its intriguing simplicity that
has made it widely accepted in the community for various software and web applications.

A stream cipher produces a pseudo-random sequence of words, called the keystream,
and the encryption is performed by bitwise XOR-ing it with the plaintext. One important
primitive for building a stream cipher is pseudo-random permutation based on a secret key.
For keystream generation, one can extract a pseudo-random sequence from this permuta-
tion. Ensuring pseudo-randomness of the permutation is not enough to guarantee pseudo-
randomness in the keystream. In such a scenario, it may be possible to identify certain biased
events in the keystream.

An ideal stream cipher is expected to produce a uniformly random keystream, i.e., for any
event involving the keystream, the associated random variable would havemaximum entropy.
If there is a bias in any event, then the associated random variable has strictly less than the
maximum possible entropy, which in turn implies that the condition for information-theoretic
secrecy is violated. In RC4, we not only have many short-term and few long-term biases in
the keystream, we also have biases of the keystream bytes and the internal state variables
towards the secret key. These biases are the source of vulnerabilities of RC4, particularly so
in the TLS protocol.

RC4 consists of two major components, the key scheduling algorithm (KSA) and the
pseudo-random generation algorithm (PRGA). The internal permutation of RC4 is of N =
256 bytes, and so is the key K . The original secret key is of length typically between 5 to 32
bytes, and is repeated to form the final key K . The KSA produces the initial permutation of
RC4 by scrambling an identity permutation using key K . The initial permutation S produced
by the KSA acts as an input to the next procedure PRGA that generates the output keystream.
The RC4 algorithm is as shown in Fig. 1.

Notation For round r ≥ 1 of RC4 PRGA, we denote the indices by ir , jr , the output byte
by Zr , the index location of output Zr as tr , and the permutations before and after the swap
by Sr−1 and Sr respectively. Thus, round r of RC4 PRGA is defined by ir = ir−1 + 1,
jr = jr−1 + Sr−1[ir ], swap Sr−1[ir ] ↔ Sr−1[ jr ], tr = Sr [ir ] + Sr [ jr ], and Zr = Sr [tr ].
After r ≥ 1 rounds of KSA, we denote the state variables by adding a superscript K to
each variable. By SK0 and S0, we denote the initial permutations before KSA and PRGA
respectively. Note that SK0 is the identity permutation and S0 = SKN is the permutation
obtained right after the completion of KSA. Throughout this paper, all operations in context
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Proving TLS-attack related open biases of RC4 233

of RC4 are to be considered modulo N . Throughout this paper, N has the value 256. In some
of the expressions for biases, we have used the form 1

N ± ε
Na , where ε is a numerical constant

(based on the substitution N = 256 in some part of the expression) and a is an integer, which
is typically 1 or 2. This form helps in comprehending the extent of the bias with respect to
1
N . We approximate the term 1− a

N by
(
1− 1

N

)a , whenever a is very small compared to N .

Assumptions At many places, we approximate the distribution (or conditional distribution)
of a random variable to be uniform. The assumptions of uniform randomness have been
verified by extensive experimentation. Moreover, when we replace the joint distribution of
two or more random variables by the product of their marginal distributions, their statistical
independence is implicitly assumed.

1.1 Motivation of our work

In a recent paper [28] at FSE 2013, Sepehrdad, Susil, Vaudenay, and Vuagnoux have rightly
claimed:

For some people, attacking WEP is like beating a dead horse, but this horse is still
running wildly in many countries all over the world. Also, some companies are selling
hardware using modified versions of the WEP protocol, they claim to be secure.

IEEEWiFi security protocol WEP is based on the stream cipher RC4, and hence the same
statement applies to RC4 as well. The history of RC4 cryptanalysis is more than 20 years
old. However, in recent times, there is a renewed surge of interest in RC4 cryptanalysis in
the cryptographic community. For example, significant cryptanalytic results on WEP and
WPA have been published in EUROCRYPT 2011 by Sepehrdad et al. [27]. Recently, RC4
has attracted quite a few publications [1,8,11,12,14,19,22,24,28,29]. In spite of this, many
problems are still open and the cipher is not yet broken. One may safely use RC4 if some
precautions are taken (i.e., initial few hundreds bytes are thrown away).

As a stream cipher, RC4 promises to deliver pseudo-random bytes as keystream output.
Thus, any lapse in that goal creates interesting consequences towards the security of the
cipher. This is the reason why statistical weaknesses like biases and their application as
distinguishers have attracted the main focus of RC4 cryptanalysis to date. There have been
numerous results on RC4 biases over years, and the trend still continues.

Most of the existing results are targeted towards specific short-term (involving only the
initial few bytes of the output) biases and correlations [1,6–8,10,13,17,18,21,24–27], while
there exist only a few important results for long-term (prominent even after discarding an
arbitrary number of initial bytes of the output) biases [3,5,6,10,16].

In this paper, we concentrate on the short-term traits of non-random behavior in the initial
keystream bytes of RC4, especially in the first N output bytes. The prominent results on the
short-term biases of RC4 include Mantin and Shamir [17] second byte bias, Mironov [18]
first byte sine-curve-like distribution, Maitra et al. [13] short-term biases towards zero, Sen
Gupta et al. [24] proof of first byte bias, Sarkar [22] second byte negative bias, Isobe et al. [8]
full broadcast attack, and the most recent results by AlFardan et al. [1,4].

Broadcast attack by AlFardan et. al. [1,4] The most prominent attempt at identifying all
possible single-byte short-termbiases in the initial keystreambytes of RC4was recentlymade
by AlFardan et al. [1,4]. They ran extensive experiments, using more than 244 random keys,
to generate a list of approximately 65536 single-byte short-term biases of RC4, including
the previously known ones [8,13,17,18,24]. This search provides a comprehensive list of
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Fig. 2 The RC4 landscape of initial keystream bytes (data from [1,4])

non-random behavior of the initial keystream bytes (bytes 1 to N = 256) of RC4 when a
16-byte key is used.

The main goal of this analysis [1] was to exploit those in a practical attack against the
SSL/TLS protocol that uses RC4 for confidentiality. The authors could use all of the above-
mentioned 65536 initial short-term biases of RC4 to mount a plaintext recovery attack on the
SSL/TLS protocol that recovers the first 256 bytes of the plaintext from the knowledge of
only 232 ciphertexts generated using random keys, with no prior plaintext knowledge. This
attack by AlFardan et al. [1] is undoubtedly the most extensive attack on any RC4-based
protocol to date, with far-reaching consequences. This attack alone is sufficient to highlight
the practical importance of identifying and exploiting short-term biases in RC4.

RC4 short-term landscape The extensive experimental results byAlFardan et al. [1] identified
several non-randomness in the short-term output keystream of RC4. Figure 2 presents a 3D
model of the probabilities Pr(Zr = v) for r = 1, . . . , N and v = 0, . . . , N−1, which we call
the RC4 landscape of initial keystream bytes. This is based on the data generated from [1,4].

Note that this landscape is for the most practical version of RC4 that uses a 16-byte key,
and is not identical for RC4 initial keystream patterns generated by secret keys of various
other lengths. For example, the non-random peaks and troughs present in the 16-byte key
landscape reduce to a certain extent if one uses a full length N = 256 bytes key.

The visible vertical walls and spikes in Fig. 2 identify the prominent short-term bias
patterns in the RC4 landscape. The main ones are for the events Z2 = 0 (largest positive
spike), Z2 = 2 (largest negative spike), Z1 = v where v = 0, . . . , N − 1 (sine-curve-like
vertical wall on the left side), Zr = 0 (decreasing vertical wall on the right side), Zr = r
(decreasing vertical wall at the center) and Zr = −r (decreasing series of spikes at the
center), where r = 1, . . . , N denotes the number of the round in RC4 PRGA.

