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Abstract—While machine learning and deep neural networks
in particular, have undergone massive progress in the past years,
this ubiquitous paradigm faces a relatively newly discovered chal-
lenge, adversarial attacks. An adversary can leverage a plethora
of attacking algorithms to severely reduce the performance of
existing models, therefore threatening the use of AI in many
safety-critical applications. Several attempts have been made to
try and understand the root cause behind the generation of
adversarial examples. In this paper, we try to relate the geometry
of the high-dimensional space in which the model operates and
optimizes, and the properties and problems therein, to such
adversarial attacks. We present the mathematical background,
the intuition behind the existence of adversarial examples and
substantiate them with empirical results from our experiments.

Index Terms—Deep learning, Neural networks, Adversarial
attacks, High-dimensional space, Geometry, Norm.

I. INTRODUCTION

In the recent past, there has been a steady growth in the
proliferation of machine learning as a paradigm, spearheaded
by advancements in the field of deep learning, with neural net-
work architectures reaching human accuracy level, and in some
specific tasks, achieving super-human performances [1]. More
and more areas of science and technology have adopted the
data driven way, giving rise to increasing enthusiasm in AI and
related applications, among the industry and academia alike.
Traditionally, machine learning or statistical learning methods
involved a considerable amount of data pre-processing and
feature engineering, and the hand-crafted data was provided to
the models [2]. Arguably, this lacked generalization to some
extent, and model performances in terms of accuracy measures
were also reaching a saturation level.

Deep learning models provided the much needed break-
through. While the perceptron algorithm was an old one [3],
and neural networks being in the scene for a long time,
their true potential was realized only after the advent of the
required processing capacity, in terms of hardware resources.
The inherent linear nature of the neural network architectures,
arising from the sequences of linear transformations, was
capitalized heavily to parallelize operations among multiple
GPU cores, therefore speeding up the training process using
backpropagation algorithm. These deep networks, with their
massive set of tuning parameters, possess enough learning
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capacity to learn features and patterns in the data, to extents
which were not reachable before.

A. Motivation : Adversarial Examples

Soon after the boom in flourishing AI, also popularly re-
ferred to as the “AI revival”, a new discovery proved to a newly
found problem. In 2015, it was shown that the high performing
neural networks were vulnerable to adversarial attacks [4].
The models, which would perform the task of classification
very accurately on a test image dataset, would perform very
poorly on a slightly tweaked dataset of those images, which
the adversary could generate. Introduction of little structured
perturbations, unobservable to the human eye, can bring about
an unprecedented degradation in model performance, with a
lot of misclassification [5]. Later, it was also shown that these
adversarial examples were transferable between models. That
is, an adversarial example generated for a particular neural net-
work architecture, would also act like an adversarial example
to a seemingly different model, for example a support vector
classifier [6]. Subsequently, a plethora of attack mechanisms
were developed by different groups of researchers working in
this particular domain, and each of them cause different extents
of damage to the performance of the trained model [7].

Naturally, there was effort to understand why such a phe-
nomenon happens. Goodfellow et al. [8] attributed the linear
nature of the neural networks to be the primary reason behind
such attacks. Other works suggested otherwise [9], putting
the blame on dimensionality [10]. It is worth noting that the
models trained for classifying images work in a very high
dimensional landscape. The properties of high dimensional
spaces are quite counter-intuitive and the geometry is different
from what one would normally expect in low dimensions, be-
haviorally. While some of it has been mathematically modeled
quite rigorously, there are some gaps as well in the literature.

B. Contribution : Curse of Dimensionality

In this paper, we study the effect of data dimensionality
in case of adversarial examples, and strongly second the
connection proposed by Gilmer et al. [10]. In fact, we go
one step further, and hypothesize that adversarial examples
are easier to generate on a dataset with higher dimension. We
explore some interesting and relevant properties of the high
dimensional space and present our empirical study on some
models and datasets to test our hypothesis.
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In particular, we address the issue of why it is easy to
generate such adversarial examples, how that behaves with
different dimensionality of input feature vectors, and why it is
difficult to measure adversarial perturbation at high dimensions
using the standard distance measures like L1 and L2 norms.

