
Improving Speed of Dilithium’s Signing
Procedure

Prasanna Ravi1, Sourav Sen Gupta2, Anupam Chattopadhyay2, and Shivam
Bhasin1

1 Temasek Laboratories, Nanyang Technological University, Singapore
2 School of Computer Science and Engineering
Nanyang Technological University, Singapore

prasanna.ravi@ntu.edu.sg sg.sourav@ntu.edu.sg anupam@ntu.edu.sg

sbhasin@ntu.edu.sg

Abstract. Dilithium is a round 2 candidate for digital signature schemes in
NIST initiative for post-quantum cryptographic schemes. Since Dilithium is
built upon the “Fiat Shamir with Aborts” framework, its signing procedure
performs rejection sampling of its signatures to ensure they do not leak
information about the secret key. Thus, the signing procedure is iterative
in nature with a number of rejected iterations, which serve as unnecessary
overheads hampering its overall performance. As a first contribution, we
propose an optimization that reduces the computations in the rejected
iterations through early-evaluation of the conditional checks. This allows
to perform an early detection of the rejection condition and reject a given
iteration as early as possible. We also incorporate a number of standard
optimizations such as unrolling and inlining to further improve the speed of
the signing procedure. We incorporate and evaluate our optimizations over
the software implementation of Dilithium on both the Intel Core i5-4460 and
ARM Cortex-M4 CPUs. As a second contribution, we identify opportunities
to present a more refined evaluation of Dilithium’s signing procedure in
several scenarios where pre-computations can be carried out. We also evalu-
ate the performance of our optimizations and the memory requirements for
the pre-computed intermediates in the considered scenarios. We could yield
speed-ups in the range of 6% upto 35% , considering all the aforementioned
scenarios, thus presenting the fastest software implementation of Dilithium
till date.

Keywords: Dilithium, Early Evaluation, pqm4, Digital Signatures, Lattice-based
cryptography, Post-Quantum Cryptography

1 Introduction

It has been known for quite sometime that modern public-key cryptography that
is being used today, is not secure against attacks by large-scale quantum com-
puters [13]. With continued advances in the field of quantum computing [3], it
will probably not be long before we have the world’s first large scale quantum

computer, that can break modern day public-key cryptography. This prompted
NIST to initiate a standardization process for public-key cryptographic schemes
(public-key encryption, digital signatures, and key establishment schemes) that
are secure against quantum computers [11]. NIST received 69 valid submissions
for the first round of the standardization process. After intense scrutiny by NIST
and based on public feedback, NIST selected 26 algorithms (17 public-key encryp-
tion and 9 digital signature schemes) for the second round out of the 69 valid
submissions from the first round of the standardization process. The Dilithium
lattice-based signature scheme, part of the CRYSTALS (Cryptographic Suite for
Algebraic Lattices) package is one of the leading second-round candidates for digital
signatures [8]. Dilithium offers both good security and efficiency guarantees with
its security based on the efficient Module-Learning With Errors (MLWE) problem.
Thus, most if not all computations in Dilithium involve operations over polynomials
in a structured cyclotomic ring that allows use of the efficient Number Theoretic
Transform (NTT) for polynomial multiplication.

However, one of the main features of Dilithium is that it is built upon the
well-known Fiat-Shamir with Aborts framework [7]. The signing procedure performs
rejection sampling of certain intermediate variables through a number of conditional
checks. This is done to ensure that the generated signatures do not leak the
distribution of the secret key. Thus, the signing procedure is iterative in nature and
goes through a number of rejected iterations until it outputs a valid signature. For
example, the signing procedure for recommended parameter sets of Dilithium has
an average repetition rate of 6.6 [8] and hence the computations performed in all
except the last iteration (5.6 iterations) are just un-necessary overheads. Thus, the
repetition rate severely hampers the performance of Dilithium’s signing procedure.

As a first contribution, we propose an optimization to perform early-evaluation
of the conditional checks, so as to perform optimal number of computations to
reject an iteration. Our high-level optimizations simply involve reorganization of
computations within each iteration and hence can be adopted to speed-up both SW
and HW implementations. Moreover, our optimizations could also be applicable
to other lattice-based schemes built upon a similar framework. We also further
enhance the performance of the signing procedure through techniques such as
unrolling and inlining optimizations. The proposed optimizations do not create
any secret key related timing dependency. We also identified opportunities to refine
the approach to evaluate the signing performance of Dilithium in certain realistic
scenarios where pre-computations are possible. We mainly consider two scenarios -
(1) pre-computed intermediates in case of static public-private key pairs and (2)
partitioning the signing procedure in case of the randomized variant of Dilithium.
Thus as a second contribution, we perform a detailed evaluation of the performance
improvements and the memory requirements for the above mentioned scenarios. We
present results for the optimized signing procedure for different scenarios on both
the Intel(R) Core(TM) i5-4460 CPU and observe speed-ups of upto 31% across all
updated parameter sets of Dilithium. We also present the fastest software results for
Dilithium on the ARM Cortex-M4F by optimizing the open-source implementation
of Dilithium available in the open source pqm4 library and observe speed-ups in
the range of 6% upto 35% , thus demonstrating the portability of our optimizations
across implementation platforms.