The proofs for most of these major non-random events are present in the literature. The
biases in Z2 = 0 and Z2 = 2 have been proved by Mantin and Shamir [17] in 2001
and Sarkar [22] in 2013 respectively. The sine-curve-like pattern of Z1 for full-length key,
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Table 1 Identified and/or proved short-term keystream biases of RC4

Bias in event Type of bias Discovered Proved

Isolated short-term biases

Z1 = 0 Negative [18] [24]

Z1 = 1 Negative [24] [24]

Z1 = 129 Negative (16-byte key) [1] Open

Z2 = 0 Positive [17] [17]

Z2 = 2 Negative [1,22] [22]

Z2 = 129 Negative [1,22] Open

Z2 = 172 Positive [1] Open

Z3 = 131 Positive [1,8] [8]

Z4 = 2 Positive [1] Open

Z256 = 0 Negative [1,8] Open

Z257 = 0 Positive [8] Open

Patterns of short-term biases

Z1 = v Sinusoidal (v = 0, . . . , 255) [18] [24]

Zr = 0 Positive (r = 3, . . . , N − 1) [13] [13]

Zr = r Positive (r = 3, . . . , N − 1) [1,8] Opena

Z� = −� Positive (� is the key-length) [23] [23,24]

Zx� = −x� Positive (� is the key-length) [8] Openb

a This has been attempted in [8]
b Another proof of this has been presented in [9] very recently. However, we were not aware of [9] when we
proved it during May 2013

including the negative biases in Z1 = 0, 1, have been proved by Sen Gupta et al. [24] in
2013, and the general proof for Zr = 0 has been done by Maitra et al. [13] in 2011. Sen
Gupta et al. [24] proved the Zr = −r case for r = 16 (key-length), and in 2013, the general
pattern for Zr = −r was partially proved by Isobe et al. [8]. In the same paper of 2013, Isobe
et al. [8] attempted the proof for the bias pattern for Zr = r , and proved the slightly weaker
single-byte bias of Z3 = 131.

A consolidated account of the current state-of-the-art in terms of identified and/or proved
short-term keystream biases of RC4 is presented in Table 1. Our motivation for this paper
is to prove all “Open” (or partially proved) problems listed in Table 1. To prove the existing
correlations in RC4, often researchers try to find several paths or a significant path that ends
up in the biased relation. Then, they compute the probability of the path. Finding all such
paths is not an easy task in practice in RC4. Since our theoretical estimates matches closely
with the experimental data, we believe that we have been able to find all the influential paths
towards the biases.

1.2 Contributions of our work

We can summarize the contributions of our work as follows.

– In Sect. 2, we prove all open isolated short-term single-byte keystream biases reported
and exploited by AlFardan et al. [1,4] in their recent attack on the SSL/TLS protocol.
This includes the biases in the events Z1 = 129, Z2 = 129, Z2 = 172, Z4 = 2, Z256 = 0
and Z257 = 0.
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– There are some long-standing mysterious problem of “anomalies” in the distribution of
the state array after the RC4 KSA, first pointed out in [15]. In this connection, we prove
the anomaly in S0[128] = 127 which has been open for more than a decade.

– In Sect. 4, we complete the proof for the extended key-length dependent biases in RC4,
i.e., biases in the events Zx� = −x� for any positive integer x and key-length �. This
problem was attempted and partially solved by Isobe et al. in [8]. However, the proof
was left incomplete which we settle here. Note that the particular case of x = 1 in this
class of biases reduces to the key-length dependent biases of [24].

2 Proof of some isolated short-term biases

In this section, we prove all open isolated short-term biases of Table 1. We first list some
existing results that will be needed in our proofs.

Proposition 1 [15, Theorem 6.2.1] At the end of RC4 KSA, for 0 ≤ u ≤ N − 1, 0 ≤ v ≤
N − 1,

Pr(S0[u] = v) =

⎧
⎪⎪⎨

⎪⎪⎩

1
N

(( N−1
N

)v +
(
1 − ( N−1

N

)v
) ( N−1

N

)N−u−1
)
, if v ≤ u;

1
N

(( N−1
N

)N−u−1 + ( N−1
N

)v
)
, if v > u.

Proposition 2 [24, Lemma 1] After the first round of RC4 PRGA, for 0 ≤ u ≤ N − 1,
0 ≤ v ≤ N − 1, the probability Pr(S1[u] = v) is:

Pr(S1[u] = v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Pr(S0[1] = 1) +
∑

X �=1

Pr(S0[1] = X ∧ S0[X ] = 1), u = 1, v = 1;
∑

X �=1,v

Pr(S0[1] = X ∧ S0[X ] = v), u = 1, v �= 1;

Pr(S0[1] = u) +
∑

X �=u

Pr(S0[1] = X ∧ S0[u] = u), u �= 1, v = u;
∑

X �=u,v

Pr(S0[1] = X ∧ S0[u] = v), u �= 1, v �= u.

Proposition 3 [24, Theorem 1] In RC4 PRGA, for 3 ≤ u ≤ N − 1 and 0 ≤ v ≤ N − 1,

Pr(Su−1[u] = v) ≈ Pr(S1[u] = v)

(
1 − 1

N

)u−2

+
u−1∑

y=2

u−y∑

w=0

Pr(S1[y] = v)

w! · N
(
u − y − 1

N

)w (
1 − 1

N

)u−3−w

.

2.1 Proof of bias in (Z1 = 129)

The negative bias in Z1 = 129 was observed in [1,4], but not in [18,24]. While investigating
this discrepancy, we first noticed that the length of the secret key used in the experiments
of [1,4] was consistently � = 16, whereas the same for [18,24] had been different. This
hinted that the bias in Z1 = 129 may be key-length dependent. Our experiments revealed
that the negative bias of Z1 = 129 is prominent only when key-length � is a non trivial divisor
of N , i.e., when � = 2, 4, 8, 16, 32, 64, 128. For other key-lengths, Pr(Z1 = 129) ≈ 1/N
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Proving TLS-attack related open biases of RC4 237

Fig. 3 Bias in the event (Z1 = 129) for key-length 1 ≤ � ≤ 256

except � = 1. For � = 1, we observed that Z1 is always different from 129. This behavior is
depicted in Fig. 3.

Now we will justify these observations in Theorem 1.

Theorem 1 In RC4 with N = 256, Pr(Z1 = 129) ≈ 1/N − 1.73/N 2 when key-length is a
non trivial divisor of N .

Proof We consider three significant paths as follows.

P1. First consider the following negative path.

(a) Let K [0] �= 1, K [1] �= N − 1 and 1 + K [0] + K [1] �= 0. This happens with
probability ( N−1

N )3.
(b) None of j K1 , . . . , j KN

2 +x
is equal to N

2 + x for x = 0, 1. This happens with probability

( N−2
N )

N
2 · (N − 1)/N .

(c) Note that as key-length � divides N/2, K [N/2] = K [0] and K [N/2 + 1] = K [1],
and so j KN

2 +2
= j KN

2
+ K [0] + K [1] + 1.

(d) Suppose j KN
2 +2

< N
2 + 1. This happens with probability N/2+1

N .

(e) None of j KN
2 +3

, . . . , j KN will be equal to j KN
2 +2

. This happens with probability
(
1 −

1
N

) N
2 −2.

(f) There is an integer T > N
2 + 1 such that none of j K1 , . . . , j KT will touch T . Also

none of j K3 , . . . , j KT will touch 1. The associated probability is ( N−1
N )2 · ( N−2

N )T−2.
(g) j KT+1 is equal to 1 with probability 1

N . Hence after swap we have SKT+1[1] = T and
SKT+1[T ] = 1 + K [0] + K [1].

(h) None of j KT+2, . . . , j
K
N is equal to 1 or T , with probability ( N−2

N )N−T−1.
(i) So S0[1] = T and S0[T ] = 1 + K [0] + K [1]. Since by our condition j KN

2
�= T ,

we have S0[1] + S0[T ] = 1 + K [0] + K [1] + T �= j KN
2

+ K [0] + K [1] + 1. Also

S1[ j KN
2

+K [0]+K [1]+1] = N
2 +1. Hence Z1 = S1[T +1+K [0]+K [1]] �= N

2 +1.

123



238 S. Sarkar et al.

Total probability of the above path P1 is approximately

N−1∑

T=N/2+2

(
1 − 1/N

)3.5N−2

· N/2 + 1

N
· 1

N
= 1.92

N
.

P2. Now consider the following positive path.

(a) Let K [1] = N − 1 and K [0] �= 1. Hence j K2 = K [0] + 1 + K [1] = K [0]. So after
second swap SK2 [1] = 0. The probability of this is 1/N · (N − 1)/N .

(b) None of j K3 , . . . , j KN will be equal to 1. This happens with probability ( N−1
N )N−2.

(c) None of j K1 , . . . , j KN
2
will be equal to N

2 or N
2 + 1. This happens with probability

( N−2
N )

N
2 .