Our contributions primarily comprise of two components:
• Theoretical Justification: Mathematical and statistical for-

mulation relevant in the context of classification of high-
dimensional images to justify the effects of dimensional-
ity on the generation of adversarial examples.

• Experimental Verification: Empirical study, with exten-
sive experimentation on image datasets with varying
dimensions to understand the effect of dimensionality on
the generation of adversarial examples.

C. Organization of the Paper

In Section II, we address the adversarial attack in a formal
way to introduce the mathematical setup. We follow it up, in
Section III, with the theoretical formulation needed for our
analysis, including the relevant mathematical results and sta-
tistical properties. In Section IV, we present the experimental
setup and observations in support of our hypothesis, finally
culminating in some summative remarks in Section V.

II. ADVERSARIAL EXAMPLES IN MACHINE LEARNING

With the evolution of standard machine learning into the
realm of deep neural networks, the task which has seen
maximum progress is supervised image classification [11].
Ironically, adversarial attacks have been first observed for
images as well. Given a image classifier model, for a correctly
classified test data point, a corresponding adversarial example
would be a hand-crafted image created by introducing a very
little perturbation imperceptible to the human eye, which
would be wrongly classified by the same model. This notion
holds good for any machine learning system.

Typically, an image classification system would have four
key components. First, is the model. It could be some neural
network architecture or some other machine learning model
like a maximum margin classifier (SVM) [12]. Second, there
should be a training dataset, which is of course a sample
drawn from the population of all imaginable images of a
particular selected resolution. The training dataset is labelled
for the purpose of supervised learning. Third, there is a test
dataset, which is part of the population that doesn’t belong
to the training set. And finally, after the model is trained on
the training dataset, we obtain the trained manifolds for the
different classes, which are separated by the classifier [13].

As an illustration of how adversarial examples are gener-
ated, let us consider a relatively simple binary classification
problem. Figure 1 shows a 2D representational projection of
the setup. The actual truth is the real world around us. In the
context of this problem, that is, for the specific classification
task, we have the notion of the population, which is exhaustive
in nature, and is simply a 3D to 2D approximation of the
real world. One may note that it is not possible to obtain its
realization. For the task of image classification, as mentioned

Fig. 1: Adversarial Examples in context of a Classifier.

earlier, the population is the set of all images of the specific set
resolution in which we are capturing the images. We assume
that there exists a true classifier, with respect to the population,
that correctly classifies all images. A decent manifestation of
this true classifier would be the human vision system. Had this
classification model been known, there would not have been
any requirement for machine learning.

In an attempt to approximate the true classifier, we have
to consider a sample from the population, and try to build
models to classify the sample space into trained manifolds
corresponding to the classes. The so-developed classifier is
the sample classifier. The sample space could be realized as
a vast collection of data points, a dataset of images that is,
for image classification. The sample classifier would typically
be a deep neural network or a support vector machine (SVM)
or some other hyperplane classifier. For simplicity of nomen-
clature we assume that the true classifier for the population
is indistinguishable from the true classifier within the sample,
although it may so happen in practice, that the restriction of
the classifier to the sample is dependent on the sample itself.

As evident from Figure 1, there might naturally exist a
“gap” between the two classifiers or separating hyperplanes,
arising due to the approximation, made on an in-exhaustive
sample. This gap results in generating an adversarial space,
wherein any point would naturally belong to two different
manifolds, with respect to the two aforementioned classifiers,



and therefore be adversarial in nature. It is interesting to note
that if the points are close to the boundary of the individual
trained manifolds, a little perturbation may shift some of the
points across the sample classifier into the adversarial space,
wherein they will be misclassified by the model, but not by
the human annotator (true classifier). If the perturbation is too
much, then the data point may move across the true classifier
as well. That is, if the perturbation is greater than a particular
threshold, the human annotator will misclassify it too, and that
wouldn’t be an adversarial example any more.

Fig. 2: Generation of Adversarial Examples.