2 Preliminaries

Notation: Elements in the integer ring Zq are denoted by regular font letters viz.

a, b ∈ Zq, where q is a prime. We denote x
$← X to denote sampling x uniformly in

random from set X. We denote the polynomial ring Zq[X]/〈Xn + 1〉 as Rq. For
an element a ∈ Rq, we define ‖a‖∞ = max

0≤i≤n−1
|a(i) (mod q)|. For a given η ∈ N,

define Sη = {a ∈ Rq | ‖a‖∞ ≤ η}. Multiplication of two polynomials a,b ∈ Rq
is denoted as a · b or ab ∈ Rq. Matrices and vectors of polynomials in Rq are
referred to as modules and are denoted using bold letters viz. a ∈ Rk×lq ,b ∈ Rlq.
Each polynomial element of module b ∈ Rlq is denoted as b[i] for i ∈ [0, l − 1].

Lattice-based Cryptography: The security of most efficient lattice-based cryp-
tographic schemes are based on the hardness of two average case-hard problems
known as the Ring-Learning With Errors problem (RLWE) [9] and the Ring-Short
Integer Solutions problem (RSIS) [10]. Both these problems reduce to correspond-
ing worst-case instances of hard problems over ideal lattices. For a public key
(a, t) ∈ (Rq, Rq), an RLWE attacker is asked to solve for polynomials s1, s2 ∈ Sη
with η � q such that t = a · s1 + s2. Given m uniformly random elements a[i] ∈ Rq
for i ∈ [0,m− 1], an MSIS attacker is required to solve for a short non-zero vector
z = (z[0], z[1], . . . , z[m− 1]) ∈ Smη such that

∑m
i a[i] · z[i] = 0 ∈ Rq.

The RLWE and RSIS problems generalize to the corresponding Module-LWE
(MLWE) and Module-SIS (MSIS) problems respectively, where computations
are performed over matrices and vectors of polynomials in the space Rk×`q =

Zk×`q [X]/(Xn + 1) for k, ` > 1 (as opposed to Rq for their ring variants). The
generalized module version of the LWE and SIS problems also provide better
security guarantees compared to their corresponding ring variants. A change in
security of a scheme based on MLWE or MSIS only requires to alter the module
dimensions k, ` while keeping the underlying operating ring fixed. Thus, change in
security can be easily achieved through very minimal changes in the underlying
implementation.

2.1 Dilithium

The security of Dilithium is based on the MLWE and MSIS problems. While the
property of indistinguishability of the public key comes from the MLWE problem,
security against existential forgery under the quantum random oracle model is
based on MSIS hardness assumption[8]. Based on how the ephemeral nonce in the
signing procedure is generated, Dilithium comes in two variants (i.e) deterministic
or probabilistic.

In the following discussion, we discuss the details of the Dilithium signature
scheme with more focus on its signing procedure[8]. The signature scheme is based
on the “Fiat-Shamir with Aborts” framework [7] while the scheme itself derives from
the lattice-based signature scheme proposed by Bai and Galbraith[2]. The scheme
operates over the base ring Rq with n, q = (256, 8380417) while offering flexibility
with the module parameters (k, `) allowing to operate over varying dimensions

(k × `) in four different security levels henceforth referred to as Dilithium1 (Weak),
Dilithium2 (Medium), Dilithium3 (Recommended) and Dilithium4 (Very High).

Algorithm 1: Dilithium Signature scheme

1 Procedure Sign(sk,M)

2 A ∈ Rk×`q := ExpandA(ρ)
3 µ = CRH(tr‖M)
4 κ = 0, (z,h) = ⊥
5 ρ′ ∈ {0, 1}384 := CRH(K‖µ)(or ρ′ ← {0, 1}384 for randomized signing)
6 while (z,h) = ⊥ do

7 y ∈ S`γ1−1 := ExpandMask(ρ′‖κ)
8 w = A · y
9 (w1,w0) = Dq(w, 2γ2)

10 c ∈ B60 = H(µ‖w1)
11 z = y + c · s1
12 (r1, r0) := Dq(w − c · s2, 2γ2)
13 if ‖z‖∞ ≥ γ1 − β or ‖r0‖∞ ≥ γ2 − β or r1 6= w1 then
14 (z,h) = ⊥
15 else
16 h = MHq(−c · t0,w − c · s2 + c · t0, 2γ2)
17 if ‖c · t0‖∞ ≥ γ2 or wt(h) > ω then
18 (z,h) = ⊥
19 end
20 κ = κ+ 1

21 end
22 return σ = (z,h, c)

Key Generation: The main operation of the key generation procedure is to
generate the MLWE instance that forms the public-private key pair (pk, sk) of
Dilithium. An LWE instance t = a · s1 + s2 is created where a ∈ Rk×`q is the public

parameter while the secret and error modules s1 ∈ R`q and s2 ∈ Rkq are small

modules sampled from S`η and Skη respectively. The LWE instance is not directly
output as the public key but is decomposed into t0, t1 such that t0 consists of the
d lower order bits of all coefficients of t while t1 consists of its remaining higher
order bits. Subsequently, t1 is published as part of the public key pk while t0 along
with s1, s2 form part of the secret key sk.

Signing: Refer to Alg.1 for the signing procedure of Dilithium. The signing
procedure is iterative in nature (While loop from Line 6 to 21 of Sign in Alg.1)
with a number of conditional checks (Line 13 and 17) and it exits with a valid
signature only when all the conditional checks are successfully passed. Moreover,
these selective rejections in the signing procedure together ensure both security
and 100% correctness of the signature scheme.