(d) j KN
2 +1

will be equal to N
2 + 1 with probability 1

N . Hence after swap we have

SKN
2 +1

[N/2] = N/2 + 1 and SKN
2 +1

[N/2 + 1] = N/2.

(e) j KN
2 +2

= j KN
2 +1

+ SKN
2 +1

[N/2 + 1] + K [1] = N/2 + 1 + N/2 + N − 1 = 0. So

SKN
2 +2

[0] = N/2.

(f) None of j KN
2 +3

, . . . , j KN will be equal to 0 or N/2 with probability
(
1 − 2

N

) N
2 −2.

(g) Since by our conditions S0[0] = N/2, S0[1] = 0 and S0[N/2] = N/2 + 1, Z1 will
be equal to N/2 + 1

Total probability of the above path P2 is approximately
(
1 − 1/N

)3N−5 1
N2 = 0.05

N2

P3. Also take another event. P3=

{
K [1] = N − 2 ∧ j K1 �= N/2 · · · ∧ j KN

2
�= N/2 ∧ j K1 �=

N/2 + 1 ∧ · · · ∧ j KN
2

�= N/2 + 1 ∧ j KN
2 +1

= 1 ∧ j KN
2 +3

�= 1 ∧ · · · ∧ j KN �= 1 ∧ j KN
2 +3

�=

N/2 ∧ · · · ∧ j KN �= N/2

}
.

It can be shown that if P3 holds, Z1 will be always equal to N/2 + 1.

Now probability of P3 is approximately

(
1 − 1/N

)2N−3
1
N2 = 0.14

N2 .

Let us combine the aforesaid paths to obtain Pr(Z1 = N/2 + 1) as

Pr(Z1 = N/2 + 1) = Pr(Z1 = N/2 + 1 | P1) · Pr(P1) + Pr(Z1 = N/2 + 1 | P2) · Pr(P2)
+Pr(Z1 = N/2 + 1 | P3) · Pr(P3)
+Pr(Z1 = N/2 + 1 | P1 ∨ P2 ∨ P3) · Pr(P1 ∨ P2 ∨ P3)

= 0 · 1.92
N

+ 1 · 0.05
N 2 + 1 · 0.14

N 2 +
(
1 − 1.92

N
− 0.05

N 2 − 0.14

N 2

)
· 1

N

= 1

N
− 1.73

N 2

	

2.2 Proof of bias in (Z2 = 129)

We notice that the bias in (Z2 = 129) for N = 256 is a special case of the general bias in
(Z2 = N/2 + 1) for any even value of N . We present the general result as follows.
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X N/2 + 1 Y Z S0

0 1 2 X (N/2 + 1) +X

i, j

Y N/2 + 1 X Z

i j

S1

Y Z X N/2 + 1 S2

i j

Fig. 4 The first two rounds of RC4 main cycle when S0[2] = N/2 + 1 and S0[1] �= 2

Theorem 2 In RC4 with N = 256,

Pr(Z2 = 129) ≈
{
1/N − 1.96/N 2, when key-length� does not divideN/2;
1/N − 1.90/N 2, when key-length� dividedN/2.

Proof Part I: First, we consider the case when the key-length l does not divide N/2.
We consider two mutually exclusive paths from the initial state S0.

P1. Consider S0[2] = 0 and S0[1] �= 2, with probability 1/N · (N − 1)/N . From the
analysis of Mantin and Shamir [17] for the bias in (Z2 = 0), we know that Z2 = 0 in
this situation. Thus, Z2 �= N/2 + 1.

P2. Consider S0[2] = N/2 + 1 and S0[1] �= 2, with probability 1/N · (N − 1)/N . After
the first round, j1 = S0[1] = X �= 2, and thus S1[2] = N/2+ 1 and S1[X ] = X . In the
second round, we get j2 = (N/2+1)+X , and let us say S1[ j2] = S1[(N/2+1)+X ] =
Z . Since S1 is a permutation, X = S1[X ] �= S1[(N/2+1)+ X ] = Z . After the swap in
the second round, we get Z2 = S2[(N/2+ 1) + Z ] �= S2[(N/2+ 1) + X ] = N/2+ 1.
Figure 4 illustrates the scenario.

Let us denote the aforesaid mutually exclusive events as A
.= (S0[2] = 0 ∧ S0[1] �= 2)

and B
.= (S0[2] = N/2 + 1 ∧ S0[1] �= 2) to obtain Pr(Z2 = N/2 + 1) as

Pr(Z2 = N/2 + 1 | A) · Pr(A) + Pr(Z2 = N/2 + 1 | B) · Pr(B)

+ Pr(Z2 = N/2 + 1 | A ∧ B) · Pr(A ∧ B)

≈ 0 + 0 + Pr(Z2 = N/2 + 1 | A ∧ B)·
[
1 − (

Pr(S0[2] = 0) + Pr(S0[2] = N/2 + 1)
) · Pr(S0[1] �= 2)

]
.

Assuming Pr(Z2 = N/2+ 1 | A∧ B) ≈ 1/N , and using the formula of Mantin [15], we get
the desired probability as Pr(Z2 = N/2 + 1) ≈ 1/N − 1.96/N 2. 	

Part II: Nowwe consider the casewhen the key-length � divides N/2. Consider the following
events:

– Let K [0] /∈ {
1, 2, 1 + K [0] + K [1], 3 + K [0] + K [1] + K [2]}, 1 + K [0] + K [1] /∈{

2, 3 + K [0] + K [1] + K [2]} with K [2] = N
2 − 2. This happens with probability

N−4
N · N−2

N · 1
N .
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– Due to the above conditions SK2 [1] = 1+K [0]+K [1] and SK3 [2] = 3+K [0]+K [1]+
K [2] = 1 + N

2 + K [0] + K [1]
– None of j K4 , . . . , j KN is equal to 1 or 2. This happens with probability ( N−2

N )(N−3).
– Also none of j K1 , . . . , j KN

2 +x
is equal to N

2 +x for x = 1, 2. This happens with probability

(1 − 2
N )

N
2 +1 · (

1 − 1
N

)
.

– Since � divides N/2, K [N/2] = K [0] and K [N/2 + 1] = K [1].
– Hence j KN

2 +2
= j KN

2 +1
+ K [1] + N

2 + 1. Also j KN
2 +3

= j KN
2 +2

+ N
2 + 2 + K [2] = j KN

2 +2
,

since K [2] = N
2 − 2. So after swap, we have SKN

2 +3
[ N2 + 2] = N

2 + 1.

– None of j KN
2 +4

, . . . , j KN is equal to N
2 + 2. This occurs with probability

(
1 − 1

N

) N
2 −3

– Hence after KSA, we have S0[1] = 1 + K [0] + K [1], S0[2] = 1 + N
2 + K [0] + K [1]

and S0[ N2 + 2] = N
2 + 1.

– Now if K [0] + K [1] = N
4 , j2 = 1 + K [0] + K [1] + 1 + N

2 + K [0] + K [1] = 2. So
Z2 = S2[2S2[2]] = S2

[
2(1 + N

2 + K [0] + K [1])] = S2[ N2 + 2] = N
2 + 1. Similarly if

K [0] + K [1] = 3N
4 , Z2 will be N

2 + 1.

Above path holds with probability approximately

(
1− 1

N

)3.5N
2
N2 = 0.06

N2 . Sowhen � divides

N/2, we have Pr(Z2 = 129) ≈ 1/N − 1.96/N 2 + 0.06/N 2 = 1/N − 1.90/N 2. 	

2.3 Proof of bias in (Z2 = 172)

Theorem 3 In RC4 with N = 256, Pr(Z2 = 172) ≈ 1/N + 0.16/N 2.

Proof We consider the following mutually exclusive paths from the initial state S0.

P1. Consider S0[2] = 0. If S0[1] �= 2, from the analysis of Mantin and Shamir [17] for
the bias in (Z2 = 0), we know that Z2 = 0 in this situation. Thus, Z2 �= 172. In case
S0[1] = 2, we may assume that Z2 = 172 occurs with probability 1

N−1 as in this case
Z2 will always be different from 2. Thus,

Pr(Z2 = 172 | S0[2] = 0) ≈ 1

N − 1
Pr(S0[1] = 2).

P2. Consider S0[2] = 86. In this case, we have the following sub-paths.