As shown in Figure 2, X is the space of input samples.
For images as input to the system, X would trivially be the
vector space of dimensions equaling the number of pixels
in the image. The two classifiers that we are considering
here are f1 (sample classifier) and f2 (human annotator). The
classifiers have two components each, feature extraction and
classification. X1 is the feature space for the sample classifier
and X2 is the feature space for the human annotator, where d1
and d2 are norms defined in the spaces X1 and X2 respectively.
As shown, f1 = c1 ◦ g1 and f2 = c2 ◦ g2 [14].

Let us consider x ∈ X , a training sample. Given x, the
corresponding adversarial example x∗, for a norm d2 defined
on the space X2, and a predefined threshold δ > 0, satisfies:

f1(x) 6= f1(x
∗) and f2(x) = f2(x

∗)

such that d2(g2(x), g2(x
∗)) < δ

(1)

We have two key takeaways from the above formulation. First,
the generation of adversarial examples with little perturbation
is facilitated by the existence of many data points near the
boundary of the trained manifolds of the classes, and second,
that the adversarial perturbation is bounded in practice.

III. THEORETICAL FORMULATION

In this section, we concentrate on the core mathematical and
statistical properties of two crucial ingredients in understand-

ing adversarial examples – the trained manifolds of a classifier,
and the measure for adversarial perturbation.

A. The Trained Manifolds

Since we wish to try and understand why bounded perturba-
tions to data points cause adversarial behaviour, it is natural to
focus our attention on the geometry of the high-dimensional
trained manifolds for the respective classes. In particular, it
is important to consider the distribution of data points on
the manifold. Certain properties of high-dimensional objects,
like most of their volume being near their surface, could be
important in understanding how small perturbations can shift
data points across the classifier hyperplane.

Let us consider an object A in a d-dimensional space Rd.
If we shrink A by a little amount ε to produce a new object
(1− ε)A = {(1− ε)x | x ∈ A}, we have the following:

volume((1− ε)A) = (1− ε)d volume(A) (2)

To show that this holds, we partition A into infinitesimal cubes.
Then, (1 − ε)A is the union of a set of cubes obtained by
shrinking the cubes in A by a factor of (1 − ε). When one
shrinks each of the 2d sides of a d-dimensional cube by a
factor of (1 − ε), its volume naturally shrinks by a factor of
(1− ε)d. Thus, for any object A in Rd, we have:

volume((1− ε)A)
volume(A)

= (1− ε)d ≤ e−εd (3)

If we fix ε and let d→∞, the right hand side of the inequality
in Eq. (3) rapidly approaches zero. This means that nearly all
the volume of A must be in the portion of A that doesn’t
belong to the region (1− ε)A. That is, nearly all the volume
of A is close to its surface in a high-dimensional setting.

We will use this idea to make some distribution assumptions
of the data points on the manifold. We present the relevant
mathematical properties of two most popular distributions, the
Uniform distribution and the Gaussian distribution, at high-
dimensions, as is available in the literature [15]. It may be
mentioned here that there is scope of extending this mathe-
matical formulation for other distributions as well.

UNIFORM DISTRIBUTION: Let us consider that the points are
uniformly distributed within the manifold. If we consider a
unit ball in d dimensions A, from Eq. (3), it follows that at
least a 1 − e−εd fraction of the volume of the unit ball is
concentrated in A \ (1− ε)A, which means in a small annulus
of width ε at the boundary. It can be mentioned here that, most
of the volume of the d-dimensional unit ball is contained in
an annulus of width O(1/d) near the boundary. Generalizing
to a d-dimensional ball with radius r, the width of the annulus
would be O(r/d). Another very interesting fact about the ball
in high dimensions is that most of its volume is concentrated
near the equator. One can note that for any unit vector defining
“north”, most of the unit ball’s volume lies in the thin slab
of points which have a dot-product with that vector in the
magnitude of O(1/

√
d). In particular, it can be shown that at

least a 1− 2
c e
−c2/2 fraction of the volume of the d-dimensional



unit ball has |x1| ≤ c√
d−1 , as shown in Figure 3, for any c ≥ 1

and d ≥ 3. Thus, if we consider the d-dimensional ball as
the geometry of the manifold (which minimizes surface area),
most of the points will be near the boundary.

