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On Random Read Access in OCB
Ashwin Jha, Cuauhtemoc Mancillas-López, Mridul Nandi and Sourav Sen Gupta

Abstract—Offset Codebook or OCB mode is a popular block
cipher mode of operation for authenticated encryption. The latest
version of this cipher, called OCB3, is one of the finalists in
CAESAR. In this paper we explore the scope of random read
access and out-of-sequence decryption in OCB. We observe that
the current versions of OCB are inefficient in this respect owing
to the ineptness of the underlying mask generating function
(MGF). We propose new candidates for MGF based on AES
round function, which are efficient in direct computation and
provide comparable performance in the usual setting. Our
schemes are not the obvious choices for MGF in conventional
sense as they do not have optimal almost XOR universal (AXU)
bound. In existing OCB designs the MGFs are required to have
2−n, i.e. optimal, AXU bound in order to upper bound the
distinguishing advantage to O(σ2/2n), where n is the block size
of the underlying block cipher and σ is the total number of
blocks among all queries. We find this specific requirement too
restrictive. We abstract the OCB design, termed as GOCB, to
look into the universal notion required from the underlying MGF.
We propose a relaxed notion of AXU, called locally imperfect XOR
universal (LIXU) hash, which can be of independent interest.
Using LIXU as the underlying MGF we recover reasonable
security bounds for our schemes.

Index Terms—AES, AXU, masking, OCB, universal hash

I. INTRODUCTION

AUTHENTICATED ENCRYPTION or AE schemes [1], [2],
[3] are symmetric-key algorithms which can simultaneously
achieve data confidentiality, integrity and authentication. In
recent years AE schemes have received considerable research
interest, owing to the ongoing CAESAR competition [4] which
aims to deliver a portfolio of state-of-the-art authenticated
encryption schemes. Even though there are multiple designs
based on pseudo-random generators [5], [6] and sponge-like
functions [7], majority of the AE schemes have an underlying
block cipher as their core component, and they rely on a secure
and efficient mode of operation to achieve domain extension.
In fact, 3 out of the 7 finalists in the CAESAR competition
are based on an underlying (tweakable) block cipher. Some
of the known block cipher based AE schemes are OCB [3],
[8], [9], GCM [10], COLM [11], [12], [13] and Deoxys [14],
[15].

OFFSET CODEBOOK or OCB mode [3], [8], [9] by Rog-
away et al. is a single-pass and parallelizable block cipher
mode of operation for nonce-based authenticated encryption
(with associated data). OCB achieves both authentication and
encryption with minimal performance overhead compared to
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classical single-pass encryption only modes such as CTR
mode [16]. OCB requires one block cipher call per block
of message, apart from a few constant number of calls for
auxiliary tasks. In contrast, CCM [17] requires two block
cipher calls per block of message, and GCM [10] requires
one block cipher call and one field multiplication per block
of message. As a result, OCB is approximately twice as
fast [9], [18], [19] as any CTR mode based AE schemes,
particularly CCM and GCM. In fact OCB3 [9] has, to a larger
extent, already achieved the theoretical bounds for efficiency
in software implementation.

A. Random Read Access and Out-of-Sequence Decryption

A block cipher based encryption mode of operation is said to
have random read access feature, if it allows efficient decryp-
tion of any arbitrary encrypted block of message. This property
could be beneficial in secure storage of read only data on cloud
servers. The encrypted storage helps in avoiding unauthorized
access, and the authentication tag helps in maintaining the
integrity of the stored data. For example, say some enterprise
application stores day to day system log files on some cloud
server. Here the day timestamp may act as the nonce value.
Now suppose on a later day the application faces some issue
which warrants some portion of an encrypted log file. In this
case the system administrator should be able to repeatedly read
arbitrary blocks from the decrypted log, with as little overhead
as possible, by simply mentioning the relevant day timestamp
and the offset in the log file.

Yet another use-case for random read access is in disk
encryption where access to an arbitrary block of some disk
sector is highly beneficial. A popular and standardized disk
encryption scheme, called XTS by Rogaway [8], is quite
similar to OCB encryption.

A related feature is out-of-sequence decryption where the
mode of operation allows for the decryption of the encrypted
block data stream in an arbitrary order. In other words, the
original ordering of the ciphertext blocks is not necessary
for the decryption phase. If needed, the decrypted ciphertext
can be reordered to get the original plaintext. This is quite
useful in secure data transmission over connection-less net-
work protocols such as User Datagram Protocol (UDP) [20],
which allows for out-of-order delivery of data packets. If the
underlying encryption scheme offers efficient out-of-sequence
decryption then the data packets can be decrypted in on-the-fly
manner; otherwise the received packets have to be reordered
first which adds to the network protocol overhead. Yet another
application area is real time data streaming protocols such as
Secure Real-time Transport Protocol (SRTP) [21], [22], [23]
and SRTP Control Protocol (SRTCP) [24], where on-the-fly
decryption of received data packets is necessary to maintain
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the continuity of audio or visual data. In general, a scheme
with random read access feature also allows out-of-sequence
decryption.

Both CCM and GCM, being CTR based designs, allow
for random read access: given the nonce and the block index,
a single inverse block cipher call is required to access the
message block. In case of OCB: given the nonce-based mask
and the block index, a single block cipher call and a single
MGF call is required to access the message block. So if the
MGF is efficient in direct computation, then OCB can achieve
random read access almost as efficiently as CCM and GCM.

We remark that random read access and out-of-sequence
decryption are some features, which are defined exclusively
for encryption schemes, and as such they allow release of
unverified plaintext. It is well-known that OCB, CCM and
GCM are trivially broken, when the adversary gets access to
unverified plaintext. Still, we believe that there are practical
use-cases, where random read access makes sense in context
of authenticated encryption schemes as well. For instance,
consider the use-case pertaining to encrypted log files on a
cloud server. Here the cloud server may play the role of
an adversary, in which case, it is clear that the adversary
does not get access to unverified plaintext. Further, usually
the logs follow some specific format for recording various
events. If the encryption algorithm is secure, then it is almost
impossible for the adversary to guess the right format. If the
decryption algorithm receives unformatted log after decrypting
few blocks, it can be sure that the cloud has tempered with
the stored data.

B. Motivation

In connection with our discussion thus far, we observe a
serious drawback in the instantiation of MGF in existing OCB
designs. In all the existing OCB designs, the MGFs are instan-
tiated with small-domain AXU hash functions. These functions
are indeed quite efficient when computed sequentially over the
indices; but they are not that efficient for direct computation at
any arbitrary index, which renders the resulting OCB scheme
inefficient in random read access. Take the use of xtimes
in [3], [8], [9], [25] for example – the α-multiplication1 is
quite efficient in sequential computation as it requires only one
shift and one conditional bit-wise XOR; but direct computation
of xtimes for an arbitrary index i is not efficient at all, as
it requires O(log i) many field multiplications if executed
naively, or at least one field-multiplication even if all αi

values are precomputed, which is only possible for moderate
values of i. Similar degradation is observed for other small-
domain AXU hash functions such as Gray-code based hash [9]
and Matrix-powered hash [26], [27]. In general, for most of
the standard small-domain AXU hash functions: sequential
computation requires just a few shift and XOR operations,
whereas direct computation requires field multiplications or
some other costly operations. This raises a simple question:

(a) Can we have efficient directly computable small-
domain hash functions?

1Here α denotes the primitive element of the underlying field.

A possible approach is to use the differential properties of
data-dependent rotation (DDR) [28], [29], [9]. In fact OCB3
employs such a hash function for a very small domain of size
64, called stretch-then-shift [9], which requires four shifts and
two XORs. Although DDR involves simple bit manipulation
operations, the number of such operations are considerably
higher to get a good AXU bound over a sufficiently large
domain. For example the circulant hash [29] by Minematsu
requires approx. 64 rotations and 64 XORs to get 2−128 AXU
bound over F264 . Furthermore, DDR is marred by patents,
high cost in hardware and difficulty to get constant-time
implementation.

Yet another approach is to use iterations of some cryp-
tographic round function with good differential probability.
Particularly, 4 rounds of AES offers very low differential
probability bound [30], [31], [32] and most of the modern
processors provide in-built support [33] for AES round func-
tion. This has lead to some efficient AES-based A(X)U hash
functions [34], [35], [36]. While the use of reduced-round
block ciphers could be an elegant solution, the number of
rounds to get sufficient AXU bound is still a problem. For
instance, on Intel Skylake processors, field multiplication is
almost as good as four rounds of AES, which defeats the
whole purpose of using AES rounds for MGF. For lesser
number of rounds the performance is much better but the AXU
bound is, in general, significantly low.

In view of this shortcoming of existing optimal AXU hash
functions as MGFs, we rethink the basic philosophy behind
masking in OCB like designs, and question the requirement
of optimum AXU bounds in constructing the MGF. In existing
proof techniques [8], [9], [37] the distinguishing advantage is
upper bounded by O(σ2ε), where σ is the total number of
blocks in all queries and ε is the AXU bound of the MGF.
Clearly, a sub-optimal ε will result in a sub-optimal bound
for OCB. The immediate question that comes to mind is as
follows:

(b) Can we relax the AXU condition on underlying
MGFs to allow option for efficient direct computa-
tion while maintaining comparable security?

In other words, we ask if one may reduce the AXU security
margin of an underlying MGF without degrading the actual
security of the OCB mode. More fundamentally, we try to
investigate and establish the practical requirements from a
hash function in terms of masking, rather than just accepting
a standard off-the-shelf hash function with an optimum AXU
bound from the literature.

C. Contributions

We answer the aforesaid questions (a) and (b) in affirmative,
and hence our contributions are twofold:
• First, we propose two new 128-bit hash functions, called

aes1 and aes2, based on 1 and 2 rounds of AES.
We show that aes1 is a 2−96-AXU hash over F28 , and
aes2 is a 2−113-AXU hash over F232 . On Intel Skylake
processor: in direct computation, aes1 and aes2 are
expected to be about 5 and 2.5 times faster than field
multiplication. Similar improvements are expected for
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gray code and matrix based hash functions. In sequential
computation aes1 and aes2 are slower than gray, but
the degradation can be significantly reduced on modern
processors where AES pipelining is possible.
Note that if we use previous proof techniques, we get
bounds of O(σ2/296) and O(σ2/2113) for OCB with
aes1 and aes2, which are significantly worse then
OCB3 bound, O(σ2/2128).

• Second, we introduce a generic view of OCB (termed
GOCB), using the modular notion of Mask Generating
Functions (MGFs), to study the alternatives to AXU hash
functions for masking. We introduce a different notion of
universal hash in the context of mask generation — the
notion of Locally-Imperfect XOR Universal Hash (LIXU)
— and prove that this notion is sufficient to provide
adequate (comparable to existing) security guarantees for
GOCB. The basic idea is to model a mask generating
hash function H whose differential probability depends
on grouping (quantified by the chunk number) of the
given inputs. More precisely, for an (ε, r)-LIXU hash H
the domain can be partitioned into several disjoint sets
of size at most r, such that H has optimum differential
probability when the inputs x and y belong to distinct
partitions and the probability degrades to at most ε ≥ 0
when x and y belong to the same partition.
With respect to OCB, the standard notion of AXU uses a
one-dimensional view of the message blocks, where the
goal is to bound the differential probability between the
masks of any two blocks among all σ many blocks. On
the contrary, the notion of LIXU adopted by us views
the message blocks conveniently as a two-dimensional
array, where the differential probability is different within
a row and across the rows. This view allows us to control
the differential probability within a row by reducing the
number of blocks (corresponds to the partition size r)
in each message, while the differential probability across
rows is controlled by the use of an encrypted nonce, as
is the case with a regular AXU hash function. In fact,
the number of local pairs of message blocks within a
row may be controlled to be much less (≤ r) compared
to the overall number of message blocks, such that even
a low ε is adequately balanced in the effective security
margin. This is the fundamental difference between an
AXU hash and a LIXU hash, resulting in the benefits of
the latter in terms of efficiency.
We obtain following security bound for GOCB, in Theo-
rem 1, where the underlying MGF is an (ε, r)-LIXU hash
function:

Advnaead
GOCB[Π,λ] ≤

σ2 + 3qσ + 2σσ̃ + 2q̃

2n
+ (σ + 4σ̃)rε.

Based on this generalization, we recover the security
bound of O(σ22−128) for GOCB based on aes1 and
aes2 when the maximum message length is restricted to
26 and 230 blocks, respectively. Note that, we take r = 1
when ε = Θ(2−n), as this corresponds to a perfect AXU
hash function.

