
A Blockchain Framework for Insurance Processes

Mayank Raikwar∗, Subhra Mazumdar†, Sushmita Ruj†,

Sourav Sen Gupta†, Anupam Chattopadhyay∗, and Kwok-Yan Lam∗

∗School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798

Email: {mraikwar,anupam,kwokyan.lam}@ntu.edu.sg
†Indian Statistical Institute, 203 Barrackpore Trunk Road, Kolkata 700 108, India

Email: subhra.mazumdar1993@gmail.com,sush@isical.ac.in,sg.sourav@gmail.com

Abstract—We design a distributed platform with blockchain
as a system service for supporting transaction execution in
insurance processes. The insurance industry is heavily dependent
on multiple processes between transacting parties for initiating,
maintaining and closing diverse kind of policies. Transaction
processing time, payment settlement time and security protec-
tion of the process execution are major concerns. Blockchain
technology, originally conceived as an immutable distributed
ledger for detecting double spending of cryptocurrencies, is now
increasingly used in different FinTech systems to address produc-
tivity and security requirements. The application of blockchain
in FinTech processing requires a deep understanding of the
underlying business processes. It supports automated interactions
between the blockchain and existing transaction systems through
the notion of smart contracts. In this paper, we focus on the
design of an efficient approach for processing insurance related
transactions based on a blockchain-enabled platform. An exper-
imental prototype is developed on Hyperledger fabric, an open
source permissioned blockchain design framework. We discuss
the main design requirements, corresponding design propositions,
and encode various insurance processes as smart contracts.
Extensive experiments were conducted to analyze performance
of our framework and security of the proposed design.

I. INTRODUCTION

Blockchain technology offers a novel way for constructing

secure distributed systems. Initially designed as a system ser-

vice for detecting double spending in cryptocurrency systems,

blockchain is widely applicable to many business applications

where there is a requirement of trust among distributed parties.

At a high level, a blockchain is a distributed ledger service

implemented by multiple participants, with each of them

storing a local copy of the ledger. The ledger’s consistency is

achieved by certain consensus protocols involving all partici-

pants. Blockchain systems may choose from a wide range of

consensus protocols depending on the trust model. Immutabil-

ity of the ledger is achieved by a combination of cryptographic

primitives and open distribution of the ledger [1].

In common practical settings, business rules are encoded as

smart contracts [2], [3] that require access to the blockchain. In

terms of insurance processes, a smart contract can be written to

register clients interested in purchasing policies offered by the

company, enable them to file claims, and receive refunds. The

smart-contract based distributed ledger will inherently prevents

any sort of fraudulent transactions if the requests or actions

do not conform to the rules of the contracts.

Existing insurance systems have achieved a certain degree

of automated processing. However, due to the lack of a single

trusted source of state information of different transactions,

they still suffer from performance bottlenecks. The generic

insurance systems require manual interactions across different

transaction processes, hence resulting in slow processing, and

lengthy payment settlement time. Due to similar issues, the

insurance industry is also facing the challenges of detecting

claim frauds [4], which can otherwise be handled efficiently

using blockchain-enabled smart contracts [5], [6].

This paper addresses the performance and security concerns

of insurance processes by designing a blockchain based so-

lution (similar to [7]). The main purpose of the blockchain-

based solution for the insurance industry is — (a) to automate

and speed up business processes in the insurance industry,

from client registration and policy issuance to claims handling,

(b) to make fraud-detection easier using decentralized digital

repository, (c) to make client data confidential and accessible

only to the authorized parties, (d) to reduce administrative and

operational costs, and (e) to enable regulators and auditors to

detect suspicious transaction patterns and market behaviors.

Our contribution in this paper is the design of a blockchain

framework for insurance use cases to offer fine-grained access

control by specifying different set of endorsers for each smart

contract. In reality, different insurance policies have different

set of endorsers, which is mimicked by creating different

smart contracts for different policies in our model. We used

Hyperledger fabric to implement our insurance blockchain

framework. Extensive experiments have been conducted by

scaling up the network to test the robustness of the system,

and a detailed analysis of the latency has been carried out

with a varying set of parameters. We also investigated the

relationship between transaction latency and network size.

II. PROPOSED MODEL

The idea behind our model is to implement the processes

of an insurance company as smart contracts, and place the

contracts in a blockchain-enabled distributed platform, for both

execution of the contracts and storage of the results.

A. Entities in the Model

Primary entities in our model are – the Client, who is cov-

ered by insurance and requests for insurance policies, submits

claim requests, and receive refunds, and the Agent, who acts

on behalf of the client, and processes the client’s requests to

the blockchain network. An agent can have multiple clients.