(a) Consider S0[1] = 172. In this case, j1 = S0[1] = 172 results in a swap to produce
S1[172] = 172, while S1[2] = 86 remains untouched. In the next round, j2 =
j1 + S1[2] = 172+ 86 = 258 = 2 = i2 ensures that there is no swap in the S-array.
Thus, Z2 = S2[S2[i2] + S2[ j2]] = S1[86 + 86] = S1[172] = 172. Note that this
path is possible for any X in S0[1] = X and S0[2] = X/2, and if X + X/2 = 2.
Thus, this path results in the modular equation 3X ≡ 4mod N , which has a unique
solution X = 172 for N = 256.

(b) Consider S0[1] �= 172 and S0[S0[1] + 86] = 172. In the first round, S1[2] = 86
remains untouched, and j2 = j1 + S1[2] = S0[1] + 86 results in a swap to produce
S2[2] = S1[ j2] = S1[S0[1]+86] = S0[S0[1]+86] = 172 and S2[S0[1]+86] = 86.
Thus, in the second round, we get Z2 = S2[S2[i2] + S2[ j2]] = S2[172 + 86] =
S2[2] = 172. Figure 5 illustrates the scenario.
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X 86 Y 172 S0

0 1 2 X X + 86

i, j

Y 86 X 172

i j

S1

Y 172 X 86 S2

i j

Fig. 5 The first two rounds of RC4 main cycle when S0[2] = 86, S0[1] �= 2, 172 and S0[S0[1] + 86] = 172

Let us denote the aforesaid events as B = (S0[2] = 86), C = (S0[1] = 172), and
D = (S0[S0[1] + 86] = 172). This results in

Pr(Z2 = 172 | S0[2] = 86) = Pr(Z2 = 172 | B)

≈ Pr(Z2 = 172 | B ∧ C) · Pr(C) + Pr(Z2 = 172 | B ∧ C) · Pr(C)

≈ 1 · Pr(S0[1] = 172) + (
Pr(Z2 = 172 | B ∧ C ∧ D) · Pr(D)

+Pr(Z2 = 172 | B ∧ C ∧ D) · Pr(D)
) · (1 − Pr(S0[1] = 172))

≈ Pr(S0[1] = 172) +
(
1 · 1

N
+ 1

N
·
(
1 − 1

N

))
· (
1 − Pr

(
S0[1] = 172

))
.

P3. Consider S0[2] = 172. In this situation, Z2 = 172 if and only if S0[1] = 2 and
S0[4] = N − 1, and in all other cases, Z2 �= 172. Thus, Pr(Z2 = 172 | S0[2] = 172) =
Pr(S0[1] = 2 ∧ S0[4] = N − 1).

Let us combine the aforesaid paths to obtain Pr(Z2 = 172) as

Pr(Z2 = 172 | S0[2] = 0) · Pr(S0[2] = 0) + Pr(Z2 = 172 | S0[2] = 86) · Pr(S0[2] = 86)

+ Pr(Z2 = 172 | S0[2] = 172) · Pr(S0[2] = 172)

+ 1

N

(
1 − Pr(S0[2] = 0) − Pr(S0[2] = 86) − Pr(S0[2] = 172)

)

≈ 1

N − 1
Pr(S0[1] = 2) · Pr(S0[2] = 0)

+
[
Pr(S0[1] = 172) +

(
2

N
− 1

N 2

)
· (1 − Pr(S0[1] = 172))

]
· Pr(S0[2] = 86)

+ Pr(S0[1] = 2 ∧ S0[4] = N − 1) · Pr(S0[2] = 172).

In the above equation, computing the probability terms involving S0 using the formula of
Mantin [15], we get Pr(Z2 = 172) ≈ 1/N + 0.16/N 2.

	

2.4 Proof of bias in (Z4 = 2)

Theorem 4 In RC4 with N = 256, Pr(Z4 = 2) ≈ 1/N + 0.83/N 2.
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Proof First we discuss a path P1 in which Z4 �= 2.
Let K [0..y] denote the sum K [0] + K [1] + · · · + K [y] + y(y + 1)/2.

– Let K [0] /∈
{
1, 2, 3, 4, K [0..1], K [0..2], K [0..3], K [0..4]

}
,

K [0..1] /∈
{
0, 2, 3, 4, K [0..2], K [0..3], K [0..4]

}
,

K [0..2] /∈
{
0, 1, 3, 4, K [0..3], K [0..4]

}
,

K [0..3] /∈
{
0, 1, 2, 4, K [0..4]

}
,

K [0..4] /∈
{
0, 1, 2, 3

}
.

This happens with probability N−8
N · N−7

N · N−6
N · N−5

N · N−4
N .

– Due to the above conditions SK2 [1] = 1 + K [0] + K [1], SK4 [3] = 6 + K [0] + K [1] +
K [2] + K [3], SK5 [4] = 10 + K [0] + K [1] + K [2] + K [3] + K [4].

– None of j K6 , . . . , j KN should be equal to 1 or 4. This occurs with probability
(
1− 2

N

)N−5

– Hence we have S0[1] �= 2 and S0[4] �= 2
– Now if S4[4] = 2, then Z4 �= 2 as j4 �= 4.

Thus, Pr(P1) = (
1 − 1/N

)30(1 − 1/N
)2N−10 1

N = (
1 − 1/N

)2N+20 1
N .

If P1 does not happen, then Z4 may be equal to 2 in two mutually exclusive ways: along
with j4 = 4 or with j4 �= 4
Case j4 = 4. Z4 = S4[S4[4] + S4[ j4]] = S4[2 · S4[4]]. We may further consider some
sub-paths within this case.

1. S4[4] = 2 gives Z4 = S4[4] = 2with probability 1. However, the event (S4[4] = 2 | j4 =
4) occurs with probability more than 1/N , as follows.

(a) If S0[1] = 2 and S0[3] = N − 2, it can be shown that we always have S4[4] =
2, j4 = 4.

(b) If S0[1] = 2 and S0[3] �= N − 2, it can be shown that S4[4] = 2, j4 = 4 can not
occur simultaneously.

(c) If S0[1] �= 2 and S0[3] = N − 2, it can be shown that S4[4] = 2, j4 = 4 occur if and
only if S0[1] = 3, S0[2] = N − 4 and S0[4] = 2.

(d) Consider S0[1] �= 2 and S0[3] �= N − 2. Now if S0[4] �= 2,

(
S4[4] = 2, j4 = 4

)

can not occur simultaneously.

(i) If S0[4] = 2 and S0[3] = N − 1,

(
S4[4] = 2, j4 = 4

)
can occur if and only if

S0[1] = 3, S0[2] = N − 4.
(ii) Let S0[4] = 2 and S0[3] �= N − 1. If any one j1, j2, j3 become 4, then the

event

(
S4[4] = 2, j4 = 4

)
can not occur simultaneously. Hence we need

j1 �= 4, j2 �= 4 and j3 �= 4.
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Hence,

Pr(S4[4] = 2 ∧ j4 = 4 | P1) ≈ Pr(S0[1] = 2)Pr(S0[3] = N − 2) +
(1 − Pr(S0[1] = 2)Pr(S0[3] = N − 2)Pr(S0[1] = 3)Pr(S0[2] = N − 4)

Pr(S0[4] = 2) + (
1 − Pr(S0[1] = 2)

)(
1 − Pr(S0[3] = N − 2)

)
Pr(S0[4] = 2)

(
Pr(S0[3] = N − 1)Pr(S0[1] = 3)Pr(S0[2] = N − 4) +

(1 − Pr(S0[3] = N − 1))

(
1 − 1

N

)3 1

N

)
≈ 1.98

N 2

Considering Pr( j4 = 4) = 1
N , we get Pr(S4[4] = 2 | j4 = 4 ∧ P1) ≈ 1.98

N .
Hence we have

Pr(Z4 = 2 ∧ S4[4] = 2 | j4 = 4 ∧ P1) ≈ 1.98

N
.

2. S4[4] = N/2 + 2 gives Z4 = S4[N + 4] = S4[4] = N/2 + 2 �= 2. So,

Pr(Z4 = 2 ∧ S4[4] = N/2 + 2 | j4 = 4 ∧ P1) = 0.

3. Now let S4[4] �= 2, N/2 + 2. In this situation if S0[1] = 2, Z4 will be always different
from 2. Also, Pr(S4[4] �= 2, N/2 + 2, S0[1] �= 2 | j4 = 4 ∧ P1)
≈ Pr(S0[1] �= 2)

(
1 − 1

N

) (
1 − 1.98

N

) ≈ 252
N .