Fig. 3: Volume Distribution in a Uniform d-Dimensional Ball.

It may also be noted that apart from the uniform d-
dimensional ball, for any other arbitrary geometry of the
manifold, the surface area would only be greater. Thus, under
the assumption of uniformly distributed data points, the points
will be nearer to the boundary of the manifold, thereby
facilitating the generation of adversarial examples.

GAUSSIAN DISTRIBUTION: The typical 1-dimensional Gaus-
sian has most of its mass near its mean (say, the origin).
But at high-dimensions, like in the case of the manifolds in
discussion, the behaviour changes significantly. The Gaussian
Annulus Theorem [15] states that for the d-dimensional spher-
ical Gaussian with unit variance in each direction, for any
β ≤

√
d, all but at most 3e−cβ

2

of the probability mass lies
within the annulus

√
d − β ≤ |x| ≤

√
d + β, where c is a

fixed positive constant. Though the density is maximum at
the origin, there is very little volume there. Nearly all of
the probability is concentrated in a thin annulus of width
O(1) at a radius of

√
d. Thus, even under the assumption

of Gaussian distribution of data points, the points will mostly
be nearer to the boundary of the manifold, thereby facilitating
the generation of adversarial examples.

INTUITION: There is not much theoretical treatment of be-
haviour of other distributions at high-dimensions. However,
though not complete enough to establish causality rigorously,
from what we have seen, it is fair to derive the intuition
that the concentration of data points near the boundaries or
surfaces of the trained manifolds, away from the respective
centres, irrespective of exact distribution assumption, is a key
ingredient in the process of adversarial behaviour of slightly
perturbed data points, which are misclassified by the model. It
is therefore natural to check whether this notion holds good in
practice or not, by using adversarial attacks on models trained
on different datasets of varying dimensions. We have reported
our empirical findings in Section IV, later in this paper.

B. Measuring Adversarial Perturbation

The other important aspect about adversarial attacks is the
measurement of perturbation. As evident from the formal
definition of adversarial examples in Eq. (1), the structured
perturbation introduced to a data point to convert it into an ad-
versarial example, is bounded by a small quantity δ, measured
with respect to a norm defined in that space. We are studying
the relevance of dimensionality in the context of adversarial
attacks, and it is therefore fair to be interested in knowing
how the extent of perturbation vary with different dimensions
of the trained manifolds in which the data points are in. In
the previous subsection, we presented the theoretical basis
behind the ease of generation of adversarial examples, when
operating in high-dimensions. Quite naturally, one should be
keen to look at the correlation (if any) between the variation
of perturbation and varying dimensions. Intuitively, one might
expect that as we move to higher and higher dimensions,
with the ease of generation of the attacks, the perturbations
might decrease. But, this is difficult to test, in practice. The
reason behind that, lies in the failure of standard metrics of
distance, like the Lp class of norms, at high dimensions [16].
Ironically, this is also an effect of the curse of dimensionality.
We argue that Lp norms are quite meaningless as a measure
of adversarial distance at high dimensions.

L2 NORM AT HIGH DIMENSIONS: To begin with, let us make
an assumption on the distribution of the data points, which we
will relax later. If a number of random points are generated
in a d-dimensional space using a Gaussian distribution, then
the distance between all pairs of points will essentially be
the same when d is sufficiently large. Consider the L2 norm,
the square of the distance between two data points, that is,
two d-dimensional images in our case. Let the two images be
the original test image y, and the corresponding adversarial
example, z. Their distance, in L2 norm, satisfies

‖y − z‖22 =

d∑
i=1

(yi − zi)2, (4)

which can be seen as the sum of d independent samples of
some random variable x that is essentially a distribution of
the square of difference of two Gaussian distributions. More
precisely, the square of the distance is the sum of independent
samples xi = (yi−zi)2 of some random variable x of bounded
variance. The Law of Large Numbers [17] dictates that with
high probability, the average of the samples are close to the
expectation of the particular random variable. Formally, it
states that, if we have x1, x2, x3, . . . , xn to be n independent
samples of any random variable x with finite variance, then

Pr

(∣∣∣∣x1 + x2 + . . .+ xn
n

− E(x)

∣∣∣∣ ≥ ε
)
≤ V ar(x)

nε2
(5)

In the d-dimensional space, n ≈ d is sufficiently large for
this particular convergence of the notional ‘distance metric’
random variable to the expectation of the random variable.
This provides the basis for the failure of distance metric L2.