STRUCTURE OF THE PAPER — In Section II, we define the

preliminary notions and notation to aid the technical results,
and Section III documents the existing constructions of small-
domain AXU hash functions in the literature. In Section IV
we propose our AES based hash functions and derive concrete
AXU bounds for them. In Section V, we introduce the generic
view of OCB, as well as the technical notion of LIXU hash
functions. Section V also contains the main theorem on the
security bound of GOCB using a LIXU hash function as MGF,
and the concrete bounds for GOCB instantiation using aes1
and aes2. The security proofs are delegated to Section VI.
Section VII gives a comparison between the performance of
OCB3, and GOCB instantiated with aes1 and aes2 with
respect to sequential and random access implementations.
Finally, Section VIII concludes the paper.

II. PRELIMINARIES

NOTATION — In this paper, we abide by the following set of
notation:

• N denotes the set of non-negative integers and N+ =
N \{0} the positives.

• For n ∈ N+, [n] denotes the set {1, . . . , n}.
• For m,n ∈ N and m ≤ n, [m..n] denotes the set
{m, . . . , n}.

• For m ∈ N+, Im denotes the identity matrix of size m.
• For any set S and m ∈ N, Sm denotes the set of all
m-tuples from S, and Sm denotes the set of all m-tuples
with distinct elements from S.

• We let S≤` = ∪`i=1Si, S+ = ∪∞i=1Si, and S∗ = ∪∞i=0Si.
Throughout this paper, we fix n ∈ N+ as the block size, and
the elements of {0, 1} and {0, 1}n (often denoted by B) are
called bits and blocks, respectively. We use ⊕ and � to denote
the field addition (XOR) and field multiplication, respectively,
over the finite field F2n = B = {0, 1}n. Throughout the paper,
α denotes a primitive element of F2n , and for any x ∈ F2n ,
the operation x�α will be referred to as the α-multiplication
operation on x.

REPRESENTATION OF STRINGS — If x is a vector (or a
sequence or string) over a finite set S (coordinates are from S),
then |x| typically denotes its length. For i ∈ [|x|], xi denotes
its i-th coordinate.

• For i, j ∈ [|x|] and i ≤ j, we use the shorthand xi..j =
(xi, . . . , xj).

• For two strings x and y, x||y denotes the concatenation
of x and y.

• If z = x‖y, then x and y are the prefix and suffix,
respectively of z.

• Strings over {0, 1} and {0, 1}n are called binary and
block strings respectively, and we will only consider
binary and block strings in this paper.

• For a string b and m ∈ N, bm denotes the m-wise
concatenation of b, i.e b‖b‖ · · · (m times), this being the
null string when m = 0.

• For some m ∈ N+, for x ∈ {0, 1}m, b ∈ [m], x � b
denotes x shifted b bits to the right, i.e., 0b‖x1..m−b, while
x� b denotes x shifted b bits to the left.
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NOMENCLATURE FOR BLOCKS — For a binary string x,
if |x| = n, we call x a complete block; if |x| < n, we
call x an incomplete block; if |x| = 0, we call x the null
string or the empty block. By convention, the empty block
will also be referred as an incomplete block. Any binary
sequence x can be mapped uniquely to a block sequence
x̂ = (x̂1, . . . , x̂`, x̂∗)

n← x, where ` ∈ N, x̂1, . . . , x̂` are
complete blocks, and x̂∗ is an incomplete (possibly empty)
block, such that x̂ = x̂1‖ . . . ‖x̂`‖x̂∗. For this mapping we
take ` = b|x|/nc, x̂i = xn(i−1)+1..ni for i ∈ [`], and
x̂∗ = xn`+1..|x|. For an incomplete block x, pad(x) denotes
the complete block x‖10∗ = x‖1‖0n−|x|−1. For a complete
block x and k ∈ [n], msbk(x) and lsbk(x) denote the substring
x1..k and xn−k+1..n respectively. For a binary string x, ntz(x)
denotes the number of trailing zero bits in x.

RANDOM FUNCTIONS AND PERMUTATIONS — For a set S,
we write x←$S to denote that x is sampled from S uniformly.
For a given domain D and a given co-domain R, we denote
by Func[D,R] the set of all functions from D into R. We say
Γ is an ideal random function from D to R to indicate that
Γ←$ Func[D,R]. On a similar note, we denote by Perm[D]
the set of all permutations on D. We say Π is an ideal random
permutation on D to indicate that Π←$ Perm[D]. For distinct
inputs x1, . . . , xm ∈ D, (Γ(x1), . . . ,Γ(xm))←$Rm, and
(Π(x1), . . . ,Π(xm))←$Dm. In other words, an ideal random
function Γ can be viewed as a with-replacement sampler from
R, whereas an ideal random permutation Π can be viewed as
a without-replacement sampler from D.

A. Distinguishers and Advantage

Given two oracles O0 and O1, an algorithm A that tries
to distinguish between O0 and O1 is called a distinguishing
adversary or a distinguisher. A plays an interactive game
with Ob (for some bit b) in a black box fashion, and outputs
a single bit at the end. For an oracle O, A O denotes A ’s
output after its interaction with O, and we say that A wins the
distinguishing game if A O = b. The distinguishing advantage
of A is defined as

AdvO1;O0(A ) :=
∣∣∣Pr
[
A O1 = 1

]
− Pr

[
A O0 = 1

]∣∣∣ .
Let A(q, `, σ, t) be the class of all distinguisher limited to q
oracle queries, each of length at most ` blocks, total length
σ ≤ q`, and t computations. We define

AdvO1;O0(q, `, σ, t) := max
A∈A(q,`,σ,t)

AdvO1;O0(A ).

NOTIONS OF VARIOUS ORACLES — O0 conventionally rep-
resents an ideal primitive, while O1 represents either an actual
construction or a mode of operation built of some other ideal
primitives. Typically the goal of the function represented by
O1 is to emulate the ideal primitive represented by O0. We
use the standard terms ideal oracle and real oracle for O0 and
O1 respectively.

SECURITY GAME — In the context of this paper, a security
game is a standard distinguishing game with an optional set

of additional restrictions, chosen to reflect the desired security
goal. For instance, some security games give bidirectional
access to the underlying function of an oracle O and its
inverse. This is denoted by O±. When we talk of distinguish-
ing advantage with a specific security game G in mind, we
include G in the superscript, e.g., AdvGO1;O0

(A ). Usually,
O0 is completely identified by G, and hence dropped from
the subscript.

B. PRF and PRP Security Games

Let f : K × D → R be a keyed function family from
D to R indexed by the key space K. In the pseudorandom
function security game prf, the goal of any adversary A is to
distinguish f from an ideal random function Γ←$ Func[D,R].
Hence the PRF-advantage of A against f is defined as

Advprf
f (A ) :=

∣∣∣∣ Pr
K ←$K

[
A fK = 1

]
− Pr

Γ

[
A Γ = 1

]∣∣∣∣ .
With q, `, σ and t defined as above, we define the PRF-
security of f against the class of adversaries A(q, `, σ, t) as
Advprf

f (q, `, σ, t). In the same way we can define PRP or pseu-
dorandom permutation advantage. For a keyed permutation f
over R, we define

Advprp
f (A ) :=

∣∣∣∣ Pr
K ←$K

[
A fK = 1

]
− Pr

Γ

[
A Π = 1

]∣∣∣∣ .
In a stronger variant of PRP game, called strong PRP (SPRP)
security game, the adversary is given access to both the
forward and inverse queries to the oracle. The SPRP advantage
of A is defined analogously as Advsprp

f (A ).

C. Authenticated Encryption Security Game

A nonce-based authenticated encryption scheme with asso-
ciated data (NAEAD) consists of a key space K, a message
spaceM, an associated data space A, a nonce space N and a
tag space T , along with two functions Enc : K×N×A×M→
M×T and Dec : K×N ×A×M× T →M∪{⊥}, with
the correctness condition that for any K ∈ K, N ∈ N , A ∈
A,M ∈M, we have

Dec(K,N,A,Enc(K,N,A,M)) = M.

In addition, in most popular authenticated encryption schemes
(including OCB3), the map projM ◦Enc(K,N,A, ·) for fixed
K,N,A is a length-preserving permutation, where projM :
M×T →M is the projection on M.

In the nonce-respecting authenticated encryption security
game with associated data naead, O+

1 and O−1 of the real
oracle are the encryption function Enc(K, ·, ·, ·) and decryp-
tion function Dec(K, ·, ·, ·, ·) respectively of the authenticated
encryption scheme under consideration for a key K ran-
domly chosen from K; in the ideal oracle, O+

0 and O−0
are Γ←$ Func[N × A × M,M × T ], and ⊥ : N × A ×
M× T → {⊥} respectively. We henceforth refer to (Γ,⊥)
as the ideal nonce-based authenticated encryption scheme.
The distinguishing adversary operates under the following
restrictions — (a) no two encryption queries can have the same
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nonce, and (b) if an encryption query (N,A,M) yields (C, T ),
a decryption query (N,A,C, T ) is not allowed.

SECURITY GOALS — Distinguishing advantage of any ad-
versary A in naead with associated data will be denoted as
Advnaead

O1;O0
(A ). Note that security under this formulation cov-

ers the two standard security goals of authenticated encryption:

• Privacy — Security against an adversary who tries to
distinguish the AE or AEAD construction from an ideal
random function Γ, and

• Integrity — Security against an adversary who tries to
make a successful forging attempt on the scheme using
decryption queries.

III. REVISITING SMALL-DOMAIN AXU HASH FUNCTIONS

An (L,D,R)-hash function H : L × D → R is a keyed
function family from domain or message space D to digest or
hash space R and indexed by the key space L. In this work
we fix R = B and hence drop it from the notation.

Definition 1 (AXU hash function [38], [39]). An (L,D)-
hash function H is called ε-AXU (almost XOR universal) hash
function if ∀ X 6= Y ∈ D, δ ∈ B,

DPH(X,Y : δ) := Pr
L←$L

[HL(X)⊕HL(Y ) = δ] ≤ ε. (1)

The term DPH(X,Y : δ) is also called the differential
probability (or DP) of H on inputs X and Y and difference
δ. The above definition says that the maximum differential
probability (or MDP) of H is at most ε.

COMPOSITIONS — We consider two compositions of AXU
hash functions:
• Range Extension — For εi-AXU hash functions Hi : Li×
D → Ri, i = 1, 2,

H1‖H2 : (L1 × L2)×D → R1 ×R2

(L1, L2, X) 7→ H1(L1, X)‖H2(L2, X)

• Domain Extension — For εi-AXU hash functions Hi :
Li ×Di → R, i = 1, 2,

H1 ⊕H2 : (L1 × L2)× (D1 ×D2)→ R
((L1, L2), (X1, X2)) 7→ H1(L1, X1)⊕H2(L2, X2)

It is easy to verify that in range extension, H1‖H2 is an ε1ε2-
AXU hash function if L1 and L2 are independently sampled.
It can also be verified that the domain extension hash H1 ⊕
H2 is a max{ε1, ε2}-AXU hash function if L1 is independent
of L2. We summarize the two observations in the following
proposition.

Proposition 1. Let Hi be εi-AXU hash functions for i ∈
{1, 2}. Then,

• H1‖H2 hash function is an ε1ε2-AXU hash function; and
• H1 ⊕ H2 hash function is a max{ε1, ε2}-AXU hash

function.

A. Examples of Small-Domain AXU Hash Function
Symmetric-key cryptographic literature is rich in AXU hash

function candidates. In this work we concentrate only on
small-domain hash functions that can be used to generate
masks in OCB. In what follows, we discuss some examples
of AXU hash functions, with a summary as in Table I.

TABLE I: Feature summary of some Small-Domain AXU Hash
Function candidates, where ⊕, �,�, ‖, ⊕? denote addition, multipli-
cation, shifts, concatenation and conditional addition over appropriate
fields; AESRD denotes AES round function, wt and ntz denotes the
hamming weight and trailing zeros function.