So, Pr(Z4 = 2 ∧ S4[4] �= 2, N/2 + 2 | j4 = 4 ∧ P1) ≈ 252
N2 ≈ 0.98

N .

Combining all the sub-paths mentioned above, we get Pr(Z4 = 2 ∧ j4 = 4 | P1) as
Pr(Z4 = 2 ∧ S4[4] = 2 | j4 = 4 ∧ P1) · Pr( j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] = N/2 + 2 | j4 = 4 ∧ P1) · Pr( j4 = 4)

+ Pr(Z4 = 2 ∧ S4[4] �= 2, N/2 + 2 | j4 = 4 ∧ P1) · Pr( j4 = 4)

= (1.98/N ) · (1/N ) + 0 + (0.98/N ) · (1/N ) ≈ 2.96

N 2 .

Case j4 �= 4.We have Z4 = S4[S4[4]+S4[ j4]] = S4[S4[4]+X ], where X = S4[ j4] �= S4[4],
say. Here we may consider two sub-paths, as follows.

1. S4[4] = 2 gives Z4 = S4[2 + X ] �= S4[4] = 2, as X = S4[ j4] �= S4[4] = 2 for j4 = 4.
Thus, Pr(Z4 = 2 ∧ S4[4] = 2 | j4 �= 4 ∧ P1) = 0.

2. Assuming S4[4] �= 2 to be uniformly distributed, we get Z4 = 2 with probability 1
N .

Thus, Pr(Z4 = 2 ∧ S4[4] �= 2 | j4 �= 4 ∧ P1) ≈ 1/N · (1 − 1/N ) = (1/N − 1/N 2).

Combining the sub-paths mentioned above, we have

Pr(Z4 = 2 ∧ j4 �= 4 | P1) ≈ Pr(Z4 = 2 ∧ S4[4] = 2 | j4 �= 4 ∧ P1) · Pr( j4 �= 4)

+Pr(Z4 = 2 ∧ S4[4] �= 2 | j4 �= 4 ∧ P1) · Pr( j4 �= 4)

= 0 + (1/N − 1/N 2) · (1 − 1/N ) = 1/N − 2/N 2 + 1/N 3.

Adding the contributions from the two mutually exclusive paths above, we get

Pr(Z4 = 2 | P1) = Pr(Z4 = 2 ∧ j4 = 4 | P1) + Pr(Z4 = 2 ∧ j4 �= 4 | P1)
≈ 2.96

N 2 + 1

N
− 2

N 2 = 1/N + 0.96/N 2.
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Hence we get overall

Pr(Z4 = 2) = Pr(P1)Pr(Z4 = 2 | P1) + (1 − Pr(P1)) Pr(Z4 = 2 | P1)
= 0 +

(
1 −

(
1 − 1/N

)2N+20 1

N

)
·
(
1

N
+ 0.96

N 2

)

= 1/N + 0.83/N 2.

	

2.5 Proof of bias in (Z256 = 0)

Theorem 5 In RC4 with N = 256, Pr(ZN = 0) ≈ 1/N − 0.37/N 2.

Proof Let us consider the following two paths.

P1. Consider S1[0] = 0. In this case, if j2, . . . , jN−1 are all non zero, then one can check
that ZN �= 0. In all other cases, one may assume Pr(ZN = 0 | S1[0] = 0) ≈ 1/N . Thus,
Pr(ZN = 0 | S1[0] = 0) ≈ (

1 − (1 − 1/N )N−2
) · (1/N ).

P2. Consider S1[0] �= 0. In this case, we may again consider the following sub-paths,
depending on the state SN−3.

Pr(ZN = 0 | S1[0] �= 0)

= Pr(ZN = 0 | S1[0] �= 0 ∧ SN−3[0] = 0) · Pr(SN−3[0] = 0 | S1[0] �= 0)

+ Pr(ZN = 0 | S1[0] �= 0 ∧ SN−3[N − 2] = 0) · Pr(SN−3[N − 2] = 0 | S1[0] �= 0)

+ Pr(ZN = 0 | S1[0] �= 0 ∧ SN−3[N − 1] = 0) · Pr(SN−3[N − 1] = 0 | S1[0] �= 0)

+
N−3∑

x=1

Pr(ZN = 0 | S1[0] �= 0 ∧ SN−3[x] = 0) · Pr(SN−3[x] = 0 | S1[0] �= 0).

(a) If SN−3[0] = 0 and jN−2, jN−1 �= 0, we have SN−1[0] = 0, which implies
jN = jN−1 and SN−1[ jN−1] �= jN−1. Thus, ZN = SN [SN−1[ jN ] + SN−1[0]] =
SN [SN−1[ jN−1]] �= SN [ jN−1] = SN [ jN ] = SN−1[0] = 0. Thus for ZN = 0, we
must have either jN−2 = 0 or jN−1 = 0 in this case, and in each case, ZN = 0may be
assumed to occur with probability 1/N . Hence Pr(ZN = 0 | S1[0] �= 0∧ SN−3[0] =
0) ≈ 2/N 2.

(b) If SN−3[N − 2] = 0 and jN−2 = 0, we have SN−2[0] = 0 and jN−1 = SN−2[N −
1] �= 0. Thus, SN−1[0] = 0 and jN = jN−1, which gives ZN = SN [SN−1[0] +
SN−1[ jN ]] = SN [SN−1[ jN−1]] = SN [SN−2[N − 1]] = SN [ jN−1] = SN [ jN ] =
SN−1[0] = 0. So, Pr(ZN = 0 | S1[0] �= 0∧ SN−3[N −2] = 0∧ jN−2 = 0) = 1. On
the other hand, if SN−3[N − 2] = 0 and jN−2 �= 0, then ZN �= 0 where jN−1 �= 0
and SN−1[ jN ] = 0, and due to randomness assumption, ZN = 0 in all other cases.
So, Pr(ZN = 0 | S1[0] �= 0 ∧ SN−3[N − 2] = 0 ∧ jN−2 �= 0) ≈ 1/N − 1/N 2.
Combining the two items as above, we get

Pr(ZN = 0 | S1[0] �= 0 ∧ SN−3[N − 2] = 0) ≈ 2/N − 2/N 2.

(c) Similarly for SN−3[N − 1] = 0, it can be proved that Pr(ZN = 0 | S1[0] �= 0 ∧
SN−3[N − 1] = 0) ≈ 2/N − 2/N 2.

(d) Now consider the case SN−3[x] = 0 for 1 ≤ x ≤ N − 3. If jN−2 �= x , jN−1 �= x
and jN = x , one can verify that ZN �= 0. In all other cases, ZN = 0 may be assumed
to occur with probability 1/N . Thus for 1 ≤ x ≤ N − 3, Pr(ZN = 0 | S1[0] �=
0 ∧ SN−3[x] = 0) ≈ 1/N − 1/N 2.
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Now, let us consider the conditional events (SN−3[x] = 0 | S1[0] �= 0), for 0 ≤ x ≤ N − 1,
to complete the picture. Starting with S1[0] �= 0, if j2, . . . , jN−3 are all non zero, we have
SN−3[0] �= 0 as well. So, Pr(SN−3[0] = 0 | S1[0] �= 0) = (

1 − (1 − 1/N )N−4) · (1/N ) =
PA, say. For all x �= 0, we may now assume

Pr(SN−3[x] = 0 | S1[0] �= 0) ≈ (1 − PA)/(N − 1) = PB .

Taking into account the contributions from all four sub-cases within this path, we get

Pr(ZN = 0 | S1[0] �= 0) = (2/N 2) · PA + (2/N − 2/N 2) · PB

+ (2/N − 2/N 2) · PB + (1/N − 1/N 2) · (1 − PA − 2PB)

= (1/N − 1/N 2) − (1/N − 3/N 2) · PA + (2/N − 2/N 2) · PB .

Combining the above two paths, we get Pr(ZN = 0) as

Pr(ZN = 0 | S1[0] = 0) · P(S1[0] = 0) + Pr(ZN = 0 | S1[0] �= 0) · P(S1[0] �= 0)

≈
(
1 − (1 − 1/N )N−2

)
· (1/N ) · (2/N ) + ((1/N − 1/N 2) − (1/N − 3/N 2) · PA

+(2/N − 2/N 2) · PB) · (1 − 2/N ) ≈ 1/N − 0.37/N 2,

for N = 256, as in the case with RC4. 	