Lp NORM AT HIGH DIMENSIONS: A more generic result, on
the failure of the Lp class of norms in its ability to act a
metric of distance and perform the basic task of discriminating
between the nearest and the furthest points, at high dimensions,
is presented below [18]. Note that the Law of Large Numbers
is more generic and hence we can relax our previous Gaussian
assumption on the distribution.

Let us consider a d-dimensional data space, as earlier. Let
N be the number of data points, F be a 1-dimensional data
distribution in (0, 1) and Xd be a particular data point from F d

with each coordinate drawn from F . In the context of images
as the data points, Xd would be a d-dimensional image (the
dimension being fixed based on resolution) with scaled pixel
values. Let the distance between (x1, . . . , xd) and (y1, . . . , yd)
using the distance metric Lp = {

∑d
i=1

∣∣xi1 − xi2∣∣p}1/p be
denoted as distpd(x, y). Let || · ||p be the distance of a vector to
the origin (our reference point for analysis) using the function
distpd(·, ·). Let E[x] and var[X] be the expected value and the
variance of the random variable X .

Define Dp,d
max = max{||Xd||p} and Dp,d

min = min{||Xd||p}.
Under the assumption that the distribution behaves a certain
way as d increases, we have:

lim
d→∞

var

(
||Xd||p

E[||Xd||p]

)
= 0 ⇒ Dp,d

max −D
p,d
min

Dp,d
min

p−→ 0,

where the probabilistic convergence Zd
p−→ c means that a

sequence of vectors Z1, . . . , Zd converges in probability to a
constant vector c if ∀ε > 0, limd→∞ Pr[distd(Zd, c) ≤ ε] = 1.

This gives a clear indication that at high-dimensions, the
Lp norm is unable to discriminate between two data points
(test image and its corresponding adversarial example, in this
context), which are nearest and furthest from a reference point
(origin of the manifold, in this case). It is quite meaningless
therefore, to use the Lp norm as a metric of distance in
adversarial analysis. We substantiate this intuition through
experiments on different datasets, as in Section IV.

IV. EXPERIMENTS AND OBSERVATIONS

In this section, we present our experimental findings and
empirical results that support the hypothesis that we built up
thus far. In order to make the assertion that the “generation
of adversarial examples is easier in higher dimensions”, we
wish to show that under otherwise similar experimental setup,
the adversarial attacks work better at situations which involve
higher dimensions of the input feature vectors.

A. Experimental Setup

MODEL: We used a neural network model, some standard
datasets in the context of image classification and two popular
adversarial attack methods. The deep convolutional neural
network that we have used is the typical implementation of
the VGG network [19], which was proposed by the Visual
Geometry Group at University of Oxford. The network has
four feature extraction blocks comprising of convolution and
pooling layers, followed by a multi-layer perceptron of three

fully connected layers. The first three blocks designed for the
purpose of learning the features include two 2-dimensional
convolutional layers, followed by a maximum-pooling layer.
The fourth block consists of one convolutional layer and one
maximum-pooling layer. This is followed by the dense layers,
which is a fully connected multi-layer perceptron with three
linear layers. Little modifications were made from time to
time, depending upon the dataset being used. Figure 4 shows
a schematic diagram of the neural network model.

Fig. 4: Architecture of the VGG [19] Neural Network.