The most important component of the signing procedure (apart from the
secret key) is the ephemeral nonce y ∈ R`q. Knowledge of a single value of y or
reuse of y for different messages leads to a trivial break of the signature scheme.
Moreover, the method of generation of the ephemeral nonce y also determines the
deterministic nature of the signature scheme. In deterministic Dilithium, y ∈ R`q is
deterministically generated using the ExpandMask function which takes as inputs,
the message µ to be signed, a random secret key component K ∈ {0, 1}256 and
the iteration count k (Line 5 and 7). But, in case of probabilistic Dilithium, y is
randomly generated using the same ExpandMask function but with inputs, ρ′ and
the iteration count k where ρ′ is sampled randomly from {0, 1}384 (Line 5).

Once y is sampled, the product w = a · y ∈ Rkq is computed and further
decomposed into w1 and w0 such that w = w1 · 2γ2 + w0. Further, a sparse
challenge polynomial c (only 60 non-zero coefficients in either ±1) is generated by
hashing together the message, ephemeral nonce and public key information. Using
c and y, the signer generates the primary signature component z as z = s1c + y.
Finally, a hint vector h ∈ Rkq with coefficients in {0, 1} is generated and is also
published along with z, c as the signature. This hint vector h is actually used
by the verifier along with the signature to recover the value of w1 which is used
to verify the authenticity of the challenge polynomial c. We do not discuss the
verification procedure and the reader is referred to [8] for more details.

3 Early Evaluation Optimization

Referring to the Sign procedure in Alg.1, we provide the following terminologies
for the various conditional/rejection checks. It is important to note that all these
checks have to be passed together in a single iteration, in order to output a valid
signature.

• ‖z‖∞ ≤ γ1 − β: Chk Norm(z) (Line 13 of Sign in Alg.1)
• ‖r0‖∞ ≤ γ2 − β: Chk Norm(r0) (Line 13)
• ‖ct0‖∞ ≤ γ2: Chk Norm(ct0) (Line 17)
• wt(h) < w: Chk Weight(h) (Line 17)
• r1 6= w1 (Line 13)

We make a couple of observations about implementation of the rejection checks
in the reference implementation of Dilithium submitted to the NIST standardization
process [8]. For reference, we consider the same code snippet in Fig.1 which contains
operations corresponding to the computation of z followed by its corresponding
rejection check Chk Norm(z)1.

• Observation-1: Out of the five rejection checks, the three rejection checks
Chk Norm(z), Chk Norm(r0) and Chk Norm(ct0) contribute to more than 99%
of the rejections in the signing procedure. They are all infinity norm checks
(Chk Norm) over modules with multiple polynomials.

1 The code snippet shown in Fig.1 is in its static single assignment form. In the static
single assignment code, the result of an operation is always written to a new variable.
In the original implementation, all of zi for i = {0, . . . , 3} refer to a single variable z.
The single assignment form is used for better illustration of our idea.

1 f o r (i = 0 ; i < L ; ++i)
2 {
3 poly pointwise invmontgomery (z1 . vec+i , &chat , s1 . vec+i) ;
4 poly invntt montgomery (z2 . vec+i , z1 . vec+i) ;
5 }
6 po lyvec l add (&z3 , &y , &z2) ;
7 p o l y v e c l f r e e z e (&z , $z3) ;
8 i f (polyvec l chknorm(&z , GAMMA1 − BETA))
9 goto r e j ;

Fig. 1: C-Code snippet corresponding to computation of z according to the reference
implementation in static single assignment form

Infinity norm checks are necessary conditions and computed one coefficient at a
time. Considering Chk Norm(z), all individual polynomials z[i] for i ∈ {0, L− 1}
of z are supposed to pass the check, for the complete module z to be considered
valid. Hence, an iteration can be immediately rejected upon detecting a violation
in any of the polynomials of z. Lets assume a case where the first polynomial of
z[0] violates Chk Norm(z). Though the violation can be detected just by computing
the first polynomial z[0], analysis of the reference implementation of Dilithium
revealed that all polynomials of z are computed before the conditional check over
the whole module of z is performed. If z[0] can be computed independently and
checked immediately, then one can immediately reject the iteration saving the
un-necessary computations of z[1], . . . , z[L− 1]. The same applies to the other two
Chk Norm conditions over r0 and ct0 in the signing procedure.

Hence, we alternately propose to compute and check z one polynomial at a time
(instead of one module at a time in the reference implementation). Only if the
check over a particular polynomial z[i] is passed, the next polynomial z[i+ 1] is
computed, else the iteration is rejected immediately. We also make the following
observation.

• Observation-2: The module z is computed over a series of computations
(z1 → z2 → z3 → z) with each computation (poly pointwise invmontgomery,
poly invntt montgomery, polyvecl add and polyvecl freeze) operating over the
entire module. But, all these computations preceding the rejection check can also
independently operate over single polynomials and do not have any dependency
over other polynomials in the same module.

This enables us to chain these computations corresponding to single polynomials
and compute z one polynomial at a time. The same technique can also be applied to
the computation of r0 and ct0 pertaining to the two other rejection checks (though
the computations involved are slightly different). For a better illustration, the
compute chain of z corresponding to the original implementation can be depicted
as in Eqn.1 as follows:

(z1[0]→ z1[1]→ . . .→ z1[L− 1])→ (z2[0]→ z2[1]→ . . .→ z2[L− 1])→ . . .