2.6 Proof of bias in (Z257 = 0)

Theorem 6 In RC4 with N = 256, Pr(ZN+1 = 0) ≈ 1/N + 0.36/N 2.

Proof We may write ZN+1 = SN+1[SN [1] + SN [ jN+1]], and consider the following two
paths.

P1. Consider the case SN [1] = 1, where we may write ZN+1 = SN+1[1 + SN [ jN+1]]. If
SN [ jN+1] = 0, we have ZN+1 = SN+1[1] = SN [ jN+1] = 0. Otherwise if SN [ jN+1] =
X �= 0, we have ZN+1 = SN+1[1+ X ] = 0 is assumed to be uniformly distributed. Let
us denote events A

.= (SN [1] = 1) and B
.= (SN [ jN+1] = 0) to get

Pr(ZN+1 = 0 | A) ≈ Pr(ZN+1 = 0 | A ∧ B) · Pr(B) + Pr(ZN+1 = 0 | A ∧ B) · Pr(B)

≈ 1 · (1/N ) + (1/N ) · (1 − 1/N ) = 2/N − 1/N 2.

P2. Consider the case SN [1] = X �= 1. Here we have ZN+1 = SN+1[X + SN [ jN+1]].
If SN [ jN+1] = 0, we will get ZN+1 = SN+1[X ] �= SN+1[1] = SN [ jN+1] = 0.
Otherwise, for SN [ jN+1] = Y �= 0, we assume that ZN+1 = SN+1[X + Y ] = 0 is
uniformly distributed. Let us denote events A

.= (SN [1] = 1) and B
.= (SN [ jN+1] = 0)

to get

Pr(ZN+1 = 0 | A) ≈ Pr(ZN+1 = 0 | A ∧ B) · Pr(B) + Pr(ZN+1 = 0 | A ∧ B) · Pr(B)

≈ 0 + (1/N ) · (1 − 1/N ) = 1/N − 1/N 2.

From [24, Theorem 1], we have Pr(SN [1] = 1) ≈ 0.00532 when N = 256. Thus,

Pr(ZN+1 = 0) = Pr(ZN+1 = 0 | A) · Pr(A) + Pr(ZN+1 = 0 | A) · Pr(A)

≈ (2/N − 1/N 2) · (0.00532) + (1/N − 1/N 2) · (1 − 0.00532)

≈ 1/N + 0.36/N 2,

for N = 256, as in the case with RC4. 	
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Fig. 6 Bias in the event (S0[128] = 127) for key-length 1 ≤ � ≤ 256

3 Proof of the anomaly in S0[128] = 127

Our experiments with the specific key-lengths � = 2, 4, . . . , 128 revealed that there exists
a negative bias in S0[128] = 127 for these key-lengths. Figure 6 shows the key-length
dependence of this bias. This bias had been pointed out quite a few years ago [15,20] as an
“anomaly” in the otherwise smooth distribution of S0[u] = v, but it was never observed as
a key-length dependent phenomenon.

This is the motivation why we got interested in analyzing the S0[128] = 127 anomaly.
We prove it in this section. We will require the following technical results to prove the main
theorem later.

Lemma 1 In RC4 with N = 256, for 1 ≤ r ≤ N, Pr(SKr−1[r ] = r) ≈ 1/N + (1 − 1/N )r .

Proof We know that SK0 is the identity permutation of {0, . . . , N − 1}, and thus SK0 [r ] = r .
This value will remain at the same index till round (r − 1) if none of j K1 , j K2 , . . . , j Kr−1
touches the index r , which occurs with probability (1− 1/N )r−1, or otherwise with uniform
probability of 1/N . Hence, we get Pr(SKr−1[r ] = r) ≈ (1−1/N )r−1 ·1+(1−(1−1/N )r−1)·
(1/N ) = 1/N + (1 − 1/N )r . 	

Lemma 2 In RC4 with N = 256, Pr(SK127[128] = −K [128]) ≈ 0.39/N if and only if �, the
length of the RC4 secret key, is a non trivial divisor of N .

Proof Let us consider the following two paths.

P1. Consider SK127[128] = 128. In this case, we surely require K [128] = −128 = 128
(modulo N = 256). Now, if � = 2, 4, . . . , 128, then K [128] = K [0] = 128. This
implies j K1 = j K0 + SK0 [0] + K [0] = 0 + 0 + 128 = 128, which in turn results in
SK1 [0] = 128 and SK1 [128] = 0 after swap in the first round. As i K does not touch
index locations 0 or 128 during rounds 2 to 127, we can not have SK127[128] = 128, a
contradiction. If � does not divide 128, then K [128]may not be equal to K [0], and in this
case SK127[128] = 128 may occur with probability 1/N . In summary, Pr(SK127[128] =
−K [128] | SK127[128] = 128) = 0 if � = 2, 4, . . . , 128. Otherwise, Pr(SK127[128] =
−K [128] | SK127[128] = 128) ≈ 1/N .
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P2. In case SK127[128] �= 128, there is no special behavior dependent on the key-length �,
and we may assume that Pr(SK127[128] = −K [128] | SK127[128] �= 128) ≈ 1/N .

Combining the two paths, we get

Pr(SK127[128] = −K [128])
= Pr(SK127[128] = −K [128] | SK127[128] = 128) · Pr(SK127[128] = 128)

+Pr(SK127[128] = −K [128] | SK127[128] �= 128) · Pr(SK127[128] = 128)

≈ 0 · (156/N ) + (1/N ) · (1 − 156/N ) ≈ 0.39/N ,

if � = 2, 4, . . . , 128, where Pr(SK127[128] = 128) ≈ 156/N is by Lemma 1 with r = 128.
For all other values of �, we get Pr(SK127[128] = −K [128]) ≈ (1/N ) · (156/N ) + (1/N ) ·
(1 − 156/N ) = 1/N . 	

Theorem 7 In RC4 with N = 256, Pr(S0[128] = SKN [128] = 127) ≈ 0.62/N if and only if
�, the length of the RC4 secret key, is a non trivial divisor of N .

Proof Let us first compute Pr(SK128[128] = 127), using the following paths.

P1. Consider SK127[128] = −K [128]. In this case, j128 = j127+SK127[128]+K [128] = j127.
So, SK128[128] = SK127[ j128] = SK127[ j127] = SK126[127]. Now, by Lemma 1with r = 127,
we get Pr(SK126[127] = 127) ≈ 156/N . Thus, Pr(SK128[128] = 127 | SK127[128] =
−K [128]) ≈ 156/N .

P2. Consider SK127[128] �= −K [128]. In this case, SK128[128] = SK126[X ] for some X �= 127.
Thus by normalization over the probability values Pr(SK126[X ] = 127) for X �= 127, we
get Pr(SK128[128] = 127 | SK127[128] �= −K [128]) ≈ (1− 156/N )/(N − 1) ≈ 0.39/N .

Combining the two paths as above, we get

Pr(SK128[128] = 127)

= Pr(SK128[128] = 127 | SK127[128] = −K [128]) · Pr(SK127[128] = −K [128])
+Pr(SK128[128] = 127 | SK127[128] �= −K [128]) · Pr(SK127[128] �= −K [128])

≈ (156/N ) · (0.39/N ) + (0.39/N ) · (1 − 0.39/N ) ≈ 0.63/N ,

if � = 2, 4, . . . , 128. For all other values of �, we get Pr(SK128[128] = 127) ≈ (156/N ) ·
(1/N )+(0.39/N ) ·(1−1/N ) ≈ 1/N . In both cases, the value of Pr(SK127[128] = −K [128])
comes from Lemma 2.

Once we have SK128[128] = 127, we know that S0[128] = SKN [128] = 127 if none of
j129, . . . , jN touches the index 128. If otherwise SK128[128] �= 127 and the value 127 is in
any index less than 128, then SKN [128] �= 127. If SK128[128] �= 127 and the value 127 is in any
index I greater than 128, then SKN [128] = 127 may occur by one step due to the following
association.

1. Indices j129, . . . , jI−1 do not touch location I before i = I .
2. When i = I , we have j equal to 128, so that the appropriate swap occurs.
3. Moreover, none of jI+1, . . . , jN touches the location 128 after the previous event.

Similarly if SK128[128] �= 127 and the value 127 is in any index I greater than 128, then
SKN [128] = 127 may occur by more than one steps.