DATASET: We used three datasets, which are widely used in
the study of image classification tasks. The first one is the
MNIST dataset [20], a collection of images of handwritten
digits. Each image has a resolution of 28 × 28 pixels, and
are gray-scale in nature with 10 classes corresponding to the
10 digits, and therefore is quite a low-dimensional feature
vector (784 pixels) in the context of our analysis. The second
dataset is the CIFAR-10 dataset [21], which is a collection
of coloured images of everyday objects. Each image has a
resolution of 32 × 32 pixels, across the three fundamental
colours (red, green, blue) and is a comparatively higher
dimensional input feature vector (3072 pixels). Here also, there
are 10 classes. It is worth noting here, that to conduct extensive
tests to understand the behaviour of the models at different
dimensions, we modified the datasets as required and this is
explained in further details in the next segments.

ADVERSARIAL METHOD: The two methods of introducing
perturbations into images to create adversarial examples, used
in this analysis, are the Fast Sign Gradient method and the
Momentum Iterative Fast Sign Gradient method. The Fast Sign
Gradient method was first introduced by Goodfellow et al. [22]
in 2014. This is an effective adversarial generation technique,
that uses L∞-norm as the distance measure d2 in Eq. (1). For
this adversarial attack method, the natural choice is to make
the attack strength the same at every feature dimension. The



perturbation r to be introduced to a clean sample x, to turn it
into an adversarial one, is the solution of:

argmin
r

(c d2(x, x+ r)− Loss(f1(x+ r), f1(x))), (6)

where x+r ∈ [0, 1]p, with p being the total number of features
and c being the constant for the Lagrange multiplier. In other
words, the adversarial example x∗ can be obtained from a
clean sample x by maximizing the loss function J(x∗, y),
where J is usually cross-entropy loss and y is the class label.
The Fast Sign Gradient method satisfies the L∞ norm bound
of ||x∗ − x||∞ ≤ ε and is therefore obtained as:

x∗ = x+ ε · sign(OxJ(x, y)), (7)

where OxJ(x, y) is the gradient of the loss function w.r.t x.
Apart from this one-step gradient based approach, it is also

possible to create adversarial attacks in an iterative way, using
the similar concept of attack. These methods typically apply
the fast sign gradient many times, with a small step size α.
An iterative version of FSGM is:

x∗0 = x, x∗t+1 = x∗t + α · sign(OxJ(x∗t , y)) (8)

In order to ensure that the adversarial examples generated in
this process are restricted within the ε bound with respect to
the L2 or L∞ norm, one could clip X∗t in the ε neighborhood
of x or set α = ε/T , with T being the number of iterations.

The Momentum Iterative Fast Gradient method was intro-
duced by Dong et al. [23], in 2018 and belongs to this class
of attacks. The momentum method in general is a technique
for accelerating gradient descent algorithms by accumulating
a velocity vector if the gradient direction of the loss function
across the iterations. The memorization of the previous gra-
dients helps to traverse efficiently though the landscape. This
idea is used to generate adversarial examples efficiently.

B. Experimental Design

In an attempt to support the hypothesis discussed earlier, we
carried out extensive experiments to understand the behaviour
of adversarial attacks with dimensionality. For each of the
individual experimental settings, the performance metric for
the models and the procedural scheme were kept constant,
to facilitate comparability wherever needed. The measure of
performance used throughout, is the classification accuracy
(used synonymously as performance hereafter), that is the
percentage of correct classifications made by a particular
model on a particular set of samples, be it the train-set, test-
set or a set of adversarial examples created by some attack
methods (each combination is referred to as a setting).

The procedure adopted for the analysis on any given setting
is three-fold. Firstly, the neural network is trained on a training
dataset, and the hyper-parameters are tuned to obtain the best
in class performance. Thereafter, the model is put to test
against the test dataset, and the performance is noted. Finally,
the same test dataset is used to create the adversarial examples,
with respect to the trained model (using the gradients) using
the two attack mechanisms mentioned earlier [24]. It must

be noted that the hyper-parameters of the attack mechanisms
are kept fixed throughout, for comparability. The tuned neural
network model is then tested against the artificially created
adversarial examples set. The performance of the model is
recorded. In a given experimental setting, the comparison
of the trained model’s performance on the particular test-set
and its corresponding adversarial examples set would give us
an indication of whether the setting is favorable or not for
adversarial attacks. The datasets used have been mentioned
earlier, the hand-written character recognition MNIST dataset,
the CIFAR-10 dataset and the ImageNet dataset. We carried
out a few different kinds of studies for the analysis, as follows.