B. Components of the Model

The major components of our design include – a distributed

blockchain ledger B that logs execution results of all transac-

tions, a database DB (optionally encrypted) that maintains the

insurance contracts and transaction results of all the clients in

(Key, Value) format, a set of endorsers ESC (subset of

peer nodes) who verify the transaction conditions of smart

contract SC, a set of orderers O who order the transactions

chronologically and create the transaction blocks, a set of

validators V who validate and store the transaction blocks

to the blockchain ledger. Certain cryptographic algorithms are

used to authenticate users and to provide the access control.

C. Framework for Insurance

Our insurance framework consists of assets that enable the

exchange of almost anything with monetary value over the

network. The framework has smart contracts that govern the

rules for transactions. A block is created in the insurance

blockchain network when the peer nodes in the validator set

V run consensus over a set of transaction results (key-value

pairs) [8]. Each smart contract contains an endorsement (or

verification) logic, which specifies under what conditions a

transaction can be executed by the smart contract. The en-

dorsement logic is executed by a set of endorsers ESC (may be

particular to a smart contract SC) who access the blockchain

to determine whether contract conditions are satisfied.

Fig. 1. System model of Insurance blockchain framework

D. Model for Insurance

We consider a simple scenario where the main processes

(transactions) are standard insurance operations like — client

registration, policy assignment, paying premium, claim sub-

mission, processing refunds etc. The blockchain maintains

execution and results of each transaction and ensures that the

clients do not falsely accuse the insurance company, and that

the insurance company is accountable for all services that it

provides. Figure 2 shows the basic workflow of the framework.

Each smart contract SCj has a set of endorsers ESCj
who

endorse the transactions for that contract. The term object

refers to the attributes of the client or the policy. The structure

of an object is defined during the instantiation of the smart

contract. We use function γ to create an object from its

Client Registration

Init
InitClient
Query

Policy 1

Init
IssuePolicy
Claim
Refund
Query

Policy 2

Init
IssuePolicy
Claim
Refund
Query

· · ·

Policy N

Init
IssuePolicy
Claim
Refund
Query

View all Policy

ReadPolicy

Fig. 2. Smart contracts for Insurance Processes

attributes, and function f to generate composite keys (primary)

from the ID(s). The purpose of the key is to retrieve specific

object(s) corresponding to the ID(s) from the database. We also

use partial composite keys (not primary) in our framework

through which a set of objects may be retrieved from the

database. We discuss each of the contracts in detail, as follows.

Client Registration smart contract registers the clients to the

insurance system. During its initialization (Algorithm 1), a

structure of client object (Oc) is created in the database DB
(as a key-value pair). It contains client attributes like client

unique id idc as the key and other client attributes as values.

Algorithm 1: Client Registration : Init

Input: Peer Nodes : {Peer0, P eer1,, P eeri}
Endorsement Policy : OR(Peer0,, P eeri)

1 SOc
← (idc, namec, agec, genderc, contactc, historyc);

2 Create the structure SOc
in database DB;

To register a client (Algorithm 2), composite key CKc is

created by an agent, and client object Oc is created using CKc.

Algorithm 2: Client Registration : InitClient

Input: Client structure SOc
and agent id idA

1 CKc ← f(idA, idc);
2 Oc ← γ(SOc

);
3 Store (CKc, Oc) in DB;

To retrieve specific client details (Algorithm 3), an insurance

agent A has to create a composite key CKc, as follows.

Algorithm 3: Client Registration : Query

Input : Agent id idA and Client id idc
Output: Client object Oc

1 CKc ← f(idA, idc);
2 Search for CKc in DB;

3 Retrieve corresponding Oc if it exists, or return Error;

In case an agent requires to retrieve all his/her clients, he/she

may generate a partial composite key PKA using only his/her

own id idA, and query the database DB with the partial key.

Policy smart contract contains policy issuance, claims, refunds

etc. During its initialization (Algorithm 4), policy and policy-

client structures SOp
, SOpc

are created in database DB, where

amt, acc and date are amount claimed, claim acceptance

indicator (yes or no) and claim submission date, respectively.

Algorithm 4: Policy : Init

Input: Peer Nodes : {Peer0, P eer1,, P eeri}
Endorsement Policy : OR(Peer0,, P eeri)

1 SOp
← (idp, Namep, premiump, reimbursep, termp);

2 SOpc
← (idp, idc, amt, acc, date);

3 Create the structures SOp
and SOpc

in database DB;

In policy issuance process (Algorithm 5), client c chooses

policy P (id idp) from the available policies, and submits a

premium premiumc to the agent A (id idA). If the transaction

passes all standard checks and verifications, a corresponding

policy-client object Opc is created and stored in the database.