(z3[0]→ z3[1]→ . . .→ z3[L− 1])→ (z[0]→ z[1]→ . . .→ z[L− 1]) (1)

From Eqn.1, we can see that a particular computation is performed over every
polynomial in the module before starting the next computation. But our optimized
technique computes z according to the compute chain as depicted in Eqn.2:

(z1[0]→ z2[0]→ z3[0]→ z[0])→ (z1[1]→ z2[1]→ z3[1]→ z[1])→ . . .

(z1[2]→ z2[2]→ z3[2]→ z[2])→ . . .→
(z1[L− 1]→ z2[L− 1]→ z3[L− 1]→ z[L− 1]) (2)

In fact, the above compute chain is not always fully computed and is halted at
the earliest possible instance as every polynomial (z[0], . . . , z[L− 1]) is immediately
checked after it is computed. This is in contrast to the reference implementation
where the compute chain is always fully computed before the whole of z is checked.
Going one step further, we also observe that the set of consecutive computations in-
cluding the rejection check (i.e) (polyvecl add, polyvecl freeze and polyvecl chknorm)
are actually point-wise operations which operate over single coefficients. Thus,
it is possible to combine these consecutive operations into a single composite
operation, thus bringing our optimization from the polynomial level down to the
coefficient level. Refer to Fig.2 for the code-snippet of the optimized computation
of z, wherein computations are performed one polynomial at a time. Furthermore,
the identified consecutive point-wise operations are further fused into a single
function (poly add freeze chk norm) which computes and immediately checks each
coefficient before moving onto the next. These optimizations also directly apply
to the other rejection checks involving r0 and ct0. We will henceforth refer to it
as the Early-Eval optimization throughout the paper. Since it mainly works to
remove un-necessary computations, we can clearly see that it will benefit serial
implementations much more than parallel implementations. While we expect to
observe maximum speed-up for serial implementations (HW/SW) which iterate
over computations corresponding to one polynomial at a time, we would only
observe negligible/no speed-up in embarrassingly parallel HW implementations
which parallelize computations corresponding to all polynomials of the module.

3.1 Note on Timing Attacks:

Any given iteration of our signing procedure in our optimized implementation
is immediately rejected as soon as a coefficient that violates a conditional check
is computed. Thus, any adversary with access to the timing side-channel may
potentially derive information about the position of the coefficient which resulted
in rejection. However, the probability of a given coefficient violating the bound is
independent of the secret key and thus knowledge of the position of the coefficient
that resulted in rejection does not leak any exploitable information about the secret
key. Thus, to the best of our knowledge, our Early-Eval optimization does not
bring in any additional exploitable timing vulnerabilities.

1 for (i = 0 ; i < L ; ++i)
2 {
3 poly pointwise invmontgomery (z . vec+i , &chat , s1 . vec+i) ;
4 poly invntt montgomery (z . vec+i) ;
5 i f (po ly add f r eeze chk norm (z . vec+i , z . vec+i ,
6 y . vec+i , GAMMA1 − BETA))
7 goto r e j ;
8 }

Fig. 2: C-Code snippet of computation of z improved using our Early-Eval opti-
mization

3.2 Additional optimizations

While implementing the proposed optimization on the public code of pqm4 library,
we observed some potential scope for further optimizations. Though these opti-
mizations might be intuitively known and not necessarily novel, we included these
optimizations to test the limits of speed-up that can be achieved. We observed that
the reference implementation of Dilithium consists of a large number of functions
which operate over single coefficients. These functions were implemented in separate
files and were compiled into separate object files and hence the compiler couldn’t
inline them automatically. With these computations spanning over multiple polyno-
mials each of degree 256, the overhead from just function calls (branch to and from
the functions) in these point-wise functions are significant. Hence, we resorted to
manually inlining all the point-wise functions used in the implementation. Though
inlining doesn’t result in very elegant code, it avoids the un-necessary overhead
from branching to and from the function for every coefficient.

We also incorporated another standard optimization of unrolling the loops
in all the small functions that computed over single coefficients. We limited the
unroll factor to 8 for all such loops within these functions so as to maintain the
readability and simplicity of the code. We henceforth refer to these optimizations as
the Impl-Level optimizations throughout the paper. It is important to note that the
Impl-Level optimizations are applied to all point-wise/coefficient-wise operations
within the Dilithium signature scheme, while our Early-Eval optimizations only
apply to the few operations preceding the conditional checks within the signing
procedure. Though the Impl-level optimizations speed up all the three procedures
of Dilithium (KeyGen, Sign and Verify), we limit our focus only to the performance
improvements of its signing procedure.

4 Experimental Results

In this section, we perform an experimental evaluation of our optimizations over
the Dilithium’s signing operation on two software platforms (1) Intel Core i5 CPU
and (2) ARM Cortex-M4 MCU. Our optimizations were incorporated over the
updated reference implementation of Dilithium submitted to the second round
of the ongoing NIST standardization process. It is possible to independently

employ both the Early-Eval and Impl-Level optimizations and thus we present two
different optimized implementations of the signing operation (Refer Tab.1). While
the proposed Opt-1 variant demonstrates the speed-up only due to the Early-Eval
optimization, the Opt-2 variant demonstrates the speed-up from the combination
of both the Early-Eval and Impl-Level optimizations.