Hash Family Sequential Direct Key Size Domain Size MDP(operations) (operations) in log base 2

xtimes [3] 1�, 1 ⊕? O(lg i) � 128 128 2−128

gray [25], [9] 1 ntz(i), 1 ⊕ 1 ⊕, 1 �, 1 � 128 128 2−128

mtrx [26], [27] 2 �, 1 ⊕ # O(lg i) � 128 128 2−128

mlin wt(i) ⊕ wt(i) ⊕ 128r r 2−128

clh [29] wt(i)�, wt(i)⊕ wt(i)�, wt(i)⊕ 128 127 2−128

sts [9] 1 ‖, 1 ⊕, 3� 1 ‖, 1 ⊕, 3� 128 6 2−128

lcube 1 ⊕, 2 � 1 ⊕, 2 � 128 128 2−128

linv [3] 1 ⊕, 1 � 1 ⊕, 1 � 128 128 2−128

aes4 [35] 4 AESRD 4 AESRD 512 128 2−113

aes2 (Section IV) 2 AESRD 2 AESRD 256 32 2−113

aes1 (Section IV) 1 AESRD 1 AESRD 128 8 2−96

# Note that [26] defines many three-operation maskings for 128 bit binary field.

Example 1 (α-multiplication based hash [3]). For some
reasonably large ` ∈ [2n − 1], let D = [`] and L = B. The
hash function xtimes, defined as ∀L ∈ B, i ∈ [`],

xtimesL(i) = xtimes(L, i) := αi � L, (2)

is a 2−n-AXU hash. xtimes has been used to generate posi-
tion dependent input masks in many symmetric-key designs
including OCB designs [3], [8], [9], OTR [40], PMAC [25],
PMAC Plus [41], EME [42], COPA [11] and ELmD [12].
The popularity of xtimes is mainly due to its efficiency in
sequential computation, as we have

∀i ≥ 1, L ∈ B, xtimesL(i+ 1) = α� xtimesL(i),

and α-multiplication is efficient (one shift and one conditional
bit-wise XOR operation). While the sequential computation
of xtimesL(i) is very efficient, the same is not reflected in
direct computation of xtimesL(i) when i is a large integer.
In general it may require O(lg i) many field multiplications.
Even when the αi values are precomputed, we need one field
multiplication which is not as efficient as one α-multiplication.
Indeed we can even avoid the precomputation and simply use
i� L as the hash definition.

Example 2 (Gray-code based hash [25], [9]). For reasonably
large ` ∈ [2n − 1], let D = [`] and L = B. The hash function
gray is defined as,

∀L ∈ B, i ∈ [`], grayL(i) = gray(L, i) := γ(i)� L (3)

where γ(i) := i ⊕ (i � 1) is the gray code value for i. The
Gray code sequence has a very nice feature that for i ≥ 1, the
i-th gray code can be written in terms of the (i − 1)-th gray
code, i.e

γ(i) = γ(i− 1)⊕ 2ntz(i),
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When we substitute this in (3) we get an alternate definition
∀L ∈ B, i ∈ [`],

grayL(i) = gray(L, i) := ⊕ij=1Lntz(j). (4)

where Lj = αj � L for all j < n. In [9] and RFC7253 [43],
gray has been shown to be a 2−n AXU hash function. Note
that we have

∀i ≥ 1, L ∈ B, grayL(i+ 1) = grayL(i)⊕ Lntz(i+1).

So if the Lj values are precomputed, then in sequential
computation gray hash only requires, ntz computation along
with a single n-bit XOR operation. Hence it is very efficient
in sequential computations. This hash function is applied in
OCB3 [9] (RFC7253 [43]) and PMAC [25].

Example 3 (Matrix-powered hash [26], [27]). Let n = wn′

for some positive integer w, called word size, whose values
are generally software friendly such as 8, 16, 32, 64 etc. Let
W = {0, 1}w and L =Wn′ and D = [`] for some reasonably
large ` ∈ [2n−1]. Let M be an invertible n′×n′ matrix whose
entries are from the field2 W such that for all i ∈ [2n − 1],
In′ + M i is invertible. Then the hash function mtrx (called
matrix-powered hash), defined as

∀L ∈ Wn′ , i ∈ [`], mtrxL(i) = mtrx(L, i) := M i · L, (5)

is a 2−n-AXU. Note here that L is viewed as a vector over
W . Various matrix-powered hash candidates are given in [26]
and [27]. But, similar to xtimes hash, all those hash functions
are efficient in sequential computation and inefficient in direct
computation.

The matrix-powered hash function is a very general can-
didate. For example, xtimes and gray hash functions can be
viewed as instances of matrix-powered hash for appropriate
choices of the matrix M . The readers are directed to [26]
and [27] for a detailed exposition on matrix-powered hash
functions. A table of various word-oriented matrices has been
listed in [26].

Example 4. Some other finite field based constructions, with
L = D = B, are the following: ∀L ∈ B, x ∈ B
• lcubeL(x) = (L⊕ x)3;
• linvL(x) = (L⊕ x)−1 (if x 6= L), 0 otherwise.

It is easy to verify that lcube is 21−n-AXU and linv is 22−n-
AXU hash function.

Example 5 (Multi-linear hash). For ` ∈ [2n−1], let D = [0..`]
and L = Blg `. The hash function mlin (called multi-linear
hash), is defined as

∀L ∈ L, b ∈ D, mlinL(b) = mlin(L, b) := ⊕ri=1biLi, (6)

is a 2−n-AXU hash function, where L1, . . . , Lr ∈ B and
b1, . . . , br ∈ {0, 1}. In Grain-128a [44], the tag is computed
using mlin, where the keys are derived using Toeplitz matrix.

Example 6 (Circulant hash [29]). In [29] Minematsu pre-
sented a small-domain hash function based on data-dependent

2{0, 1}m can be viewed as the binary field by fixing a degm primitive
polynomial.

rotations. For ` ∈ [2n−1 − 1], let D = [0..`] and L = B.
The hash function clh (called circulant hash) is defined as
∀K ∈ L, x ∈ D,

clhL(x) = clh(L, x) :=
⊕

i∈[lg `]: xi=1

(L� (i− 1)). (7)

For direct computation, the hash function might require n− 1
rotations and n − 2 XORs in the worst case; for sequential
computation some optimization is possible for the i-th input
given the (i − 1)-th output. In [29], clh is shown to be both
2−128-AXU and 2−128-uniform hash function.

Example 7 (Stretch-then-shift hash [9]). In [9] Krovetz and
Rogaway presented a highly efficient AXU hash function
over a small domain D = [64]. It follows the general data-
dependent rotation technique by Minematsu [29]. Fix c ∈ N+.
For D = [0..ψ(c) − 1] and L = B, where ψ(c) is a positive
integer denoting the maximum domain size for a fixed c. The
hash function sts (called stretch-then-shift hash) is defined as
∀L ∈ B, i ∈ [0..ψ(c)− 1],

stsL(i) = sts(L, i) := msbn(stretchc(L)� i), (8)

where ∀L ∈ B, stretchc(L) := L‖(L⊕ (L� c)). The hash
function first stretches the key based on a parameter c, and
then makes data-dependent shift before outputting the most
significant n bits; hence the name. For n = 128, c = 8 and
ψ(c) = 64, Krovetz and Rogaway showed that sts achieves
2−128-AXU and 2−128-uniform bound [9].

IV. AES-BASED SMALL-DOMAIN AXU HASH FUNCTIONS

In the previous section we listed some hash functions based
on finite field operations and data dependent rotations. Now
we will propose some hash functions based on the differential
properties of the AES rounds. Before moving forward, we
give the standard and well-known [35], [30] definition for
differential probability of a (keyed) permutation.

Definition 2. Let π be a permutation over F2n and ΠK be a
keyed permutation over F2n with key K ←$K. For any given
non-zero a, b ∈ F2n the differential probability of π, is defined
as

dpπ(a, b) := Pr
X

[π(X)⊕ π(X ⊕ a) = b].

The maximum differential probability (MDP) of π is defined
as

mdp(π) := max
a6=0,b

dpπ(a, b).

Similarly, the expected differential probability (EDP) of ΠK ,
is defined as

edpΠK
(a, b) := Pr

K,X
[ΠK(X)⊕ΠK(X ⊕ a) = b]

=
∑
K∈K

Pr
X

[Πk(X)⊕Πk(X ⊕ a) = b | k] · Pr[K = k]

=
∑
K∈K

dpΠk
(a, b) · Pr[K = k] = EK [dpΠK

(a, b)],
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where EK denotes the expectation over K. The maximum
expected differential probability (MEDP) of ΠK is defined as

medp(ΠK) := max
a6=0,b

edpΠK
(a, b).

Note that we have also used the term differential probability
in the context of AXU hash functions in Definition 1. Now
that we have formally defined the differential probability of
a (keyed) permutation, it is imperative that we discuss the
similarity and differences between the two probabilities. The
major difference is the source of randomness. In the AXU
view of differential probability, the randomness is due to the
hash key, whereas here one of the input is chosen randomly.
Even though this seems to be a major difference, but for
certain class of functions the two views have a very nice
relationship. Suppose π is a (possibly keyed) permutation over
F2n with keyspace K (empty set when π is keyless). We define
a function π′ : F2n × K × F2n → F2n as a keyed family of
function indexed by K,K ′ ∈ F2n ×K, such that

∀K,K ′, x ∈ F2n ×K × F2n , π′K,K′(x) := πK′(K ⊕ x).

Lemma 1 is a well-known result that we prove here just for
the sake of completeness.

Lemma 1. For some ε ≥ 0,
1) If π is keyless and mdp(π) = ε then π′ is an ε-AXU hash

for K ←$F2n .
2) If π is keyed and medp(π) = ε then π′ is an ε-AXU hash

for K ←$F2n and K ′←$K.

Proof. We prove the unkeyed version of the lemma. The keyed
version can be proved in similar fashion. Let x, x′ ∈ F2n such
that x 6= x′ and δ ∈ F2n . If δ = 0 then the result is vacuously
true as π′ is a permutation. Suppose δ 6= 0. Then, we have

DPπ′(x, x′ : δ) = Pr
K

[π′(K ⊕ x)⊕ π′(K ⊕ x′) = δ]

= Pr
X

[π′(X)⊕ π′(X ⊕ x′ ⊕ x) = δ]

≤ dp(π) = ε.

A. Revisiting MEDP bounds for the AES
The AES block cipher is a Substitution Permutation Net-

work (SPN) with block size n = 128, internal s-box input size b
= 8, where all s-boxes are identical, denoted by S. The permu-
tation layer, denoted by φ, consists of a bytewise permutation
followed by four identical 32-bit linear transformations applied
in parallel. One round of AES, denoted by 1-AESRD (without
the subkey mixing) is nothing but φ ◦ S. Using the 1-AESRD
round function, we can define the keyed function i-AESRD for
all integers i > 1 as follows: ∀x ∈ F2128 ,K ∈ Fi−1

2128 ,
For i = 2:

2-AESRDK(x) = 1-AESRD(K1 ⊕ 1-AESRD(x))

For i > 2:

i-AESRDK(x) = 1-AESRD(Ki−1 ⊕ (i− 1)-AESRDK[i−2]
(x))

The differential properties of AES has been a well-studied
[45], [30], [31], [32], [46] topic in symmetric-key cryptog-

raphy. In fact, one of the design criteria for AES [45], [47]
was protection against linear [48] and differential cryptanaly-
sis [49].

In [46], Daemen and Rijmen first observed that due to the
specific nature of the AES permutation layer φ, the differential
probabilities over 2 AES rounds are equivalent to those over
a reduced SPN structure, which they called a super box.
Basically the two rounds of AES over 128-bit input can be
viewed as four parallel invocations of the super box with
independent keys (disjoint substrings of a uniform string are
independent) each working with distinct 32 bits of the input.
We denote an AES super box instantiated with a subkey K
by aesSBK .

Keliher and Sui [31], [32] later used this idea to derive a
tight MEDP bound for 2-AESRD. Specifically, in [31, Theorem
1, Theorem 2] and [32, section 4.1] they proved that the MEDP
for AES super box is 1.656×2−29, which is equivalent to the
MEDP for 2-AESRD. We refer the readers to [46], [32] for
further exposition on AES super box and its relation with 2-
AESRD. Using the fact that the upper bound on the MEDP
for 4 or more rounds of AES is equal to the 4th power of the
upper bound on the MEDP for 2-AESRD, Keliher and Sui [32]
further showed that MEDP for t-AESRD for t ≥ 4 is upper
bounded by 1.881 × 2−114. We summarize these results in
Proposition 2.

Proposition 2. [32, section 4.1] Let X1, X2, X3 be uniformly
and independently sampled from F2128 and Y ←$F232 . Then,

1) medp(aesSBY ) ≈ 1.656× 2−29.
2) medp(2-AESRDX1) ≈ 1.656× 2−29.
3) medp(4-AESRDX1,X2,X3) ≤ 1.881× 2−114.

B. Our AES-based proposals

In the following discussion we fix n = 128, i.e. B =
{0, 1}128. Before presenting our proposals we start with a sim-
ple 4-AESRD based hash function in the following example.

Example 8. Let D = B and L = B4. For L =
(L1, L2, L3, L4) ∈ B4 and x ∈ B, the 4-AESRD based hash
function aes4 is defined as

aes4L(x) = aes4(L, x) := 4-AESRDL2,L3,L4(L1 ⊕ x).

From Lemma 1 and Proposition 2, it is straightforward to
see that aes4 is a 1.88 × 2−114-AXU hash function. In [35]
Minematsu and Tsunoo used a variant of aes4 to construct
a universal hash function and subsequently extended it to
construct a MAC. Jakimoski and Subbalakshmi [50] further
built upon their work to get more efficient hash functions and
MAC.