Thus, the probability of the above path is
∑N

I=129 Pr(S
K
128[I ] = 127) · 1

N · (1 − 1
N )127 +

∑N
I=129

∑N
Y=I+1 Pr(S

K
128[I ] = 127) · 1

N2 · (1 − 1
N )127 + · · · ≈ Pr(SK128[I ] = 127) · (1 −

1/N )127 · ( 12 + 1
8 + 1

48 ) = 0.393 · Pr(SK128[I ] = 127).
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Note that Pr(SK128[I ] = 127) will not be 1
N for 129 ≤ I ≤ N − 1. Since if any one

of j1, . . . , j127 is equal to 127, then Pr(SK128[I ] = 127) = 0. Hence Pr(SK128[I ] = 127) =
(1 − 1

N )127 1
N = 0.61

N .
Thus,

Pr(SKN [128] = 127) = Pr(SK128[128] = 127) · (
1 − 1

N

)128 + Pr(SK128[128] �= 127) · 0.393 · 0.61
N

≈ (0.63/N ) · (155/N ) + (1 − 0.63/N ) · (0.24/N ) ≈ 0.62/N ,

if � = 2, 4, . . . , 128. For other values of �, we get Pr(S0[128] = SKN [128] = 127) following
the value predicted by the distribution of S0[u] = v byMantin [15,17]. Hence the “anomaly”.

	

The theoretical results regarding the anomaly in S0[128] = 127, as above, closely match

with the experimental results, both from our own experiments, as well as that reported in the
literature [20]. This hints at the possibility that all “anomalies” or deviations of probabilities
in the distribution of S0 from that predicted byMantin [15], may actually result from intricate
key-length dependence in the cipher.

4 Complete proof of the generalized key-length dependent biases

In [24, Sect. 2], Sen Gupta et al. presented a family of biases in RC4 that are dependent on the
length of the secret key. The most important of those biases was a key-length distinguisher
based on the positive bias in the event (Z� = −�), where � is the length of RC4 secret key
in bytes.

Subsequently, in [8, Sect. 3.4], Isobe,Ohigashi,Watanabe andMorii observed1 that similar
bias also exists in the class of events (Zx� = −x�) for any positive integer x . However, they
could not prove all the paths and substituted experimental values to compute what they
referred as semi-theoretical values. They also commented the following.

Since semi-theoretical value are partially based on experimental results, we can not
claim that the proof of these bias are given.

We observe that instead of following the approach of [8], if one follows the approach
in [24], then the theoretical derivation of the generalized key-length dependent biases become
much simpler. In this section, we generalize all the key-length dependent biases of [24] for
any key-length � ∈ [3, N−1] and any integer x ∈ [1,  N

�
�] and thereby complete the proof of

the extended key-length distinguisher that was left open in [8]. As a result, the biases in [24]
become special cases of our results here with x = 1. Note that though the general proof
follows the same approach as in [24], the extension is not obvious. A general proof always
imply the special cases, but the converse need not be true. We experimentally verified all the
intermediate claims and assumptions related to the events involving “x�” and we found them
to be consistent with our theoretical claims. We present the general theorems below with the
proofs.

All the biases that we are interested in are related to (SKx�+1[x�−1] = −x� ∧ SKx�+1[x�] =
0), where x is an integer between 1 and  N

�
�. So we first derive the probability for this event

in Lemma 3.

1 This was independently observed by AlFardan et al. [1,4] as well.
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Lemma 3 Suppose that � is the length of the secret key of RC4. Then for 1 ≤ x ≤  N
�
�, we

have

Pr(SKx�+1[x� − 1] = −x� ∧ SKx�+1[x�] = 0) ≈ 1

N 2 +
(
1 − 1

N 2

)
αx,�,

where αx,� = 1
N

(
1 − 3

N

)x�−2 (
1 − x�+1

N

)
.

Proof The major path that leads to the target event is as follows.

1. In the first round of the KSA, when i K1 = 0 and j K1 = K [0], the value 0 is swapped into
the index SK [K [0]] with probability 1.

2. The index j K1 = K [0] /∈ {x� − 1, x�,−x�}, so that the values x� − 1, x�,−x� at these
indices respectively are not swapped out in the first round of the KSA.We as well require
K [0] /∈ {1, . . . , x�−2}, so that the value 0 at index K [0] is not touched by these values of
i K during the next x�−2 rounds of the KSA. This happens with probability

(
1 − x�+1

N

)
.

3. From round 2 to x� − 1 (i.e., for i K = 1 to x� − 2) of the KSA, none of j K2 , . . . , j Kx�−1

touches the three indices {x�,−x�, K [0]}. This happens with probability
(
1 − 3

N

)x�−2
.

4. In round x� of the KSA, when i Kx� = x� − 1, j Kx� becomes −x� with probability 1
N ,

thereby moving −x� into index x� − 1.
5. In round x�+ 1 of the KSA, when i Kx�+1 = x�, j Kx�+1 becomes j Kx� + SKx�[x�]+ K [x�] =

−x�+x�+K [0] = K [0], and as discussed above, this index contains the value 0. Hence,
after the swap, SKx�+1[x�] = 0. Since K [0] �= x� − 1, we have SKx�+1[x� − 1] = −x�.

Considering the above events to be independent, the probability that all of above occur
together is given by

αx,� = 1

N

(
1 − 3

N

)x�−2 (
1 − x� + 1

N

)
.

If the above path does not occur, then we assume that the target event is uniformly distributed
and hence occurs probability 1

N2 , thus contributing a probability of (1 − αx,�)
1
N2 . Adding

the two contributions, the result follows. 	

Theorem 8 Suppose that � is the length of the secret key of RC4. Then for 1 ≤ x ≤  N

�
�,

we have

Pr(Sx�[x�] = −x� ∧ Sx�[ jx�] = 0) = Pr(tx� = −x� ∧ Sx�[ jx�] = 0) ≈ 1

N 2 +
(
1 − 1

N 2

)
βx,�,

where βx,� = 1
N

(
1 − 1

N

) (
1 − 2

N

)N−3 (
1 − 3

N

)x�−2 (
1 − x�+1

N

)
.

Proof From the proof of Lemma 3, consider the major path with probability αx,� for the
event (SKx�+1[x�−1] = −x� ∧ SKx�+1[x�] = 0). For the remaining N − x�−1 rounds of the
KSA and for the first x�−2 rounds of the PRGA (i.e., for a total of N −3 rounds), none of the
values of j K (corresponding to the KSA rounds) or j (corresponding to the PRGA rounds)

should touch the indices {x� − 1, x�}. This happens with a probability of
(
1 − 2

N

)N−3
.

Now, in round x�−1 of PRGA, ix�−1 = x�−1, fromwhere the value x�−1moves to index
jx�−1 due to the swap. In the next round, ix� = x� and jx� = jx�−1 + Sx�−1[x�] = jx�−1,
provided the value 0 at index x� had not been swapped out by jx�−1, the probability of which
is 1− 1

N . So during the next swap, the value −x� moves from index jx� to index x� and the
value 0 moves from index x� to jx�. The probability of the above major path leading to the

event (Sx�[x�] = −x� ∧ Sx�[ jx�] = 0) is given by βx,� = αx,�
(
1 − 2

N

)N−3 (
1 − 1

N

)
. If
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this path does not occur, then we assume that the target event is uniformly distributed, i.e.,
with probability 1

N2 . Adding the two contributions and substituting the value of αx,� from
Lemma 3, the result follows.

Further, as tx� = Sx�[x�] + Sx�[ jx�], the event (Sx�[x�] = −x� ∧ Sx�[ jx�] = 0) is
equivalent to the event (tx� = −x� ∧ Sx�[ jx�] = 0), and hence the result. 	

Theorem 9 Suppose that � is the length of the secret key of RC4. Then for 1 ≤ x ≤  N

�
�,

we have Pr(Zx� = −x� ∧ Sx�[ jx�] = 0) ≈ 1
N2 +

(
1 − 1

N2

)
γx,�, where γx,� =

1
N2

(
1 − x�+1

N

) ∑N−1
u=x�+1

(
1 − 1

N

)u (
1 − 2

N

)u−x� (
1 − 3

N

)N−u+2x�−4
.