Table 1: Different variants of Dilithium’s signing procedure based on the employed
optimizations

Variant Optimization Used

Ref None

Opt-1 Early-Eval

Opt-2 Early-Eval & Impl-Level

4.1 A Refined Evaluation Approach

While experimenting with the implementation of Dilithium’s signing procedure,
we found that it can be further refined when considering its practical usage in
certain realistic scenarios. The main factor we consider is the cryptoperiod of
the public-private key pair. According to the NIST SP 800-57 Part-1 document
on “Recommendation for Key Management”, “a cryptoperiod is the time span
during which a specific key is authorized for use by legitimate entities, or the
keys for a given system will remain in effect.” NIST dedicates a complete section
on cryptoperiods and details on the various risk factors, consequence factors and
recommendations that allows one to decide the cryptoperiod for the various keys
used in any secure application. The reader is referred to Section 5.3 of the SP
800-57 document [4] for more in-depth details.

4.1.1 Precomputing operations over the static public-private key pair

NIST recommends that a private signature key can have a cryptoperiod of about
1-3 years at the signer’s side while the public signature key used for verification
could be valid for several years depending on the key size [4]. Though these are mere
recommendations from NIST and not strict guidelines, considering the complexity
of repeatedly refreshing key-pairs from the perspective of a key-management system,
one can expect most secure applications to work with static public-private key pairs
with relatively long cryptoperiods. We observed a number of operations within
Dilithium’s signing procedure which operate over the static public-private key
pair. But, in situations where public-private key pairs are static, these operations
can simply be computed once and have its results reused to avoid unnecessary
overheads from performing redundant computations.

To be specific, operations such as expanding a seed into the public parameter
A, unpacking the secret key sk into its individual components and NTT operations
over the secret key components s1,s2,t0 are redundant if the public-private key
pairs are static2. Thus, we consider the following two scenarios for evaluation based
on the cryptoperiod of the public-private key pair. We denote:

– Scenario-1 : All operations are computed online assuming ephemeral public-
private key pairs.

– Scenario-2 : Certain operations are pre-computed offline assuming static public-
private key pairs with very long cryptoperiods.

4.1.2 Partitioning the Signing Procedure

Considering the randomized variant of Dilithium’s signing procedure, we observe
that some more operations within the signing procedure can be computed offline,
independent of the message to be signed. In particular, operations such as sampling
y using ExpandMask (Line 7 of Sign in Alg.1) and computation of w0 and w1

(Lines 8 & 9) can be computed offline. If we also assume static public-private key
pair, it is possible to split the signing procedure into offline and online phases.
Such partitioning techniques can significantly speed-up the signing procedure in
real-time applications with main focus on low-latency times. In such scenarios,
computations in lines 2,7,8 and 9 of Sign procedure in Alg.1 can be performed offline
assuming that the device has a large enough buffer to store all the intermediates.
The remaining operations can be computed online upon knowledge of the message
to be signed. In fact, Aysu et al. in [1] utilized the same partitioning technique
in their high-performance and low-latency HW-SW co-designed implementation
of the GLP lattice-based signature scheme [5]. A similar idea of partitioning was
also suggested by Pöppelmann et al. in [12] to improve the speed of the BLISS
lattice-based signature scheme. We denote:

– Scenario-3 : Considering the randomized variant of Dilithium, we assume
all message independent operations along with operations over the static
public-private secret key to be computed offline. Thus, we only evaluate the
performance of online phase of the signing procedure.

4.2 Results on the Intel Core i5-4460 CPU

We first present results of our optimized implementations of Dilithium’s signing
procedure on the Intel Core i5-4460 CPU 3.20GHz, compiled with gcc-4.2.1
without modifying the compiler flags set for the reference implementation. We use
the average computational run-times of the signing procedure as our evaluation
metric, which was obtained across 106 runs of the signing procedure. We tested
two versions of Dilithium (i.e) (1) Dilithium-SHA that uses SHAKE from the
SHA3 family as an XOF and (2) Dilithium-AES that uses AES-256 in counter
mode as an XOF, across all parameter sets of Dilithium. Refer Tab.2-3 for a
comparative performance evaluation of our optimized implementations (Opt-1 and
Opt-2) against the reference implementation, in all the three identified scenarios (in
terms of number of clock cycles). While we use the randomized variant of Dilithium
for evaluation in Scenario-3 as stated earlier, we use the deterministic variant with
the same secret key and message inputs for a direct comparative evaluation in
Scenario-1 and Scenario-2.
2 The authors of Dilithium also note that the above operations can be pre-computed and

stored to ”slightly” speed up the signing operation, but do not present any performance
evaluation or the memory requirements due to the same (Refer Sec.3.1 of [8]).

Table 2: Comparative performance evaluation of the optimized Opt-1 implementa-
tion variant against the reference implementation of Dilithium’s signing procedure
on the Intel Core i5-4460 CPU. The results are reported in units of million (106)
clock cycles.