Algorithm 5: Policy : IssuePolicy

Input: idA, idc, idp, premiumc

1 Query DB with idp to check if Opc already exists;

2 Query client smart contract SCc to check if client c with

id idc is registered to agent A with id idA;

3 Check if client premium matches policy premium;

4 CKpc ← f(idp, idc, idA);
5 Opc ← γ(idp, idc, 0, Y es, date);
6 Strore (CKpc, Opc) in database DB;

To process a claim (Algorithm 6), client c submits his

credentials to the respective agent A. Upon verficiation of

all necessary conditions, the refund is initiated accordingly.

Parameter acc indicates whether then claim is accepted.

Algorithm 6: Policy : Claim

Input: idA, idc, idp, reimbursec

1 CKpc ← f(idp, idc, idA);
2 Query DB using CKpc to check if Opc exists;

3 If object Opc exists, check acc in Opc;

4 if acc = Y es then

5 if amt+ reimbursec ≤ reimbursep then

6 Refund(idA, idc, idp, reimbursec);
7 end

8 else

9 Refund(idA, idc, idp, reimbursep − amt);
10 acc← No, update acc in Opc;

11 end

12 end

Refund process is initiated from the claim process. During

refund (Algorithm 7), client c’s total claimed amount amt in

the policy-client object Opc is updated in database DB.

Algorithm 7: Policy : Refund

Input: idA, idc, idp, reimbursek from claim

1 CKpc ← f(idp, idc, idA);
2 Query DB using CKpc to check if Opc exists;

3 Update amt = amt+ reimbursek in Opc;

Agent A may retrieve details regarding his/her clients who

have purchased a specific policy idp by querying the database

DB with a partial composite key PKAp, created by idA and

idp. This essentially retrieves {Opci}i∈{0,...,N} from DB. An

agent can also retrieve the information about any individual

policy provided by the insurance company using the Query

routine (Algorithm 8) in the policy smart contract.

Algorithm 8: Policy : Query

Input : idp
Output: Op

1 Search for idp in DB;

2 Retrieve corresponding Op if it exists, or return Error;

View all Policy smart contract is an open (without particular

authorization) contract that may be used to find the information

about all the policies existing in the database of the company,

by calling individual smart contracts associated with different

policies. In this smart contract, an Agent, a Client, or even a

prospective client in the network, may invoke the ReadPolicy

routine without any specific access control permission.

E. Transactions in the Framework

In the proposed blockchain network, client c submits trans-

action request to agent A. The request consists of smart

contract method and client attributes needed for the method

to execute. The transaction is signed by agent A and further

endorsed by the endorsers of that specific smart contract. Upon

validation, agent A submits the transaction to the ordering

nodes O to chronologically order the transactions. Then, the

peer nodes run the core consensus routine with all received

transactions, and appends the new records to the blockchain.

III. SECURITY OF PROPOSED FRAMEWORK

The security of our blockchain framework relies on the re-

alistic assumptions that – (a) the channel is secure during mes-

sage transmission, and (b) the underlying blockchain network

is secure. Table I further depicts how various malicious entities

may affect our insurance network, as well as corresponding

preventions. Note that the Client is not a part of the insurance

blockchain network. Detailed security analysis is beyond the

scope of this short paper, and will be a part of the full version.

TABLE I
MALICIOUS ENTITIES, THREATS, AND INBUILT PREVENTIONS

Malicious Potential Threat Inbuilt Prevention

Peer (a) Modify/Delete Client data
(b) Send wrong endorsement

(a) Consensus protocol
(b) Endorsement policy

Auditor Wrong auditing result Consensus protocol

IV. PROTOTYPE AND EXPERIMENTS

Extensive experiments have been performed on the network

to figure out the robustness of proposed insurance framework.

The chaincode for smart contracts was developed in Golang

v1.8 and deployed on hyperledger fabric v1.0.0-beta [9], [10].

The experiments were carried out on a system with a Hexa-

core Intel Xeon E5-1650 v2 (3.50 GHz) processor and 16

GB RAM, running Ubuntu 16.04 (64 bit). We computed the

confirmation time of a set of transactions while varying the

number of peer nodes in the network. Results visualized as

Figures 3 and 4 depict the relation between the number of

peers and the corresponding time taken for confirming N

transactions, while Table II presents the basic description and

parameters of our blockchain setup for these experiments.