1) 1-Round AES based Hash Function.: The MDP for
AES s-box S is known to be 2−6 [30]. We define a keyed
function S′ : F28 × F28 → F28 as

∀K,x ∈ F2
28 , S′K(x) := S(K ⊕ x).

Clearly S and S′ satisfy the conditions in Lemma 1, hence S′

is 2−6-AXU hash function. Now, let D = {0, 1}8 (viewed as
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[256]) and L = B (viewed as D16). Given a key L, and an
input i ∈ D, we define the one round AES hash, aes1 as

aes1L(i) = aes1(L, i) := 1-AESRD(L⊕ i16)

= φ(S′L1
(i)‖ · · · ‖S′L16

(i)). (9)

Recall that φ is the linear transformation or permutation layer
used in AES. It is well-known that the AXU property is
preserved under linear composition over an AXU has function.
Thus φ being a linear transformation does not affect the AXU
bound for aes1 and can be ignored. When L is uniformly
drawn from L and viewed as an element of D16, then Li’s
are mutually independent. So by repeatedly using Proposition
1 and Lemma 1, we get the AXU bound for aes1 in Lemma
2.

Lemma 2. aes1 as defined above is 2−96-AXU hash function.

2) 2-Round AES based Hash Function.: From Proposition
2 we already now that the MDP for aesSB is upper bounded
by 1.656× 2−29. Again we define a keyed function aesSB′ :
F232 × F232 → F232 as

∀K,x ∈ F2
232 , aesSB′K(x) := aesSBK2

(K1 ⊕ x).

Clearly aesSB′ is 1.656 × 2−29-AXU hash function (us-
ing Lemma 1). Now let D = {0, 1}32 (viewed as [232]) and
L = B ×B (viewed as D4 ×D4). Given a key L = (L,L′) ∈
D4 ×D4, and an input i ∈ D, we define the two round AES
hash, aes2 as

aes2L,L′(i) = aes2(L,L′, i) := 2-AESRDL′(L⊕ i4))

= φ(aesSB′L′1(L1 ⊕ i)‖ · · · ‖aesSB′L′4(L4 ⊕ i)),

where each Li/L′i is a 32-bit strings. Using a similar line of
argument as used in case of aes1 we get the AXU bound for
aes2 in Lemma 3.

Lemma 3. aes2 as defined above is 1.881×2−114-AXU hash
function.

So we see that aes1 and aes2 are sub-optimum, but decent
AXU hashes given the domains they are applied upon. In fact it
is quite surprising that this fact was not discovered yet. Now
based on the existing proof techniques, the straightforward
application of these hash functions in OCB is not advisable
as they give sub-optimum security bounds.

V. GENERIC VIEW OF OCB
In previous two sections we have seen various examples

of AXU hashes over small domains [`], where ` is typically
a large positive integer in [2n]. These hash functions are
useful when the goal is to embed position-based dependency
(called masks) to the input blocks of the underlying prim-
itive, typically a block cipher. This type of embedding is
used in many encryption, MAC and AE algorithms. Some
prominent schemes among these belong to the OCB like
design paradigms. We call the embedding function — mask-
generating function (MGF).

MASK GENERATING FUNCTION — Typically, an MGF, λ :
L × N × N+ → B is a (L,N × N+)-hash function family

indexed by the key space L. Here N is typically called the
nonce space. For notational simplicity we will sometime write
λ(i) = λL(N, i), i.e N ∈ N and L ∈ L will be clear from the
context. Next we define generic abstraction for OCB, called
GOCB, based on Π←$ Perm[B] and λ. Figure 1 illustrates
the schematic view of the encryption-decryption algorithms
for GOCB and the complete algorithmic descriptions is given
in Algorithm 1. For i ∈ N+, we will refer Mi, Ai and Ci
as message block, associated data block and ciphertext block.
For i ∈ N+, we will refer Ui and Xi as input blocks; Vi
and Yi as output blocks; and Si as final block. In GOCB
X⊕ and Y⊕ will be referred as the tag input and output block
respectively. We will use the term GPHash3 for the associated
data processing phase of GOCB.

Note that the constructions employ different MGFs for
special blocks (last block, checksum block etc.) processing.
Usually for concrete constructions these MGFs are simple
variants of the usual MGF λ. Similarly the key for the MGF
is usually derived from the underlying random permutation.
For the sake of simplicity we will assume that the MGF key
is drawn independently, and the MGFs for special blocks are
also defined independently.

In this paper we only focus on the mask generation compo-
nent and its properties. This is mainly because GOCB greatly
resemble simple variant of ECB mode when the masking is
ignored. Hence both efficiency and security mostly rely on
the mask-generation phase, albeit the two issues are mutually
orthogonal. We discuss the two issues separately starting with
efficiency.

MASK-GENERATION AND EFFICIENCY. As noted before, if
we ignore the input masking, GOCB is simply a variant of
ECB, which is arguably the most efficient cryptographic mode
of operation, both in hardware and software. So the MGF
should preferably have the following properties:

• Sequential Computation — MGF should be fast enough
to compute the mask outputs for consecutive in-
puts. More formally, for some r and for any i,
λ(i), λ(i+ 1), . . . , λ(i+ r − 1) should be efficiently
computable. Here r can be viewed as a parameter. One
may observe the performance for different choices of r
and then choose the best possible one.

• Direct Computation — MGF should be easily computable
on any arbitrary input. In other words, for all i, λ(i)
should be efficiently computable without the knowledge
of any other mask outputs. This is the usual constraint
for hash functions. Direct computation of masks is an
important feature as it leads to features like random read
access and massive parallelism. Given large number of
parallel processing units (multiple CPU cores or GPUs)
GOCB is completely parallel when the underlying MGF
is efficient in direct computation. This holds even when
the message length is not known beforehand, a scenario
that is common in data streams.

3PHash is a commonly used terminology for the hash component in OCB.
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Algorithm 1 GOCB authenticated encryption, where A∗, M∗, C∗ are the incomplete (possibly empty) blocks at the end of A,
M , C, respectively; λ1 is a keyed (i.e. the key is implicit) mask-generating function, and λi for 1 < i ≤ 6 are minor variants
of λ1, deployed in various boundary conditions, like incomplete block processing, tag generation etc.

1: function GOCB[Π, λ].Enc(N,A,M )
2: S ← 0n

3: M⊕ ← 0n

4: (A1, . . . , Am, A∗)
n← A

5: (M1, . . . ,M`,M∗)
n←M

6: for i← 1 to m do
7: Ui ← Ai ⊕ λ5(N, i)
8: Vi ← Π(Ui)
9: S ← S ⊕ Vi

10: if |A∗| > 0 then
11: U∗ ← pad(A∗)⊕ λ6(N,m)
12: V∗ ← Π(U∗)
13: S ← S ⊕ V∗
14: for i← 1 to ` do
15: M⊕ ←M⊕ ⊕Mi

16: Xi ←Mi ⊕ λ1(N, `)
17: Yi ← Π(Xi)
18: Ci ← Yi ⊕ λ1(N, i)

19: if |M∗| > 0 then
20: M⊕ ←M⊕ ⊕ pad(M∗)
21: X∗ ← λ2(N, `)
22: Y∗ ← Π(X∗)
23: C∗ ← Y∗ ⊕ pad(M∗)
24: C∗ ← msb|M∗|(C∗)
25: C ← (C1, . . . , C`, C∗)
26: X⊕ ←M⊕ ⊕ λ4(N, `)
27: Y⊕ ← Π(X⊕)
28: T ← Y⊕ ⊕ λ4(N, `)⊕ S
29: else
30: C ← (C1, . . . , C`)
31: X⊕ ←M⊕ ⊕ λ3(N, `)
32: Y⊕ ← Π(X⊕)
33: T ← Y⊕ ⊕ λ3(N, `)⊕ S
34: return (C, T )

1: function GOCB[Π, λ].Dec(N,A,C, T )
2: S ← 0n

3: M⊕ ← 0n

4: (A1, . . . , Am, A∗)
n← A

5: (C1, . . . , C`, C∗)
n← C

6: for i← 1 to m do
7: Ui ← Ai ⊕ λ5(N, i)
8: Vi ← Π(Ui)
9: S ← S ⊕ Vi

10: if |A∗| > 0 then
11: U∗ ← pad(A∗)⊕ λ6(N,m)
12: V∗ ← Π(U∗)
13: S ← S ⊕ V∗
14: for i← 1 to ` do
15: Yi ← Ci ⊕ λ1(N, `)
16: Xi ← Π−1(Yi)
17: Mi ← Xi ⊕ λ1(N, i)
18: M⊕ ←M⊕ ⊕Mi

19: if |C∗| > 0 then
20: X∗ ← λ2(N, `)
21: Y∗ ← Π(X∗)
22: M∗ ← msb|C∗|(Y∗)⊕ C∗
23: M ← (M1, . . . ,M`,M∗)
24: M⊕ ←M⊕ ⊕ pad(M∗)
25: X⊕ ←M⊕ ⊕ λ4(N, `)
26: Y⊕ ← Π(X⊕)
27: T ′ ← Y⊕ ⊕ S
28: else
29: M ← (M1, . . . ,M`)
30: X⊕ ←M⊕ ⊕ λ3(N, `)
31: Y⊕ ← Π(X⊕)
32: T ′ ← Y⊕ ⊕ S
33: if T ′ = T then
34: return M
35: else
36: return ⊥

• Constant-time Computation — A secondary requirement
for any MGF is constant computation time for all inputs.
While this is a secondary requirement as far as efficiency
is concerned, it helps in mitigating a form of side channel
attacks called timing attack [51], [33].

MASK-GENERATION AND SECURITY — From the security
point of view, earlier works [3], [9], [37] required strong (al-
most 2−n) AXU and 1-universal (regular, i.e Pr [H(x) = y] =
O(2−n)) property (some time implicitly) from the underlying
MGFs. Since allmost all of the hash functions discussed in
this work are regular, we will implicitly assume that MGF
has this property. We will focus on the more dominant, AXU
property. In this setting the advantage is generally bounded in
terms of ε, the AXU bound of MGF. For instance the bound
for OCB is roughly O(σ2ε) respectively; hence the need for
O(2−n)-AXU bound. Naturally, both aes1 and aes2 would
suffer significant security loss in the existing setting. This is
probably one of the reasons, these hash functions have not seen
much attention. Yet another reason is the fact that aes1 and
aes2 are defined over restricted domains {0, 1}8 and {0, 1}32

respectively.

A. Locally-Imperfect XOR Universal Hash Functions

The immediate question in light of the above discussion is
as follows:

Can we relax the AXU condition on MGFs to use
efficient directly computable functions like aes1 and
aes2, maintaining comparable security?

We answer this in affirmative by proposing a slightly different
universal notion — Locally-Imperfect XOR Universal (or
LIXU) Hash Functions. The idea is to model a hash function H
whose differential probability depends on the grouping of the
given inputs. More precisely, we partition the inputs in several
disjoint subsets with bounded cardinality, say at most r.4 Now
the additional property introduced by LIXU is as follows: for
two inputs say x and y from distinct partitions the differential
probability is at most 2−n, and the probability degrades to
ε ≥ 2−n, when x and y belong to the same partition. Formally
we define the notion of Locally-Imperfect XOR Universal in
Definition 3.

Definition 3 (Locally-Imperfect XOR Universal Hash Func-
tion). Let H : L × D → B be a (L,D)-hash function family
indexed by the keyspace L. For a fixed r ∈ N+ and ε ≥ 2−n,

4In fact we try to minimize the value of r.
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S

Fig. 1: Schematic diagram of GOCB— Top to Bottom: encrypting M when |M∗| = 0; encrypting M when |M∗| > 0; hashing A when
|A∗| = 0; hashing A when |A∗| > 0.

we say that H is an (ε, r)-locally-imperfect XOR universal, or
LIXU, hash function if and only if there exists a partitioning
D = P1 t P2 t · · · t Pk with k ≥ 2, such that |Pi| ≤ r for
i ∈ [k], and for distinct x, y ∈ D, and δ ∈ B,

Pr
L←$L

[HL(x) +HL(y) = δ] ≤

{
ε if x, y ∈ Pi,
1

2n if x ∈ Pi, y ∈ Pj , i 6= j.

Here r is called the width of H . We say that x, y ∈ D are
local pairs (to each other and as a pair as well) if and only if
they belong to the same partition. So a LIXU hash function

behaves as a perfect XOR universal hash function when the
inputs are not local pairs, and behaves as an imperfect (or
almost) XOR universal hash function when the inputs are local
pairs. Note that an (ε, r)-LIXU hash implies an ε-AXU hash,
but the vice-versa may not be true. Further it is rather trivial
to establish that any 2−n-AXU hash function over the domain
D is also a (2−n, r)-LIXU hash function for all r ≤ |D| − 1.
We note this simple fact in Proposition 3.