Scheme

Cycles (×106)

Scenario-1 Scenario-2 Scenario-3

Ref Opt-1 Imp.
(%)

Ref Opt-1 Imp.
(%)

Ref Opt-1 Imp.
(%)

Dilithium1-SHA 0.904 0.833 7.8 0.778 0.715 8.08 0.365 0.303 16.88

Dilithium2-SHA 1.621 1.461 9.88 1.378 1.246 9.57 0.598 0.457 23.5

Dilithium3-SHA 2.359 2.153 8.69 2.042 1.838 10.0 0.812 0.598 26.2

Dilithium4-SHA 2.183 2.035 6.77 1.731 1.586 8.38 0.694 0.548 20.95

Dilithium1-AES 1.156 1.094 5.33 0.910 0.863 5.21 0.365 0.303 17.01

Dilithium2-AES 2.110 1.973 6.919 1.663 1.526 8.23 0.589 0.457 22.4

Dilithium3-AES 3.175 2.969 6.498 2.460 2.258 8.17 0.814 0.597 26.5

Dilithium4-AES 3.174 2.970 6.414 2.459 2.258 8.18 0.817 0.600 26.5

We first compare the runtimes of the reference implementations of the signing
procedure in the three identified scenarios. Comparing Scenario-1 and Scenario-2,
we observe a difference of about 13 − 14% in runtime for Dilithium-SHA and
20− 21% for Dilithium-AES, which corresponds to the time spent on performing
redundant operations over the static public-private key pair. When comparing
Scenario-1 and Scenario-3, we observe a large difference of about 60% for Dilithium-
SHA and 71 − 72% for Dilithium-AES, which shows that a significant amount
of time within each iteration is spent in sampling the ephemeral nonce y using
XOF functions either through Keccak permutations in case of Dilithium-SHA and
AES-256 in counter mode in case of Dilithium-AES. This difference also arises from
computation of associated variables w1 and w0 in each iteration, but is very small
when compared to the time taken from sampling y.

We now perform a performance comparison of our optimized implementations
against the reference implementations on the Intel i5-CPU, individually based on
the different identified scenarios (Refer Tab.2-3). Considering Scenario-1, where
all operations are done online, we observe a speed-up of about 6.7 − 9.8% and
5.3 − 6.9% for the Opt-1 implementation of Dilithium-SHA and Dilithium-AES
respectively. But, our proposed Opt-2 variant which is additionally padded with
Impl-Level optimizations yields a much higher speed-up of 17− 21% for Dilithium-
SHA and 13.5 − 15.7% for Dilithium-AES in Scenario-1. Considering Scenario-2,
where the operations over the static public-private key pair are pre-computed,
we observe improved speed-ups of about 8 − 10% and 5.2 − 8.1% for the Opt-1
implementation of Dilithium-SHA and Dilithium-AES respectively. But, our Opt-2
implementation shows an improved speed-up of about 20− 23% for Dilithium-SHA

and 16−20% for Dilithium-AES in Scenario-2. The improved speed-up in Scenario-2
is mainly observed due to removal of the overheads due to operations over the static
public-private key pair in all the compared implementations (Ref, Opt-1, Opt-2).

Table 3: Comparative performance evaluation of the optimized implementation
Opt-2 against the reference implementation of Dilithium’s signing procedure on
the Intel(R) Core(TM) i5-4460 CPU. The results are reported in units of million
(106) clock cycles.

Scheme

Cycles (×106)

Scenario-1 Scenario-2 Scenario-3

Ref Opt-2 Imp.
(%)

Ref Opt-2 Imp.
(%)

Ref Opt-2 Imp.
(%)

Dilithium1-SHA 0.904 0.742 17.8 0.778 0.617 20.07 0.365 0.280 23.2

Dilithium2-SHA 1.621 1.281 20.9 1.378 1.069 22.4 0.598 0.424 29.1

Dilithium3-SHA 2.359 1.86 21.1 2.042 1.545 24.3 0.812 0.557 31.38

Dilithium4-SHA 2.183 1.771 18.85 1.731 1.320 23.7 0.694 0.505 27.2

Dilithium1-AES 1.156 0.999 13.55 0.910 0.758 16.6 0.365 0.281 23.04

Dilithium2-AES 2.110 1.79 15.15 1.663 1.341 19.3 0.589 0.426 27.59

Dilithium3-AES 3.175 2.676 15.72 2.460 1.966 20.0 0.814 0.557 31.53

Dilithium4-AES 3.174 2.677 15.65 2.459 1.966 20.0 0.817 0.557 31.7

Considering Scenario-3, where we only evaluate the online phase of the signing
procedure, we observe much higher speed-ups of about 16.9−23.5% and 17.0−26.5%
for the Opt-1 implementation of Dilithium-SHA and Dilithium-AES respectively.
But, the more optimized Opt-2 implementation yields significant speed-ups of about
23.2−31.4% and 23.0−31.7% for Dilithium-SHA and Dilithium-AES respectively in
Scenario-3. The best speed-ups were observed in Scenario-3 because all the operations
in the online phase of the signing procedure are enhanced by our optimizations.
This is unlike Scenario-1 and Scenario-2, where the major computational time of
the signing procedure was dominated by the XOF functions which are unaffected
by either of our optimizations.