10 20 30 40 50

0

10

20

30

Peers (block size 10)

C
o
n
fi

rm
at

io
n

T
im

e
(s

ec
)

20 tx per set

30 tx per set

10 20 30 40 50

0

10

20

30

Peers (block size 20)

20 tx per set

30 tx per set

Fig. 3. Confirmation time Vs No. of Peers (Batch Timeout : 2sec)

10 20 30 40 50

0

10

20

30

Peers (block size 10)

C
o
n
fi

rm
at

io
n

T
im

e
(s

ec
)

20 tx per set

30 tx per set

10 20 30 40 50

0

10

20

30

Peers (block size 20)

20 tx per set

30 tx per set

Fig. 4. Confirmation time Vs No. of Peers (Batch Timeout : 4sec)

Note that the network size is directly proportional to the

confirmation time. It is clearly noticeable that more the number

of nodes, more will be the confirmation time, i.e., slower will

be the network. This is caused by the requirement for more

number of endorsements and more number of validations.

TABLE II
EXPERIMENTAL PARAMETERS

Number of
Transactions

Block Size Batch
Timeout

Consensus
Protocol

Number of
Iterations

20, 30 10, 20 2, 4 (sec) Solo 20

Different consensus algorithms [11], [12] result in different

confirmation times, and the same happens with different

endorsement policies (for example, AND instead of OR will

considerably increase the confirmation time).

V. CONCLUSION AND FUTURE SCOPE

This paper proposes a blockchain-based framework for im-

plementing insurance transaction processes as smart contracts.

Experiments conducted to study the scalability clearly showed

the parameters used during blockchain creation should be

chosen carefully, as they have a direct effect on the network

latency. Though the database is currently not encrypted, it can

be encrypted with fine-grained access control. In our model,

each smart contract has its own set of endorsing peers, and

this can be extended even to the transaction level, to enable

separate set of endorsing peers for each transaction.

VI. ACKNOWLEDGMENT

This paper has been accepted for publication in Blockchains

and Smart Contracts workshop (BSC’2018), as a short paper.

The authors would like to thank the anonymous reviewers for

their constructive criticism and detailed comments.

REFERENCES

[1] Vukolić and Marko, “Rethinking permissioned blockchains,” in Pro-

ceedings of the ACM Workshop on Blockchain, Cryptocurrencies and

Contracts, ser. BCC ’17. New York, NY, USA: ACM, 2017.
[2] C. D. Clack, V. A. Bakshi, and L. Braine, “Smart contract tem-

plates: essential requirements and design options,” arXiv preprint

arXiv:1612.04496, 2016.
[3] K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts for

the internet of things,” IEEE Access, vol. 4, pp. 2292–2303, 2016.
[4] I. Nath, “Data exchange platform to fight insurance fraud on blockchain,”

in 2016 IEEE 16th International Conference on Data Mining Workshops

(ICDMW), Dec 2016, pp. 821–825.
[5] W. Li, A. Sforzin, S. Fedorov, and G. O. Karame, “Towards scalable and

private industrial blockchains,” in Proceedings of the ACM Workshop on

Blockchain, Cryptocurrencies and Contracts. ACM, 2017, pp. 9–14.
[6] H. Watanabe, S. Fujimura, A. Nakadaira, Y. Miyazaki, A. Akutsu, and

J. Kishigami, “Blockchain contract: Securing a blockchain applied to
smart contracts,” in Consumer Electronics (ICCE), 2016 IEEE Interna-

tional Conference on. IEEE, 2016, pp. 467–468.
[7] F. Lamberti, V. Gatteschi, C. Demartini, C. Pranteda, and V. Santamaria,

“Blockchain or not blockchain, that is the question of the insurance and
other sectors,” IT Professional, vol. PP, no. 99, pp. 1–1, 2017.

[8] C. Christian, “Blockchain, cryptography, and consensus,” 2017.
[9] Cachin and Christian, “Architecture of the hyperledger blockchain

fabric,” 2016.
[10] E. Androulaki, C. Cachin, A. De Caro, A. Kind, and M. Osborne,

“Cryptography and protocols in hyperledger fabric,” 6 January, 2017.
[11] L. S. Sankar, M. Sindhu, and M. Sethumadhavan, “Survey of consensus

protocols on blockchain applications,” in 2017 4th International Confer-

ence on Advanced Computing and Communication Systems (ICACCS),
Jan 2017, pp. 1–5.

[12] H. Sukhwani, J. M. Martnez, X. Chang, K. S. Trivedi, and A. Rindos,
“Performance modeling of pbft consensus process for permissioned
blockchain network (hyperledger fabric),” in 2017 IEEE 36th Symposium

on Reliable Distributed Systems (SRDS), Sept 2017, pp. 253–255.