Proposition 3. A 2−n-AXU hash H is a (2−n, r)-LIXU hash
for all r ≤ |D|− 1, where D is the domain of H . Notably, H
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is a (2−n, 1)-LIXU hash function.

In this paper, we use a specific type of LIXU hash functions
defined over the domain N × N+, where the domain is
partitioned as follows: (N, i) 6= (N ′, i′) ∈ N × N+ are said
to be local pairs if and only if N = N ′ and di/re = di′/re.
Here, N denotes the nonce space. We sometime use chunk
and partition interchangeably, and for any i ∈ N+, we call
di/re the chunk number of i.

B. LIXU Hash as MGF in GOCB
Previous works on OCB have assumed that the underlying

MGF is an AXU hash. We depart from this setting and
employ LIXU hash as MGF. Since LIXU and AXU are
not exactly compatible, we will require a slightly different
analysis. Particularly the TBC based abstraction [8] for OCB
is not useful here. We now present the main security result of
the paper, along with an overview of our proof approach. The
formal proof is postponed to Section VI.

Theorem 1 (GOCB NAEAD Bound). For a fixed r ≤ ` ∈
N+ and ε ≥ 0, let λ be an (ε, r)-LIXU hash function over
N × N+. Let A(q, q̃, `, σ, σ̃) be the class of all adversaries
that make q encryption queries consisting of µ message blocks
in all with at most ` blocks per query, and ν associated data
blocks in all, and q̃ decryption queries in a NAEAD security
game against GOCB[Π, λ]. Then ∀A ∈ A(q, q̃, `, σ) we have,
Advnaead

GOCB[Π,λ](A ) = εnaead, where

εnaead ≤
σ2

2n+1
+
qσ + q̃ + 0.5q2

2n − σ
+
σ̃(σ + 4)

2n
+(σ+3σ̃)rε+q̃ε.

Here σ = µ+ν is the total number of blocks in messages and
associated data queried in the encryption queries.

Proof Sketch — The proof of Theorem 1 is given in Section
VI. While we do get a factor of rσε in the bound for GOCB,
the original bound of OCB remains intact asymptotically if
rε = o(2

n
2 ). To understand why we don’t get any degradation

in security we have to look into the bound more precisely.
Generally the OCB bound is dominated by the probability
of collision among the input/output of the underlying block
cipher. As per the earlier analyses the collisions can be
bounded in terms of the AXU bound of λ, which gives σ2ε/2
bound. This evaluates to σ221−n when ε = 2−n. However
when we replace AXU with LIXU the straightforward analysis
will result in security degradation. Instead we first bound the
probability of collision between input blocks which are non-
local pairs. Since LIXU hashes are perfectly XOR universal on
non-local pairs we get a bound of σ221−n. Now for each input
block there are at most r− 1 local pairs and there are at most
σ many such input blocks which gives a bound of roughly
rσε. Following similar idea we can bound the probability of
forgery to q̃σ2−n + q̃rε.

C. Instantiating LIXU hash in GOCB
1) Deriving OCB3 from GOCB: We define the mask-

generating function used in OCB3 in LIXU setting and derive
concrete bound for n = 128. OCB3 employs gray code

based masking defined using the gray hash function discussed
in Section III. As noted earlier gray is a 2−128-AXU hash
function.

For OCB3, Krovetz and Rogaway defined the gray function
as: For any i ∈ N+, grayL(i) = 4γ(i)�L. For a fixed j ∈ [n]
(fixed as an application parameter) and N ∈ B \{0}, τ(N) =
msbj(N)‖0n−j , and β(N) = lsbj(N). The OCB3 NAEAD
advantage [9] can be obtained from GOCB by instantiating
the definition of GOCB as follows:

• L = (L1, L2), where L2 is a keyed function from B
to B, with L1 := EK(0) and ∀N ∈ B, L2(N) :=
stsEK(τ(N))(β(N)).

• For i ∈ [2n], and N ∈ B \ {0}:
– λ1(L,N, i) := L2(N) ⊕ grayL1

(i); λ5(L,N, i) :=
grayL1

(i);

– λ2(L,N, i) := L2(N)⊕grayL1
(i)⊕L1; λ6(L,N, i) :=

grayL1
(i)⊕ L1;

– λ3(L,N, i) := L2(N)⊕ grayL1
(i)⊕ 2L1.

– λ4(L,N, i) := L2(N)⊕ grayL1
(i)⊕ 3L1.

Here we have derived L through K, which adds a insignificant
factor in the overall advantage. In [9], all variants of GR were
shown to be 2−n-AXU hash over the domain {0, 1}128. This in
combination with Proposition 3, establishes that GR variants
are (2−n, 1)-LIXU hash. Using Theorem 1 and assuming
σ, σ̃ < 2n−1, we get the security bound for the original OCB3
design [9].

Corollary 1. ∀A ∈ A(q, `, σ) we have,

Advnaead
OCB3[E±K ,GR]

(A ) ≤ Advsprp

E±K
(σ + σ̃ + q + q̃) + εGR,

where

εGR =
0.5σ2 + 2qσ + q2 + σ̃σ + σ + 7σ̃ + 3q̃

2n
.

2) Instantiating GOCB with aes1 and aes2: We set n =
128. We let N ⊂ B, and define
• A1 : Func[B] × N × F28 → B as, ∀F ∈ Func[B], N ∈
N , i ∈ F28 ,

A1F (N, i) := aes1F (N)(i).

• A2 : Func[B] × B × N × F232 → B as, ∀(F,L,N, i) ∈
Func[B]× B ×N × F232 ,

A2(F,L)(N, i) := aes2(F (N),L)(i).

Next we show that A1 and A2 are LIXU hash functions for ap-
propriate values of ε and r. In Lemma 4 and Lemma 5 we show
that A1 and A2 are (2−96, 28)-LIXU and (2−113, 232)-LIXU
hash functions, respectively. The proofs of these lemmata are
given in Section VI.

Lemma 4. If Γ←$ Func[B], then A1Γ is a (2−96, 28)-LIXU
hash function.

Lemma 5. If (Γ × L)←$ Func[B] × B, then A2Γ,L is a
(2−113, 232)-LIXU hash function.
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DESCRIPTION OF GOCB[E,A1] — We define GOCB based
on A1 as follows:

• The maximum message and associated data size per query
is limited to 26 blocks, i.e. 1 Kilobytes, and the nonce
space is B \ {0}.

• L = F , where F is a keyed function from B to B, where
∀N ∈ B, F (N) := EK(N).

• For i ∈ [26], and N ∈ B \ {0}:
– λ1(F,N, i) := A1F (N, 4i + 0); and λ5(F,N, i) :=

A1F (N, 4i+ 0)⊕ EK(0).

– λ2(F,N, i) := A1F (N, 4i + 1); and λ6(F,N, i) :=
A1F (N, 4i+ 1)⊕ EK(0).

– λ3(F,N, i) := A1F (N, 4i+ 2);

– λ4(F,N, i) := A1F (N, 4i+ 3);

where 4i denotes the integer multiplication of i with 4.

Here we need to add a factor of (q+1)(q+σ)2−128 to bound
the probability that some masked input matches with some
nonce value. Further a factor of q22−129 is required for PRF-
PRP switch. Using Theorem 1, and σ, σ̃ < 2127, we get the
security result for GOCB[EK ,A1] as in Corollary 2.

Corollary 2. ∀A ∈ A(q, q̃, σ) we have,

Advnaead
GOCB[E±K ,A1]

(A ) ≤ Advsprp

E±K
(σ + q) + εA1,

where

εA1 =
0.5σ2 + 6qσ + 2σ + σ̃σ + 4σ̃ + 2q̃

2128
+
σ + 3σ̃

288
+

q̃

296
.

DESCRIPTION OF GOCB[E,A2] — GOCB[E,A2] can be
defined analogously using mask hash key L = (L1, L2, F ),
where L1 = EK(0) and L2 = EK(1). We define GOCB
based on A2 as follows:

• The maximum message and associated data size per query
is limited to 230 blocks, i.e. 16 Gigabytes, and the nonce
space is B \ {0, 1}.

• L = (L1, F ), where L1 = EK(0) and F is a keyed
function from B to B. For all N ∈ B \ {0, 1}, F (N) :=
EK(N).

• For i ∈ [230], and N ∈ B:

– λ1(L,N, i) := A2L(N, 4i + 0); and λ1(L,N, i) :=
A2L(N, 4i+ 0)⊕ EK(1).

– λ2(L,N, i) := A2L(N, 4i + 1); and λ2(L,N, i) :=
A2L(N, 4i+ 1)⊕ EK(1).

– λ3(L,N, i) := A2L(N, 4i+ 2);

– λ4(L,N, i) := A2L(N, 4i+ 3);

where 4i denotes the integer multiplication of i with 4.

Using similar argument as above we can derive the security
bound, given in Corollary 3.

Corollary 3. ∀A ∈ A(q, q̃, σ) we have,

Advnaead
GOCB[E±K ,A2]

(A ) ≤ Advsprp

E±K
(σ + q) + εA2,

where

εA2 =
0.5σ2 + 6qσ + 4σ + σ̃σ + 4σ̃ + 2q̃

2128
+
σ + 3σ̃

281
+

q̃

2113
.

3) Extending the Domain of GOCB[E,A1] and
GOCB[E,A2]: The A1 and A2 based instantiations have
a restriction on the maximum input length. This is more
prominent in case of GOCB[E,A1], which allows message
lengths up to 1 KB. Here we give some ways to extend the
domain of GOCB[E,A1] and GOCB[E,A2]. Our general
idea remains the same in all the methods. We improve the
maximum input size restriction to roughly 250 bytes or 246

blocks, a usual limit on input size [52]. We need 46 bits to
represent each block of input uniquely. We divide the 46-bit
length representation into two parts i‖j, where j is 6-bit long
for GOCB[E,A1] and j is 30-bit long for GOCB[E,A2].
We will handle the j-value in the same way as before, and
employ different techniques to handle (N, i) input of the
mask generating function.

1. DOMAIN EXTENSION VIA THE F FUNCTION: We can
consider a keyed function over larger domain, say N ×
[2128]. For example, consider the definition F (N, i) :=
EK(i ⊕ EK(N)). This would add an extra O(σ2/2n)
term, a rough upper bound to avoid block cipher input
collisions involving i ⊕ EK(N) for some (N, i). This
method can clearly extend the message size to 246 but
at the cost of an extra block cipher call every time the
j value resets to zero, plus it needs one more encryption
call for the nonce.

2. DOMAIN EXTENSION VIA NONCE SIZE REDUC-
TION: Another way is to reduce the nonce size to 88 bits
and 112 bits for GOCB[E,A1] and GOCB[E,A2], re-
spectively, and let F (N, i) := EK(N‖i). This is slightly
better than the previous method as we can save one
block cipher call. As before, this adds an extra O(σ2/2n)
term, a rough upper bound to avoid block cipher input
collisions.

3. DOMAIN EXTENSION VIA SUM OF LIXU HASH: We
explain the method for GOCB[E,A2]. But similar tech-
nique is also applicable to GOCB[E,A1]. We modify the
λ function as follows:
– First, we redefine L = (L1, L2, F, F

′), where L1 =
EK(0) and L2 = EK(1). The nonce space is N =
{0, 1}n−1 \ {0, 1}, and F and F ′ are keyed functions
from N to B, defined as FK(N) = EK(N‖0) and
F ′K(N) = EK(N‖1).

– Second, λ1(L,N, i‖j) := A2L1,F (N, i) ⊕
A2L2,F (N, j). The other variants are defined
analogously as before. Further for AD processing, we
XOR EK(2) (instead of EK(1)) to the modified λ1

and λ2 values.
It can be easily shown that this modification offers
asymptotically similar security as before.
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VI. SECURITY PROOFS

In this section we provide the proof for our main result
Theorem 1, along with the proofs for Lemma 4 and Lemma
5.

A. Inaptness of the Existing TBC-based Abstraction

In [8], Rogaway introduced a very nice abstraction for OCB
like constructions based on tweakable block ciphers (TBCs).
More formally, the TBC abstraction of [8] views the masked
input-output block cipher as a way to construct TBCs from
block ciphers and efficient mask generating functions, called
XEX. In this view any OCB like construction can be viewed as
an instance of the TBC-based authenticated encryption called
ΘCB, where each encryption TBC call takes a tuple of tweak
values (N, i), where N denotes the nonce and i denotes the
block index.

This abstraction simplifies as well as modularizes the proof,
as it can be shown (using results from [8]) that the NAEAD
advantage is bounded by the tweakable strong pseudorandom
permutation (TSPRP) advantage of XEX, which is bounded
by at most σ2ε, where σ denotes the total number of TBC
calls and ε denotes the AXU bound of the underlying MGF.
Consequently, this approach was used in several previous
works, most notably [27] and [26].