4.3 Results on the ARM Cortex-M4

In the following, we present results of our optimized implementations on the ARM
Cortex-M4 MCU. We port our optimizations onto the publicly available implementa-
tion of Dilithium taken from the pqm4 library [6], a benchmarking and testing frame-
work for PQC schemes on the ARM Cortex-M4 family of microcontrollers. Our im-
plementations were compiled with arm-none-eabi-gcc-7.2.1 with compiler flags -O3
-mthumb -mcpu=cortex-m4 -mfloat-abi=hard -mfpu=fpv4-sp-d16 and run on

the STM32F4DISCOVERY board (DUT) housing the STM32F407, ARM Cortex-
M4 microcontroller. Since we observe similar if not better speed-ups for both our
Opt-1 and Opt-2 implementation variants on the ARM Cortex-M4 MCU when
compared to the Intel CPU, we only provide detailed evaluation of our fastest
Opt-2 implementation in Tab.4. These results were obtained across 10k runs of the
signing procedure of Dilithium-SHA across all parameter sets. However, for the
sake of completeness, we provide results for our Opt-1 variant on the recommended
parameter set of Dilithium, Dilithium-3. Considering Scenario-1 for our Opt-2

Table 4: Performance evaluation of the reference, Opt-1 and Opt-2 implementation
of Dilithium’s signing procedure on the ARM Cortex-M4 MCU. The results are
reported in units of million (106) clock cycles.

Scheme

Cycles (×106)

Scenario-1 Scenario-2 Scenario-3

Ref Opt-1 Imp.
(%)

Ref Opt-1 Imp.
(%)

Ref Opt-1 Imp.
(%)

Dilithium3-SHA 8.907 8.332 6.45 7.292 6.78 7.01 2.239 1.716 23.35

Ref Opt-2 Imp.
(%)

Ref Opt-2 Imp.
(%)

Ref Opt-2 Imp.
(%)

Dilithium1-SHA 3.033 2.482 18.16 2.493 1.950 21.76 1.016 0.721 29.08

Dilithium2-SHA 5.761 4.632 19.59 4.752 3.640 23.41 1.630 1.085 33.42

Dilithium3-SHA 8.907 7.085 20.45 7.292 5.495 24.64 2.237 1.449 35.21

Dilithium4-SHA 8.648 7.061 18.34 6.283 4.733 24.67 1.916 1.274 33.49

variant, we observe speed-ups of about 18− 20% while for Scenario-2 we observe
increased speed-ups in the range of 21− 24% across all parameter sets of Dilithium.
As for Scenario-3, we observe a significant speed-up of about 29− 35%, thus clearly
demonstrating the portability and applicability of our optimization techniques
across different implementation platforms. Please refer Tab.5 for the code-size
of our optimized implementation variants. While there is negligible increase in
code-size (0.5%) for our Opt-1 variant, we observe an increased overhead of about
17.6% for our Opt-2 variant, that can be mainly attributed due to the unrolling
optimizations.

4.4 Memory Requirements for Scenario-2 and Scenario-3

Though we observe increased speed-ups for Scenario-2 and Scenario-3, it does
come at the cost of requiring to precompute and store certain intermediate values,
which consequently requires allocation of additional memory for storage. Hence,
we analyze the memory requirements in both scenarios for all parameter sets of
Dilithium. Considering Scenario-2, it is required to buffer the modules A, NTT(s1),
NTT(s2) and NTT(t0). All the coefficients of these modules occupy 23 bits and
hence there are two possible ways to store them. We can either completely use 32

Table 5: Comparison of code-size of the different implementation variants of
Dilithium. The size of actual code, constant data and the global variables are
separately tabulated as text, data and bss respectively. All the numbers are
reported in bytes.

Variant text data bss Total Overhead
(%)

Ref 29696 12 8 29716 -

Opt-1 29864 12 8 29884 0.56

Opt-2 34912 12 8 34932 17.6

bits (4 bytes) to store each coefficient (wasting 9 bits for each) or we can efficiently
use a compact bit-packing strategy to efficiently store the same intermediates.
Readers are referred to section 5.2 of [8] for the description of the bit-packing
strategy used in Dilithium’s reference implementation.

In case of Scenario-3, calculation of the memory requirement is a bit more
involved, as it is required to additionally pre-compute and store the ephemeral
nonce y,w0 and w1 for every iteration. Since the number of iterations required to
generate a signature is not known a priori, we perform an analysis of the number
of repetitions observed over 107 runs of the signing procedure. Refer Fig. 3 for
the cumulative distribution plot of the percentage of signatures passed against
the minimum number of iterations to be pre-computed, for all parameter sets
of Dilithium3. We empirically calculated the minimum number of iterations to
be pre-computed so as to pass signatures according to three different success
rates: 90%, 95% and 99%. Refer Tab.6 for these empirically calculated minimum
iteration counts for the aforementioned success rates. Based on these numbers, we
also calculated the additional memory requirements for storage of y,w0 and w1

required for implementations in Scenario-3.
Refer Tab.6 for the total memory requirements for implementations in Scenario-2

and Scenario-3 for varying success rates across all parameter sets of Dilithium.
We present the memory requirement results for both the packed and unpacked
cases. As expected, memory requirements for the packed intermediates are much
lesser compared to the unpacked intermediates. But, this comes at the expense of
additional performance overhead of unpacking all the stored intermediates.