VARYING DIMENSIONALITY: To understand whether or not
greater number of features and higher inherent dimensionality
of the datasets affect the generation of adversarial examples
from a particular sample of data points, as is the hypothesis,
we carried out the three-fold procedure on three datasets of
very different individual size of features. The comparison of
performance of the model should therefore be indicative of
empirical results to substantiate the claimed hypothesis.

UP-SAMPLED RESOLUTION: To understand whether or not
the raw resolution of an input image has any impact on the
generation of adversarial examples, we experimented with
upsampling the resolution of images without adding any new
information, that is without changing the inherent dimensional-
ity of the dataset. This was carried out using a nearest neighbor
interpolation approach of the pixels in the image, by doubling,
quadrupling the resolution of the images. Following that, the
same three-fold procedure was carried out on the images.

DIMENSION REDUCTION: To understand whether or not the
inherent dimensionality of the dataset has an impact on the
creation of adversarial examples, we experimented with re-
ducing the dimension of the respective datasets, using stan-
dard techniques like the singular value decomposition. While
accomplishing this task, we created four different settings,
that is combinations of train-set, test-set and adversarial set,
from the original dataset, which contained 99%, 95%, 90%
and 80% of the actual information. One may note here that,
for singular value decomposition, the information content of
each of the data slices or components corresponding to each
of the singular values can be obtained from its surrogate, the
proportion of the singular values themselves. Following this
decomposition, we carried out the same three-fold process.

MEASUREMENT OF DISTANCE: In order to understand
whether the standard metrics of distances, like the L2 norm,
can be used as a good metric of the notion of distance in the
high-dimensional spaces, we performed some experiments. We
studied the distribution of the individual pair-wise distances
between the images belonging to a particular class. We also
looked at the distribution of the adversarial perturbation,
meaning the pair-wise distances between the clean samples
and the adversarial samples. We obtained a superimposed plot
of the distributions to look at the efficacy of the distance
measure in question, the L2 norm.



C. Experimental Results

In this section, we present the observations of the various
experiments mentioned in the previous subsections. For each
of the settings, which is a combination of a train-set, a
test-set and two adversarial sets created using two types of
attack methods Fast Sign Gradient method (FSGM) and the
Momentum Iterative Fast Sign Gradient method (MI-FSGM),
we have reported performances of the trained model.

Table I shows the performances of the individually trained
neural network on three datasets of differing sizes. For each
dataset, the corresponding number of pixels in each image is
provided within parenthesis. The performance of the trained
model is tested on the test set and the two adversarial datasets,
created using the two types of attacks mentioned above. It is
clearly evident that with the growing inherent dimensionality
of the datasets, the performance of the neural network on the
adversarial datasets reduces significantly. That is, adversarial
examples are generated better for higher dimensionality.

TABLE I: Adversarial Attacks and Dimensionality.

Dataset Performance on Performance on Performance on

Test Set Adversarial Set Adversarial Set

(FSGM) (MI-FSGM)

MNIST

(28x28)
98.8% 55.8% 51.7%

CIFAR-10

(3x32x32)
84.6% 14.2% 13.8%

ImageNet

(3x224x224)
78.2 9.5% 6.8%

Table II shows how the generation of adversarial examples
is affected by up-sampling the resolution of the images. Like
earlier, for each of the datasets, the number of pixels in each
of the images is provided in parenthesis. The performances of
the individually trained models are presented corresponding
to each of the settings mentioned earlier, on the test set and
the two adversarial datasets, created using the two types of
attacks mentioned above. From the results of the experiments,
one can see that for the two datasets used, with three variants
for each (in terms of resolution), the performance of the attacks
observed, was very close to each other consistently for both the
datasets. The conclusion that follows this observation is that
there is no significant effect of changing the mere resolution
of the images (without adding any new information, therefore
not affecting the inherent dimensionality of the data) on the
performance of the neural network on the adversarial dataset.