While the reduction from the NAEAD game for OCB to
the TSPRP game for XEX gives tight estimate on the privacy
bounds (exactly same as the TSPRP bound for XEX), the
reduction is rather loose in case of authenticity bound, as
noted in [37]. A straightforward approach gives an authenticity
bound of the form O(σ2ε)+O(1/2n) for single forgery, where
σ denotes the number of TBC calls in all encryption queries.
The first term here is due to the TSPRP advantage of XEX.
Here the O(σ2ε) term is due to the XEX to tweakable random
permutation reduction. When extended to multiple verification
queries, this results in a bound of the form O(q̃σ2ε)+O(q̃/2n),
where q̃ denotes the number of verification queries. Clearly the
security degrades for multiple verification queries.

Yet another approach gives a security bound of the form
O(σ2/ε) + O(σ̃2ε) + O(q̃/2n), where σ̃ denotes the number
of TBC calls in all decryption queries. Here the O(σ2/ε)
and O(σ̃2ε) terms are due to the XEX to tweakable random
permutation reduction.

A constrained variant of the XEX based abstraction could
also be used to get a modularized privacy bound for GOCB. In
this abstraction the adversary against tweakable block cipher
is restricted to at most r many queries per chunk number.
This restriction is perfectly fine, as the NAEAD adversary is
nonce-respecting for encryption queries and for each nonce
the message length is at most r. This gives a privacy bound
of the form O(σ2/2n) + O(σrε). But the same is not true
for authenticity, as the adversary can make all the decryption
queries with tweaks within the same chunk. This results in a
term of the form O(σ̃2ε), which is clearly sub-optimal.

So, we use a more direct approach as also employed in [37].
The proof for Theorem 1 uses coefficient H technique [53] as
the main tool for bounding the distinguishing advantages. So,
before delving into the proofs we discuss this tool briefly.

B. Coefficient H Technique

We will consider a computationally unbounded and deter-
ministic adversary A that tries to distinguish O1 (the real
oracle) from O0 (the ideal oracle) in a security game, in
this case NAEAD. We denote the query-response tuple of
A ’s interaction with its oracle by a transcript ω. Sometime
this may also include any additional information the oracle
chooses to reveal to the adversary at the end of the query-
response phase of the game. We will consider this extended
definition of transcript. The probability of realizing a given
transcript ω in the security game with an oracle O is known as
the interpolation probability of ω with respect to O, denoted
ipO[ω]. Note that for a transcript to be realized, two things
need to happen:

• The adversary needs to make the queries listed in the
transcript;

• The oracle needs to make the corresponding responses.

Of these, the former is deterministic; the latter, probabilistic.
Thus when we talk of interpolation probability, we are only
concerned with the oracle responses, with the assumption that
the adversary’s queries are consistent with the transcript. For
any other adversary, the interpolation probability is trivially 0.
Thus ipO[ω] depends only on the oracle O and the transcript
ω and not on the adversary; hence the notation. A transcript
ω is said to be realizable if ipO0

[ω] > 0.
We extend the notation of interpolation probability to a set of
transcripts Ω: ipO[Ω] is the probability that the security game
with O results in a transcript ω ∈ Ω, and we say that ipO[Ω]
is the interpolation probability of Ω with respect to O. Now
we state a theorem due to Patarin, known as the Coefficient
H Technique [53].

Theorem 2 (Coefficient H Technique [53], [54]). Let Ω be
the set of all realizable transcripts. Suppose there is a set
ΩBad ⊆ Ω satisfying the following:

• ipO0
[ΩBad] ≤ εbad;

• For any ω /∈ ΩBad,

ipO1
[ω]

ipO0
[ω]
≥ 1− εratio.

Then for an adversary A trying to distinguish between O1

and O0, we have the following bound on its distinguishing
advantage:

AdvGO1
(A ) ≤ εbad + εratio.

Note that we have dropped O0 from the subscript, as it
is completely determined by G. A proof of this theorem is
given in multiple papers including [54], [55], [56]. A weaker
version of the result was later rediscovered by Bernstein [57]
as the interpolation theorem, which was later strengthened by
Nandi [58] as the strong interpolation theorem.

ADDITIONAL NOTATION — For a vector x, #xi denotes the
multiplicity of xi in x (number of j ∈ |x| such that xj =
xi). We sometime abuse the notation and view x as the set
{xi : i ∈ [|x|]}, and denote the cardinality of this set as #x.
For i ∈ N+, if x is a tuple of i vectors, then xi denotes the
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i-th vector in the tuple and for some j ∈ [|xi|], xij denotes the
j-th coordinate of xi.

We say a function f : D → R is partial or restricted, if
we know the values of f on a strict subset of D. This subset
is called domain(f). A partial function f can be viewed as
a restriction of f to domain(f). The range of this restricted
function is called range(f). We will treat a partial function
as updatable: for some x ∈ B \ domain(f) and some y ∈
R, (x, y) may be added to f , so that domain(f) expands to
domain(f)∪{x}, and range(f) becomes range(f)∪{y}. We
say f is permutation-compatible if |domain(f)| = |range(f)|
and f is injective function on the set it is defined.

C. Proof of GOCB NAEAD Bound (Theorem 1)

Let O±1 denote the real oracle corresponding to GOCB,
and O±0 denote the ideal oracle corresponding to (Γ,⊥). We
start off by setting up the necessary notations related to the
query-response transcript of A . The transcript generated by
A consists of

• Encryption query-response tuples: for i ∈ [q], the i-th
encryption query-response tuple is built of
– N i: the queried nonce block, such that for any i′ < i,
N i 6= N i′ .

– Ai: the queried associated data, consisting of ai com-
plete blocks and an incomplete (possibly empty) block
Ai∗ at the end;

– M i: the queried message, consisting of mi complete
blocks and an incomplete (possibly empty) block M i

∗
at the end;

– Ci: the response ciphertext, such that |Ci| = |M i|;
– T i: the response tag block.

• Decryption query-response tuples: for i ∈ [q̃] the i-th
decryption query-response tuple is built of
– Ñ i: the queried nonce block. Note that Ñ i’s can be

repeated.
– Ãi: the queried associated data, consisting of ãi com-

plete blocks and an incomplete (possibly empty) block
Ãi∗ at the end;

– C̃i: the queried ciphertext, consisting of c̃i complete
blocks and an incomplete (possibly empty) block C̃i∗
at the end;

– T̃ i: the queried tag block.
– M̃ i: the response message, such that |M̃ i| = |C̃i|. Note

that the decryption oracle may return ⊥, in which case
M̃ i just denotes the unauthenticated decrypted message
to be used internally.

The internal variables arising in one call to the encryption
oracle are analogously as given in Algorithm 1 and Figure
1, while the internal variables from the decryption oracle are
defined identically, but topped with a tilde to differentiate them
from the encryption variables.

Let I and J denote the encryption query indices with
incomplete-block message and associated data respectively.
The decryption counterparts are Ĩ and J̃ . Let I and O be

multisets defined as

I =
{
U ij : i ∈ [q], j ∈ [ai]

}
∪
{
U i∗ : i ∈ J

}
∪
{
Xi
j : i ∈ [q], j ∈ [mi] ∪{⊕}

}
∪
{
Xi
∗ : i ∈ I

}
O =

{
V ij : i ∈ [q], j ∈ [ai]

}
∪
{
V i∗ : i ∈ J

}
∪
{
Y ij : i ∈ [q], j ∈ [mi] ∪{⊕}

}
∪
{
Y i∗ : i ∈ I

}
1) Oracle behavior and transcript extension: Consider a

modified security game where we let the real oracle O1

reveal all the internal input and output blocks appearing in
the encryption query phase. Consequently we have to make
appropriate behavioral changes in the ideal oracle O0 to
release these internal variables. We describe the sampling
behavior of O0 in greater detail in the subsequent paragraphs.
During the sampling O0 might set bad = 1, whereafter its
behavior is undefined.

SAMPLING BEHAVIOR OF O0

Query Phase: For i ∈ [q], on the i-th encryption query, for
each j ∈ [mi], Cij ←$B; T i←$B; and if i ∈ I, Ci∗←$B, set
Ci∗ = msb|Mi

∗|(C
i
∗); return Ci = Ci1‖ · · · ‖Cimi

‖Ci∗ and T i to
A . For i ∈ [q̃], on the i-th decryption query, return ⊥ to A .

Post-query Phase: Let L←$L and Π, a permutation over B,
be undefined on all blocks, i.e domain(Π) = range(Π) = ∅.
Step 1: Extending the encryption query-response tuple. Set
the following values:

• for i ∈ [q], j ∈ [mi] set Xi
j = M i

j ⊕ λ1(L,N i, j) and
Y ij = Cij ⊕ λ1(L,N i, j);

• for i ∈ I, set Xi
∗ = λ2(L,N i,mi) and Y i∗ = Ci∗ ⊕

pad(M i
∗);

• for i ∈ [q] \ I, set M i
⊕ = ⊕mi

j=1M
i
j and Xi

⊕ = M i
⊕ ⊕

λ3(L,N i,mi);

• for i ∈ I, set M i
⊕ = ⊕mi

j=1M
i
j ⊕M i

∗ and Xi
⊕ = M i

⊕ ⊕
λ4(L,N i,mi);

• for i ∈ [q], j ∈ [ai] set U ij = Aij ⊕ λ5(L,N i, j);

• for i ∈ J , set U i∗ = pad(Ai∗)⊕ λ6(L,N i, ai);
• set bad = 1, if I or O (the partial multiset containing Y ij

values for i ∈ [q] and j ∈ [mi] ∪ {∗}) contains a non-
trivial colliding pair (pair of duplicate elements). Note
that all colliding pairs are non-trivial at this stage;

• for all i ∈ [q], j ∈ [mi], fix Π(Xi
j) = Y ij , and for all

i ∈ I, fix Π(Xi
∗) = Y i∗ ;

• for all i ∈ [q], j ∈ [ai], fix Π(U ij) = V ij ←$B\ range(Π),
and for all i ∈ J , fix fix Π(U i∗) = V i∗ ←$B \ range(Π);

• for i ∈ [q] \ J , set Si = ⊕aij=1V
i
j ;

• for i ∈ J , set Si = ⊕aij=1V
i
j ⊕ V i∗ ;

• for i ∈ [q] set Y i⊕ = Si ⊕ T i.
• set bad = 1, if O (the complete multiset) contains a non-

trivial colliding pair (pair of duplicate elements).
• for i ∈ [q], fix Π(Xi

⊕) = Y i⊕.

Note that the partial sampling of Π remains permutation-
compatible in step 1 as long as bad = 0.
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Step 2: Extending the decryption query-response tuple. Set
the following values:

• at the start all intermediate variables are set as undefined.
• for i ∈ [q̃], j ∈ [m̃i], set Ỹ ij = C̃ij ⊕ λ1(L, Ñ i, j); if
i ∈ Ĩ, set X̃i

∗ = λ2(L, Ñ i, m̃i).

• for i ∈ [q̃], j ∈ [m̃i], if Ỹ ij ∈ range(Π) then set X̃i
j =

Π−(Ỹ ij ) and M̃ i
j = X̃i

j ⊕ λ1(L, Ñ i, j); if i ∈ Ĩ and
X̃i
∗ ∈ domain(Π), then set Ỹ i∗ = Π(X̃i

∗) and M̃ i
∗ =

msb|C̃i
∗|

(Ỹ i∗ )⊕C̃i∗; if M̃ i is defined then set X̃i
⊕ = M̃ i

⊕⊕
λ3(L, Ñ i, m̃i).

• for i ∈ [q̃], j ∈ [ãi], set Ũ ij = Ãij⊕λ5(L, Ñ i, j); if i ∈ J̃ ,
set Ũ i∗ = λ6(L, Ñ i, ãi).

• for i ∈ [q̃], j ∈ [ãi], if Ũ ij ∈ domain(Π) then set Ṽ ij =

Π(Ũ ij); if Ṽ i is defined then set Ỹ i⊕ = S̃i ⊕ T̃ i.
• At this stage all those intermediate variables, which can

be derived through the MGF key L, and adversary’s
query, are completely determined. Also, some other vari-
ables are trivially derived due to the extended encryption
transcript.

• set bad = 1, if there exists i ∈ [q̃], j ∈ [m̃i] ∪ {∗,⊕},
and one of the following is true:
– there exists i′ ∈ [q], j′ ∈ [mi′ ] ∪ {∗,⊕} such that

(Ñ i, C̃ij) 6= (N i′ , Ci
′

j′) and Ỹ ij = Y i
′

j′ .

– there exists i′ ∈ [q], j′ ∈ [ai
′
]∪{∗} such that Ỹ ij = V i

′

j′ .