It is natural to see that the memory requirements increase with increasingly
secure parameter sets (i.e) from Dilithium1 to Dilithium4 due to the increase in the
module’s dimensions. We can clearly see that the memory requirements for Scenario-
2 are much lower (14-47 KB for the packed case and 10-34 KB for the unpacked
case) compared to Scenario-3 with much higher memory requirements numbering
in the hundreds of KBs. The main reason being that the memory requirements

3 By precomputed iterations, we do not mean computation of the complete iterations,
but only computation of y,w0 and w1 corresponding to those iterations.

4 The reported numbers remain the same irrespective of the utilized XOF function (AES
or SHA-3).

Table 6: Memory requirements for implementations in Scenario-2 and Scenario-3
for all parameter sets of Dilithium. Both the packed and un-packed cases are
considered. Memory requirements are reported in Kilobytes. Please note that
Scenario-2 and Scenario-3 are abbreviated as Scen-2 and Scen-3 respectively.

Scheme4

Minimum
no. of

iterations

No Packing (KB) Packing (KB)

90% 95% 99% Scen-2
Scen-3

Scen-2
Scen-3

90% 95% 99% 90% 95% 99%

Dilithium1 9 12 18 14 86 110 158 10.1 35.9 44.6 61.8

Dilithium2 13 16 25 23 166 199 309 16.3 68.9 81.0 117.3

Dilithium3 15 19 29 34 244 300 440 24.4 102.3 123.0 174.9

Dilithium4 9 12 18 47 200 251 353 33.8 90.8 109.9 148.0

Fig. 3: Cumulative distribution plot of the percentage of signatures passed against
the minimum number of iterations to be pre-computed. Please note that the curves
for Dilithium1 and Dilithium4 are overlapping one-another.

for Scenario-2 only depend on the module dimensions, but memory requirements
for Scenario-3 mainly depend on the repetition rate of the parameter set. This
is also evident from the Tab.6 that Dilithium-4 with higher module dimensions
(k, ` = 6, 5) but with a lower average repetition rate of 4.3 has reduced memory
requirements in Scenario-3 compared to Dilithium-3 (k, ` = 5, 4) with a higher
average repetition rate of 6.6.

5 Conclusion

In this paper, we have presented an algorithmic optimization on Dilithium’s signing
procedure which reduces the computations done in the rejected iterations through
early-evaluation of the conditional checks. We also incorporate a couple of standard

optimization techniques such as inlining and unrolling to further improve upon
the speed of the signing procedure. We also evaluate our optimizations in three
different scenarios based on the possibility of performing pre-computations. We
perform detailed evaluation of the performance of our optimizations and the memory
requirements in the afore mentioned scenarios on the Intel Core i5-4460 CPU and
the ARM Cortex-M4F MCU and reported speed-ups in the range of 6% upto 35% ,
thus demonstrating the effectiveness of our proposed optimizations.

Acknowledgment

The authors acknowledge the support from the Singapore National Research
Foundation (“SOCure” grant NRF2018NCR-NCR002-0001 – www.green-ic.org/

socure)

References

1. Aysu, A., Yuce, B., Schaumont, P.: The future of real-time security: Latency-optimized
lattice-based digital signatures. ACM Transactions on Embedded Computing Systems
(TECS) 14(3), 43 (2015)

2. Bai, S., Galbraith, S.D.: An Improved Compression Technique for Signatures Based
on Learning with Errors. In: CT-RSA. vol. 8366, pp. 28–47 (2014)

3. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E., White, T.C.,
Mutus, J., Fowler, A.G., Campbell, B., et al.: Superconducting quantum circuits at
the surface code threshold for fault tolerance. Nature 508(7497), 500–503 (2014)

4. Barker, E., Barker, W., Burr, W., Polk, W., Smid, M.: Recommendation for key
management part 1: General (revision 3). NIST special publication 800(57), 1–147
(2012)

5. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptog-
raphy: A signature scheme for embedded systems. In: International Conference on
Cryptographic Hardware and Embedded Systems. pp. 530–547. Springer (2012)

6. Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4, https://github.com/mupq/pqm4

7. Lyubashevsky, V.: Fiat-Shamir with aborts: Applications to lattice and factoring-
based signatures. In: International Conference on the Theory and Application of
Cryptology and Information Security. pp. 598–616. Springer (2009)

8. Lyubashevsky, V., Ducas, L., Kiltz, E., Lepoint, T., Schwabe, P., Seiler,
G., Stehle, D.: CRYSTALS-Dilithium. Tech. rep., National Institute of Stan-
dards and Technology (2017), available at https://csrc.nist.gov/Projects/

Post-Quantum-Cryptography/Round-2-Submissions
9. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors

over rings. J. ACM 60(6), 43 (2013)
10. Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way

functions. computational complexity 16(4), 365–411 (2007)
11. NIST: Post-Quantum Crypto Project. http://csrc.nist.gov/groups/ST/

post-quantum-crypto/ (2016)
12. Pöppelmann, T., Ducas, L., Güneysu, T.: Enhanced lattice-based signatures on

reconfigurable hardware. In: International Workshop on Cryptographic Hardware and
Embedded Systems. pp. 353–370. Springer (2014)

13. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring.
In: Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium
on. pp. 124–134. IEEE (1994)

www.green-ic.org/socure
www.green-ic.org/socure
https://github.com/mupq/pqm4
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/Round-2-Submissions
http://csrc.nist.gov/groups/ST/post-quantum-crypto/
http://csrc.nist.gov/groups/ST/post-quantum-crypto/

	Improving Speed of Dilithium's Signing Procedure