Table III presents the observations in the study of generating
adversarial examples from the dimension reduced versions of
the datasets, as explained in the earlier segment. For each
of the datasets, only those components are considered which
make up for a particular proportion of the overall information,
as indicated in parenthesis in the table. The performance of the
trained model is tested on the test set and the two adversarial
datasets, created using the two types of attacks mentioned
above. One can observe from the empirical findings that with

TABLE II: Adversarial Attacks on Up-Sampled Images.

Dataset Performance on Performance on Performance on

Test Set Adversarial Set Adversarial Set

(FSGM) (MI-FSGM)

MNIST

(28x28)
98.8% 55.8% 51.7%

MNIST

(56x56)
98.6% 55.8% 51.5%

MNIST

(112x112)
98.8% 55.6% 51.7%

CIFAR-10

(3x32x32)
84.6% 14.2% 13.8%

CIFAR-10

(3x64x64)
85.1% 13.9% 13.8%

CIFAR-10

(3x128x128)
84.9% 14.1% 13.7%

dimension reduction, the performance of the neural network
in both the datasets have improved, indicating that adversarial
attacks become less effective with dimension reduction.

TABLE III: Adversarial Attacks and Dimension Reduction.

Dataset Performance on Performance on Performance on

Test Set Adversarial Set Adversarial Set

(FSGM) (MI-FSGM)

MNIST

(99%)
99% 56.1% 54.3%

MNIST

(95%)
97.8% 58.3% 57.1%

MNIST

(90%)
97.5% 59.1% 57.5%

MNIST

(80%)
96.8% 64.2% 61.1%

CIFAR-10

(99%)
83.2% 14.2% 13.7%

CIFAR-10

(95%)
80.1% 15.9% 14.8%

CIFAR-10

(90%)
77.3% 17.8% 15.2%

CIFAR-10

(80%)
74.8% 19.8% 17.6%

Figure 5 shows the distributions of distances superimposed
with the distribution of adversarial perturbation (plotted in
blue). For this study, we considered the CIFAR-10 dataset,
which has 3072 pixels per image. We plotted the distribution
of the pair-wise L2 norm distances of all points belonging
to a particular class (L2 norm distance in the X-axis and the
probabilities in the Y-axis) and then repeated the process for
all the ten classes in the dataset, shown in different colours.
Then, we superimposed that plot with another plot of the
distribution of adversarial perturbation, that is the pair-wise L2



norm distances between clean samples and their corresponding
adversarial samples, shown in blue. From the figure, one can
observe that the distribution of the pair-wise distances of
the images within the classes are highly overlapping, and is
centred around the value of

√
d (where d is the number of

pixels). Interestingly, the plot in blue, which is the distribution
of the adversarial perturbations, and is also found to have a
peak at around

√
d (numerically around 56). This indicates

that as suggested in the earlier sections, the distance metric
fails to provide meaningful measures at high dimensions as all
measures of distance tend to converge to the numeric value of
the square root of the dimensionality.

Fig. 5: The Distribution of Pairwise Distances.

V. CONCLUSION

In this paper, we hypothesize that generation of adversarial
attacks in case of neural networks benefits from higher dimen-
sionality in data. To support our hypothesis, we present the
theoretical formulation of the problem, and present our intu-
ition in terms of high-dimensional geometry. We also present
extensive experimental results in support of our hypothesis.
We also argue the futility of using standard Lp norms as a
distance measure in case of high-dimensional manifolds (the
feature space of neural networks), especially while analyzing
the generation of adversarial examples.

We would like to view this work as an initial attempt at
connecting adversarial attacks to the inherent dimensionality
of data, both in terms of the theoretical intuition, as well
as through empirical evidence. It will be quite interesting
to extend the idea to obtain a comprehensive understanding
of adversarial examples and their exact relationship with the
inherent dimension and geometry of the data.
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