• set bad = 1, if there exists i ∈ [q̃], j ∈ [ãi] ∪ {∗}, and
one of the following is true:
– there exists i′ ∈ [q], j′ ∈ [mi′ ] ∪ {∗,⊕} such that
Ũ ij = Xi′

j′ .

– there exists i′ ∈ [q], j′ ∈ [ai
′
] ∪ {∗} such that

(Ñ i, Ãij) 6= (N i′ , Ãi
′

j′) and Ũ ij = U i
′

j′ .

Extend the transcript ω by including all the internal vari-
ables computed thus far and return the extended transcript to
A .

Identifying the bad transcripts. Let Ω denote the set of all
realizable transcripts. We say that ω ∈ Ω is a Bad transcript
if it causes bad = 1. In other words, we say that ω is Bad if
one of the following events occur:

EEcoll:
– ∃ (i, j) ∈ [q]× [mi] ∪{∗,⊕} , (i′, j′) ∈ [q]× [mi′ ] ∪
{∗,⊕} : (i, j) 6= (i′, j′) ∧Xi

j = Xi′

j′ .

– ∃ (i, j) ∈ [q] × [ai] ∪ {∗} , (i′, j′) ∈ [q] × [ai
′
] ∪

{∗} : (i, j) 6= (i′, j′) ∧ U ij = U i
′

j′ .

– ∃ (i, j) ∈ [q] × [mi] ∪{∗,⊕} , (i′, j′) ∈ [q] × [ai
′
] ∪

{∗} : Xi
j = U i

′

j′ .

– ∃ (i, j) ∈ [q] × [mi] ∪ {∗} , (i′, j′) ∈ [q] × [mi′ ] ∪
{∗} : (i, j) 6= (i′, j′) ∧ Y ij = Y i

′

j′ .

ETcoll:
– ∃ i ∈ [q], (i′, j′) ∈ [q]× [mi′ ] ∪{∗} : Y i⊕ = Y i

′

j′ .

– ∃ i ∈ [q], i′ ∈ [q] \{i} : Y i⊕ = Y i
′

⊕ .

– ∃ i ∈ [q], (i′, j′) ∈ [q]× [ai
′
] ∪{∗} : Y i⊕ = V i

′

j′ .

DEcoll:
– ∃ (i, j) ∈ [q̃] × [m̃i] ∪ {∗} , (i′, j′) ∈ [q] × [mi′ ] ∪
{∗,⊕} : (Ñ i, C̃ij) 6= (N i′ , Ci

′

j′) ∧ Ỹ ij = Y i
′

j′ .

– ∃ (i, j) ∈ [q̃] × [m̃i] ∪ {∗} , (i′, j′)i′ ∈ [q] × [ai
′
] ∪

{∗} : Ỹ ij = V i
′

j′ .

– ∃ (i, j) ∈ [q̃] × [ãi] ∪ {∗} , (i′, j′) ∈ [q] × [ai
′
] ∪

{∗} : (Ñ i, Ãij) 6= (N i′ , Ai
′

j′) ∧ Ũ ij = U i
′

j′ .

– ∃ (i, j) ∈ [q̃] × [ãi] ∪ {∗} , (i′, j′) ∈ [q] × [mi′ ] ∪
{∗,⊕} : Ũ ij = Xi′

j′ .

DEFcoll:
– ∃ i ∈ [q̃], i′ ∈ [q] : (Ñ i, Ãi, T̃ i) = (N i′ , Ai

′
, T i

′
) ∧

C̃i = Ci
′

1..m̃i ∧ X̃i
⊕ ∈ I .

DDFcoll:
– ∃ (i, j) ∈ [q̃]× [m̃i] ∪{∗} , i′ ∈ [q] : (Ñ i, Ãi, T̃ i) =

(N i′ , Ai
′
, T i

′
) ∧ C̃i = Ci

′

1..m̃i ∧ X̃i
⊕ = X̃i

j .

– ∃ (i, j) ∈ [q̃]× [ãi] ∪{∗} , i′ ∈ [q] : (Ñ i, Ãi, T̃ i) =
(N i′ , Ai

′
, T i

′
) ∧ C̃i = Ci

′

1..m̃i ∧ X̃i
⊕ = Ũ ij .

– ∃ (i, j) ∈ [q̃]× [mi], j′ ∈ [m̃i]\{j} , i′ ∈ [q] : Ñ i =
N i′ ∧ C̃ij 6= Ci

′

j ∧ Ỹ ij = Ỹ ij′ .

– ∃ (i, j) ∈ [q̃]× [m̃i] ∪{∗,⊕} : Ỹ i1 = Ỹ ij .

Let ΩBad be the set of all transcripts which are Bad and
ΩGood = Ω\ΩBad. We bound ipO0

[ΩBad] to O(σ22−n+rσε+
qσ2−n + q22−n + σ̃σ2−n + σ̃rε+ σ̃2−n + q̃ε) in Lemma 6.

Lemma 6.

ipO0
[ΩBad] ≤ σ2

2n+1
+
qσ + 0.5q2

2n − σ
+
σ̃(σ + 4)

2n
+(σ+3σ̃)rε+q̃ε.

Proof. We bound the probability of getting a bad transcript as
follows:

ipO0
[ΩBad] = Pr[EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll ∨ DDFcoll]

≤ Pr [EEcoll] + Pr [ETcoll | ¬EEcoll]

+ Pr [DEcoll|¬(EEcoll ∨ ETcoll)]

+ Pr [DEFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll)]

+ Pr [DDFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll)]

BOUNDING Pr [EEcoll]. Let P and Q be a colliding pair. We
bound the probability in two cases:
Case 1: The colliding pair is a non-local pair. As λ is a
LIXU hash function, we can bound the probability of this case
by 2−n. Further we have at most σ(σ−1)/2 many such pairs.
Hence

Pr [EEcoll ∧ Case 1] ≤ σ2

2n+1
.

Case 2: The colliding pair is a local pair. This means that the
colliding pair must belong to a single message or associated
data. We can have two cases: (2.1) The colliding pair belongs
to the i-th message; (2.2) The colliding pair belongs to the i-
th associated data. Without loss of generality we assume case
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(2.1). Let ni = bmi/rc and ri = mi − nir. As λ is an (ε, r)-
LIXU hash function, we can bound the probability of a fixed
pair by ε. Hence

Pr [EEcoll ∧ Case 2.1] ≤
q∑
i=1

ni∑
j=1

(
r

2

)
ε+

q∑
i=1

(
ri

2

)
ε

[a]

≤ r′ε

q∑
i=1

r · ni +

q∑
i=1

(
ri

2

)
ε

[b]

≤ r′µε−

(
r′ε

q∑
i=1

ri −
q∑
i=1

(
ri

2

)
ε

)
[c]

≤ r′µε.

Here r′ = (r−1)/2; [a] to [b] follows from rni = mi−ri and∑
mi = µ; [b] to [c] follows from the fact that (r − 1)ri ≥

ri(ri− 1) for all i. Similarly the probability in case (2.2) can
be bounded to r′νε. Hence the total probability in case 2 is
bounded by r′σε.
Combining case 1 and 2, we have

Pr [EEcoll] ≤ σ2

2n+1
+ rσε.

BOUNDING Pr [ETcoll | ¬EEcoll]. This event bounds the
probability that the checksum output block collides with some
previous output block given that no other input/output collision
occurred. At this instant at most σ = µ + ν many points are
defined for Π, whence we can have at most qσ + q2/2 many
possible colliding pairs. So we have,

Pr [ETcoll | ¬EEcoll] ≤ qσ

2n − σ
+

q2

2(2n − σ)
.

BOUNDING Pr [DEcoll|¬(EEcoll ∨ ETcoll)]. This event
bounds the probability that some intermediate output (Ỹ ij )
or input (Ũ ij ) input block non-trivially belongs in O or
I , respectively. First, suppose Ỹ ij belongs to O for some
(i, j) ∈ [q̃] × [m̃i]. Now as in case of EEcoll above: i) the
colliding encryption block can either be a non-local pair of
(i, j), in which case we bound the probability to at most σ/2n;
or ii) the colliding encryption block can be a local pair of
(i, j), in which case we bound the probability to at most rε.
Since there are at most µ̃ many decryption ciphertext blocks,
the probability that there exists (i, j) ∈ [q̃] × [m̃i], such that
Ỹ ij belongs in O non-trivially is bounded by µ̃σ/2n + µ̃rε.
Similarly, one can bound the probability that there exists
(i, j) ∈ [q̃] × [ãi], such that Ũ ij belongs in I non-trivially
to at most ν̃σ/2n + ν̃rε. Combining the two cases, we have

Pr [DEcoll|¬(EEcoll ∨ ETcoll)] ≤ σ̃σ

2n
+ σ̃rε.

BOUNDING Pr [DEFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll)].
This case bounds the probability that some decryption
checksum input block collides with some encryption
input block with a restriction that the decryption input
blocks must all be defined. In this case we have
X̃i
⊕ =

∑m̃i

j=1 M̃
i
j ⊕ λ3(L, Ñ , m̃i). Now we can have

two cases: i) the checksum block collides with Xi′

⊕, which

can be generously bounded by ε (assuming (Ñ i, m̃i) and
(N i′ ,mi′) are local pair); and ii) the checksum block collides
with any other Xi′

j′ , in which case we bound the probability
by 2−n using the 1-universal property of λ. In summary, we
have

Pr [DEFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll)] ≤ q̃

2n
+ q̃ε.

BOUNDING Pr [DDFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll)].
This case simply bound the probability that there is no
collisions within a decryption query. Let us fix a decryption
query index i ∈ q̃. Then the first case is bounded by at most
(m̃i2−n; the second case is bounded by at most ãi2−n; the
third case is bounded by at most (m̃i − r)2−n + rε; and the
fourth case is bounded by at most (m̃i − r)2−n + rε. On
combining the four cases, we have

Pr [DDFcoll|¬(EEcoll ∨ ETcoll ∨ DEcoll ∨ DEFcoll)] ≤ 3σ̃

2n
+2q̃rε.

The result follows by combining all the individual bounds
above, and simplifying using q̃ ≤ σ̃.

Ratio of interpolation probabilities. Fix an arbitrary tran-
script ω ∈ ΩGood. In Lemma 7, we show that the ratio
ipO1

[ω]/ipO0
[ω] is at least (1−O(q̃2−n)).

Lemma 7. For any ω ∈ ΩGood, we have

ipO1
[ω]

ipO0
[ω]
≥
(

1− q̃

2n − σ

)
.

Proof. In O0, for encryption phase: first µ+ q ciphertext and
tag outputs are sampled in with replacement fashion, followed
by the sampling of ν output blocks in without replacement
manner from a subset of B of size (2n − µ) (Π is already
defined on µ many input-output blocks); for decryption phase
the oracle always returns ⊥. Hence

ipO0
[ω] =

1

(2n)µ+q · (2n − µ)ν
. (10)

In O1, for any ω we denote the encryption tuples by ωe and
the decryption tuples by ωd. Then we have

ipO1
[ω] = Pr

O1

[ωe, ωd]

= Pr
O1

[ωe] · Pr
O1

[ωd | ωe]

= Pr
O1

[ωe] ·
(

1− Pr
O1

[¬ωd | ωe]
)

(11)

where ωd = (Ñ i, Ãi, C̃i, T̃ i,⊥)i∈[q̃], as the ideal oracle
always returns ⊥ on decryption queries. Note that we have
slightly abused the notation to use ¬ωd as the event that: for
some i ∈ [q̃] the i-th decryption query successfully decrypts.

For encryption tuples, exactly µ+ν+q many calls are made
to Π: one for each of the µ message blocks, one for each of
the ν associated data blocks; and one for each of the q tags.
As σ = µ+ ν we have

Pr
O1

[ωe] =
1

(2n)σ+q . (12)

Now we upper bound the probability of ¬ωd. It is enough to
bound the probability for a fixed index i ∈ [q̃] corresponding to
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a successful decryption query. By union bound, the probability
of ¬ωd is at most q̃ times more than the single forgery
probability. Without loss of generality assume that i ∈ [q̃] \ Ĩ
and i ∈ [q̃] \ J̃ . Note that the adversary succeeds in forgery
if the adversary somehow makes the i-th query in such a way
that the following equation holds.

Π(X̃i
⊕)⊕ Ỹ i⊕ = 0 (13)

Now based on the i-th decryption query we can have different
cases:

Case 1: ∃j ∈ [q], Ñ i = N j . Based on C̃i we can have two
subcases:

Subcase 1.1: C̃i = Ci′

1..m̃i . In this case M̃ i
⊕ is pre-

determined as ⊕c̃ik=1M
i′

k . Suppose m̃i = mi′ , i.e. the two
ciphertexts are exactly the same. Then we must have some
j such that Ãij 6= Ai

′

j , otherwise i-th decryption query is a
duplicate of i′-th encryption query. Since the transcript is good,
Ũ ij is fresh. So, by exploiting the conditional randomness of
Π we can bound the probability to at most 1/(2n − σ). Now
suppose C̃i is a proper prefix of Ci

′
, then we must have a

fresh X̃i
⊕ (as the transcript is good), whence we can again

bound the probability to at most 1/(2n − σ).
The two cases discussed above are mutually exclusive,

hence the probability that the adversary forges in subcase 2.1
is at most 1/(2n − σ).