Proof From the PRGA update rule, we have jx� = jx�−1 + Sx�−1[x�]. Hence, Sx�[ jx�] =
Sx�−1[x�] = 0 implies jx� = jx�−1 as well as Zx� = Sx�[Sx�[x�] + Sx�[ jx�]] =
Sx�[Sx�−1[ jx�] + 0] = Sx�[Sx�−1[ jx�−1]] = Sx�[Sx�−2[x� − 1]]. Thus, the event (Zx� =
−x�∧ Sx�[ jx�] = 0) is equivalent to the event (Sx�[Sx�−2[x�−1]] = −x�∧ Sx�−1[x�] = 0).

From the proof of Lemma 3, consider the major path with probability αx� for the joint
event (SKx�+1[x� − 1] = −x� ∧ SKx�+1[x�] = 0). This constitutes the first part of our main
path leading to the target event. The second part, having probability α′

x,�, can be constructed
as follows.

1. For an index u ∈ [x� + 1, N − 1], we have SKu [u] = u. This happens with probability(
1 − 1

N

)u
.

2. For the KSA rounds x� + 2 to u, the j K values do not touch the indices x� − 1 and x�.

This happens with probability
(
1 − 2

N

)u−x�−1
.

3. In round u + 1 of KSA, when i Ku+1 = u, j Ku+1 becomes x� − 1 with probability 1
N .

Due to the swap, the value u moves to SKu+1[x� − 1] and the value −x� moves to
SKu+1[u] = SKu+1[SKu+1[x� − 1]].

4. For the remaining N − u − 1 rounds of the KSA and for the first x� − 1 rounds of the
PRGA, none of the j K or j values should touch the indices {x�−1, S[x�−1], x�}. This
happens with a probability of

(
1 − 3

N

)N−u+x�−2
.

5. So far, we have (Sx�−1[Sx�−2[x� − 1]] = −x� ∧ Sx�−1[x�] = 0). Now, we should also
have jx� /∈ {x�− 1, S[x�− 1]} for Sx�[Sx�−2[x�− 1]] = Sx�−1[Sx�−2[x�− 1]] = −x�.
The probability of this condition is

(
1 − 2

N

)
.

Assuming all the individual events in the above path to be mutually independent, we get

α′
x,� = 1

N

N−1∑

u=x�+1

(
1 − 1

N

)u (
1 − 2

N

)u−x� (
1 − 3

N

)N−u+x�−2

.

Thus, the probability of the entire path is given by

γx,� = αx,� · α′
x,�

= 1

N 2

(
1 − x� + 1

N

) N−1∑

u=x�+1

(
1 − 1

N

)u (
1 − 2

N

)u−x� (
1 − 3

N

)N−u+2x�−4

.

If this path does not occur, then we assume that the target event is uniformly distributed,
i.e., occurs with probability 1

N2 . Adding the two contributions, we get the result. 	

Theorem 10 For any key-length � ∈ [3, N − 1] and any integer x ∈ [1,  N

�
�], the

probability Pr(Sx�[ jx�] = 0) is given by δx,� ≈ Pr(S1[x�] = 0)
(
1 − 1

N

)x�−2 +
∑x�−1

y=2
∑x�−y

w=0
Pr(S1[y]=0)

w!·N
(
x�−y−1

N

)w (
1 − 1

N

)x�−3−w
.
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Proof Note that Sx�[ jx�] is assigned the value of Sx�−1[x�] due to the swap in round x�.
Hence, by substituting u = x� and v = 0 in Proposition 3, we get the result. 	

Theorem 11 Suppose that � is the length of the secret key of RC4. Then for 1 ≤ x ≤  N

�
�,

we have τx,� = Pr(tx� = −x�) ≈ 1
N2 +

(
1 − 1

N2

)
βx,� + (1 − δx,�)

1
N , where βx,� is given

in Theorem 8 and δx,� is given in Theorem 10.

Proof We can write Pr(tx� = −x�) = Pr(tx� = −x� ∧ Sx�[ jx�] = 0) + Pr(tx� =
−x� ∧ Sx�[ jx�] �= 0), where the first term is given by Theorem 8. When Sx�[ jx�] �= 0, the
event (tx� = −x�) can be assumed to be uniform. Hence the second term can be computed
as Pr(Sx�[ jx�] �= 0) · Pr(tx� = −x� | Sx�[ jx�] �= 0) ≈ (1 − δx,�)

1
N . Adding the two terms,

we get the result. 	

By dividing the joint probabilities Pr(Sx�[x�] = −x� ∧ Sx�[ jx�] = 0) and Pr(tx� =

−x� ∧ Sx�[ jx�] = 0) of Theorem 8, and Pr(Zx� = −x� ∧ Sx�[ jx�] = 0) of Theorem 9 by the
appropriate marginals δx,� = Pr(Sx�[ jx�] = 0) of Theorem 10 and τx,� = Pr(tx,� = −x�)
of Theorem 11, we get theoretical values of the following conditional biases

1. Pr(Sx�[x�] = −x� | Sx�[ jx�] = 0) = Pr(tx� = −x� | Sx�[ jx�] = 0).
2. Pr(Sx�[ jx�] = 0 | tx� = −x�).
3. Pr(Zx� = −x� | Sx�[ jx�] = 0).

Theorem 12 Suppose that � is the length of the secret key of RC4. Then for 1 ≤ x ≤  N
�
�,

Pr(Zx� = −x�) ≈ 1

N 2 +
(
1 − 1

N 2

)
γx,� + (1 − δx,�)

1

N
,

where γx,� is given in Theorem 9 and δx,� is given in Theorem 10.

Proof We can write Pr(Zx� = −x�) = Pr(Zx� = −x� ∧ Sx�[ jx�] = 0) + Pr(Zx� =
−x� ∧ Sx�[ jx�] �= 0), where the first term is given by Theorem 9. When Sx�[ jx�] �= 0, the
event (Zx� = −x�) can be assumed to be uniformly distributed. Hence the second term can
be computed as Pr(Sx�[ jx�] �= 0) · Pr(Zx� = −x� | Sx�[ jx�] �= 0) ≈ (1 − δx,�)

1
N . Adding

the two terms, we get the result. 	

By dividing the joint probability Pr(Zx� = −x� ∧ Sx�[ jx�] = 0) of Theorem 9 by Pr(Zx� =
−x�) as given above, we get the theoretical value of Pr(Sx�[ jx�] = 0 | Zx� = −x�).

In Fig. 7, we compare the experimental values of (Zx� = −x�), obtained from the data
of [1,4], with our theoretical values derived from Theorem 12, for key-length � = 16 and
x = 1, 2, . . . , 15. We have obtained almost similar results for other key-lengths as well.

5 Conclusion

We have proved all open short-term single-byte biases that have been exploited in the recent
TLS attack [1,4]. We have also given complete proof of the ‘extended key-length biases’
from [8]. Table 2 compares our theoretical results with the experimental data. Except the last
two rows of Table 2, all the experimental data is taken from [2] that estimated the probability
with 245 randomly chosen secret keys of length 16 bytes. The last row corresponds to � = 16
for TLS and under the “Theoretical proof” column of this row, we write “Theorem 12”, since
the expression is too complicated to fit in the table.
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Fig. 7 Bias in the event (Zx� = −x�) for key-length � = 16 and x = 1, 2, . . . , 15

Table 2 Proved short-term single-byte keystream biases of RC4 in TLS (16 byte key)

Bias in event Discovered Theoretical proof (this paper) Experimental

Z1 = 129 [1] 1/N − 1.73/N2 1/N − 1.72/N2 [2]

Z2 = 129 [1,22] 1/N − 1.90/N2 1/N − 1.82/N2 [2]

Z2 = 172 [1] 1/N + 0.16/N2 1/N + 0.20/N2 [2]

Z4 = 2 [1] 1/N + 0.83/N2 1/N + 0.81/N2 [2]

Z256 = 0 [1,8] 1/N − 0.37/N2 1/N − 0.38/N2 [2]

Z257 = 0 [8] 1/N + 0.36/N2 1/N + 0.35/N2 [8, Table 3]

Zx� = −x� [8] Theorem 12 (this paper) Figure 7 (this paper)

In the context of long-standing open issue of ‘anomalies’ in RC4 initial state, we could
prove an important anomaly regarding the bias in S0[128] = 127. Our work reveals that
a thorough analysis of the “anomaly pairs” is necessary, not only for their independent
theoretical interest, but also to investigate their connection with key-length.
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