Subcase 1.2: C̃i 6= Ci′

1..c̃i . In this case there exists at least
one k ∈ [c̃i] such that C̃ik 6= Ci

′

k . We consider first such block
C̃ik. Since the transcript is good, we must have a fresh Ỹ ik .
Observe that we can rewrite Eq. (13) as

Π−(Ỹ ik ) = Π−(Ỹ i⊕)⊕ δ ⊕ λ3(L, Ñ i, m̃i),

where δ denotes the checksum of all the blocks of i-th query,
except the k-th block. Again, by conditioning on all points
except Ỹ ik , we bound the probability of this case by 1/(2n−σ).

Case 2: ∀j ∈ [q], Ñ i 6= N j . In this case Ñ i has not been
used for mask generation till now. Without loss of generality,
we assume that m̃i ≥ 1. Since the transcript is good, we must
have a fresh Ỹ i1 . Now using a similar line of argument as in sub
case 1.2 we bound the probability of this event by 1/(2n−σ).

Note that case 1.1, case 1.2 and case 2 are all mutually
exclusive so we can take the maximum over all three. As
σ ≥ ai + aj we have

Pr
O1

[¬ωd | ωe] ≤
q̃∑
i=1

1

2n − σ
≤ q̃

2n − σ
(14)

On substituting (12) and (14) in (11) and dividing the result
by (10) we have

ipO1
[ω]

ipO0
[ω]
≥ (2n)µ+q · (2n − µ)ν

(2n)σ+q

(
1− q̃

2n − σ

)
≥ (2n)q

(2n − σ)q

(
1− q̃

2n − σ

)
≥
(

1− q̃

2n − σ

)
.

Using Lemma 6, Lemma 7 and Theorem 2 we get the desired
result.

D. Proof of Lemma 4 and Lemma 5

The proofs of these lemmata are quite similar. We give the
proof for Lemma 4, while the proof for Lemma 5 can be
similarly obtained.
Fix distinct (N, i), (N ′, i′) ∈ N × F28 and δ ∈ B. Now we
have two cases:

Case 1: (N, i) and (N ′, i′) are local pairs. We know
that N = N ′ and i 6= i′. Hence,

Pr [A1Γ(N, i)⊕ A1Γ(N ′, i′) = δ]

= Pr
[
aes1Γ(N)(i)⊕ aes1Γ(N)(i

′) = δ
]

≤ 1

296
,

where the last inequality follows from Lemma 2.
Case 2: (N, i) and (N ′, i′) are not local pairs. We
know that N 6= N ′. Hence,

Pr [A1Γ(N, i)⊕ A1Γ(N ′, i′) = δ]

= Pr
[
aes1Γ(N)(i)⊕ aes1Γ(N ′)(i

′) = δ
]

≤ Pr
[
Γ(N) = 1-AESRD−1(aes1Γ(N ′)(i

′)⊕ δ)⊕ i
]

≤ 1
2128 .

The result follows from the bounds in case 1 and case 2.

VII. SOFTWARE PERFORMANCE

In this section, we present software implementation of
GOCB instantiated with AES-128 as the underlying block
cipher, and A1 and A2 as the underlying MGFs, and compare
the performance of the proposed designs against the standard
OCB3-AES-128. We do the benchmarking in two cases: i)
sequential processing (the conventional implementation), and
ii) random read access (introduced in this paper).

IMPLEMENTATION — We reuse the optimized C code of
OCB3 [9] by Krovetz. Further, we introduce minimal changes,
as required, over the OCB3 code to generate the C code for
GOCB[AES-128,A1], and GOCB[AES-128,A2]. We also
reuse the time measurement mechanism as used in [9]. In
summary, we utilized the hardware support on our bench-
marking platform for Intel’s SSE4 vector instructions [59],
Intel’s pclmulqdq instruction for multiplication over F2128 ,
and Intel’s AES-NI library [33] for operations involving AES-
128 round functions. We made some simplifying assumptions
for the implementations:
• message length is treated to be equal to the length of the

associated data, and
• all messages and associated data are assumed to have

complete blocks.

PLATFORM — We performed the benchmarking on:
• Intel Core i7-6500U “Skylake” (2.5 GHz with 64 KB L1

cache, 256 KB L2 cache, 4 MB L3 cache) with Ubuntu
16.04 LTS (kernel version 4.4),
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which supports Intel’s SSE4 vector instructions [59], standard
AES-NI instructions [33] and pclmuldq [60], the carry-less
multiplication instruction.

SETUP — The tests for benchmark were compiled using gcc
version 5.4, with optimization flag -O3, and instruction set
architecture flag -march=native (as instructed in [9]). All
the tests were run on isolated core, after turning off processor
frequency scaling and power management options such as
Intel’s Turbo Boost and Hyper-Threading technologies. The
reference baseline performance for AES-128, using AES-NI
instruction set, is presented in Table II. All performance figures
presented are throughputs, in units of cycles-per-byte (cpb).

TABLE II: Baseline throughput (cpb) of AES using AES-NI.

Microarchitecture Encryption
(cpb)

Intel Core i7-6500U “Skylake” 0.66

TESTING METHODOLOGY — Following [9], we measure the
cpb value for every message length from 1 to 1024 bytes,
as well as 1500 and 4096 bytes. To avoid any discrepancies
arising due to memory subsystem, we execute warm up runs so
that the all code and data is in the cache before benchmarking
begins. To capture the average cost of encryption, we use
the rdtsc instruction — a time-stamp counter available on
Skylake processors — to time encryption of the same message:
i) 64 times for sequential processing; ii) 1536 times for
random access. Note that we average over a larger number
of repetitions in random access case to get an appreciable
measurement for a single block encryption. The median of 15
such averaged values is reported as the number of cycles. The
cycles per byte value is obtained by dividing the median value
by the length of the corresponding message.

TABLE III: Performance comparison between sequential im-
plementations of OCB3-AES-128, GOCB[AES-128,A1], and
GOCB[AES-128,A2]. The performance figures presented are
throughputs, in units of cycles-per-byte (cpb).

Length OCB3-AES-128 GOCB[AES-128,A1] GOCB[AES-128,A2]

128 bytes 1.48 2.11 2.15

256 bytes 1.15 1.41 1.45

512 bytes 0.85 1.07 1.10

1024 bytes 0.75 0.90 0.93

4096 bytes 0.68 0.77 0.81

TABLE IV: Summary of IPI values for OCB3-AES-128,
GOCB[AES-128,A1], and GOCB[AES-128,A2].

OCB3-AES-128 GOCB[AES-128,A1] GOCB[AES-128,A2]

IPI: 1.05 1.24 1.28

SEQUENTIAL PROCESSING: RESULTS AND DISCUSSION —
Table III summarizes the cpb values for OCB3-AES-128,
GOCB[AES-128,A1], and GOCB[AES-128,A2], for mod-
erate to large message lengths, in sequential processing. Fol-
lowing [9], we also present IPI (Internet Performance Index)
values — a weighted average cpb vlaue for usual message

lengths observed over internet — in Table IV, for OCB3-
AES-128, GOCB[AES-128,A1], and GOCB[AES-128,A2].
As per our experiments, OCB3 with 10 rounds of AES-128
is approximately, 9% and 10% faster than OCB3 with 11
and 12 rounds, respectively, of AES-128. One may think
that GOCB[AES-128,A1] and GOCB[AES-128,A2] should
have similar degradation in performance. But the IPI clearly
indicates that the A1 and A2 variants are much more slower,
approximately 18% and 22%, respectively, than OCB3 over
usual internet data. This is mainly due to the lower masking
(just after encryption), which is the contentious instruction that
breaks the pipelining benefits.

However, the important point to note is that for large
messages (i.e. ≥ 4096 bytes), which is our main area of focus,
the cpb values for GOCB[AES-128,A1] and GOCB[AES-
128,A2] tend towards the cpb values for OCB3-AES-128
with 11 and 12 rounds, respectively. Specifically, we have
observed that OCB3-AES-128 with 11 and 12 rounds have
0.74 and 0.81 cpbs, respectively, for 4096 bytes message. This
is quite close to the cpb values achieved by GOCB[AES-
128,A1] and GOCB[AES-128,A2], i.e. 0.77 and 0.81, re-
spectively. Beyond this point the cpb values for GOCB[AES-
128,A1] and GOCB[AES-128,A2] are expected to satu-
rate and follow the cpb values of OCB3-AES-128 with
11 and 12 rounds, respectively. In other words, for mes-
sages with length ≥ 4096 bytes, GOCB[AES-128,A1] and
GOCB[AES-128,A2] are only ≈ 10% and ≈ 20% slower
than OCB3.

TABLE V: Summary of cpb values for OCB3-AES-128,
GOCB[AES-128,A1], and GOCB[AES-128,A2] to process a single
block of data in random access.

OCB3-AES-128 GOCB[AES-128,A1] GOCB[AES-128,A2]

3.93 3.12 3.29

RANDOM ACCESS: RESULTS AND DISCUSSION— To the
best of our knowledge, optimized 128-bit field multiplication
algorithms (using pclmulqdq) are very close to 5 rounds
of AES (using AES-NI) in terms of performance. Thus,
theoretically one would expect that GOCB[AES-128,A1], and
GOCB[AES-128,A2] will have significantly better random
access performance as compared to OCB3, which requires a
128-bit field multiplication.

In Skylake, 1-round AES call requires 4 cycles (latency),
so GOCB[AES-128,A1] and GOCB[AES-128,A2] would
require close to 44 and 48 cycles, respectively, for AES round
calls. Further, roughly 4 cycles are required to create the
initial masking state. So, theoretically GOCB[AES-128,A1]
and GOCB[AES-128,A2] are expected to have approximately
3-3.1 and 3.2-3.3 cpb. On the other hand, OCB3 requires close
to 60 cycles for field multiplication and the AES call. Apart
from this approx. 3 cycles are required for gray code genera-
tion. So, OCB3 is expected to have around 3.9-4 cpb. In other
words, GOCB[AES-128,A1] and GOCB[AES-128,A2] are
expected to be close to 25% and 20%, respectively, better than
OCB3 in terms of random access. Note that we have ignored
the overhead due to nonce processing. This is reasonable given
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the assumption that random read/write does not span across
different messages.

Table V summarizes the cpb values for OCB3-AES-128,
GOCB[AES-128,A1], and GOCB[AES-128,A2], to process
an arbitrary single block. Clearly, the experimental data justi-
fies the theoretical speedup described above.

PERFORMANCE IN NON AES-NI ENVIRONMENTS — In envi-
ronments which lack AES-NI instructions, field multiplication
instruction (required for random read in existing OCB designs)
is also not available. To the best of our knowledge, optimized
implementations of two rounds of AES is expected to be
significantly faster than 128-bit field multiplications. So we
expect that A1 and A2 based GOCB will be faster than OCB3,
in random access, even on non AES-NI environments, such as
GPU based applications.

VIII. CONCLUSION

Most parallel message authentication and authenticated en-
cryption schemes use certain masking routines based on the
position of a message block and/or a nonce. We explicitly
define this idea as the Mask Generating Function (MGF). We
used this abstraction of the masking scheme to explore efficient
solutions for random read access in OCB variants. Specifically,
the MGF based generalization of OCB design, called GOCB,
allows us to prove that a relaxed notion of universal hash
— Locally-Imperfect XOR Universal Hash (LIXU) — is
sufficient to provide adequate security guarantees for masking.
We demonstrate secure instantiations of LIXU hash functions
in GOCB design using 1-round and 2-round AES, which are
expected to make direct computation extremely efficient. This
in turn allows for efficient random read access in GOCB. We
demonstrate that even though 1-round and 2-round AES do
not have enough differential probability (MDP) to qualify as
optimal AXU hash functions, they do just fine as MGFs in
the GOCB design if we consider the LIXU security notion
for masking. The abstraction of LIXU hash functions for mask
generation, and the proposed instantiation of LIXU hash using
1-round and 2-round AES in GOCB like construction are
expected to have a number of benefits in practice, including —
random read access, out-of-sequence encryption/decryption,
high parallelism, and support for constant time implementa-
tions — to name a few. It will be interesting to see tailor-
made applications and instantiations of LIXU hash functions
in other practical cryptographic constructions in the future. For
instance, it would be interesting to see whether the XTS mode
by Rogaway [8] can be modified using LIXU hash function.
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