Security is an Architectural Design Constraint

PRASANNA RAVI, Temasek Labs, Nanyang Technological University

ZAKARIA NAJM, Temasek Labs, Nanyang Technological University

SHIVAM BHASIN, Temasek Labs, Nanyang Technological University

MUSTAFA KAIRALLAH, School of Physical and Mathematical Sciences, Nanyang Technological University
SOURAV SEN GUPTA, School of Computer Science and Engineering, Nanyang Technological University
ANUPAM CHATTOPADHYAY, School of Computer Science and Engineering, Nanyang Technological University

In state-of-the-art design paradigm, power, space and time efficiency are considered the primary design constraints. This approach
adversely impacts the security of the device, which is often adopted as a countermeasure after the vulnerability is identified. In this
position paper, we argue that across all levels of an architecture design, security stands in direct contrast with other performance
objectives, and therefore, needs to be treated as a design constraint from the early design phase. We advocate a security-aware
design flow starting from the choice of cryptographic primitives, protocols and system design.

Additional Key Words and Phrases: Digital systems, design constraints, security-efficiency trade-off, security-aware design

1 INTRODUCTION

Historically, design of computer systems have revolved around the notion of performance, primarily measured in
terms of time and space efficiency. It was only with the advent of low-footprint portable devices during the 80’s that
power featured as a potential measure of performance. Careful scrutiny and evaluation over a couple of decades
confirmed that power efficiency complements and contradicts the notions of time-and-space efficiency in practical
systems, and hence, it should be considered as a fundamental constraint in design. We have come a long way since
then, and for over a decade, we have unequivocally considered time, space and power as the three primary constraints
of architectural design. In this paper, we argue that it is time to consider the notion of security as the fourth axis in
the space of architectural design, as it orthogonally complements the landscape of time, space and power.

We base our argument on evidences of the eternal conflict between security and performance in architectural
design. Similar to our notion of performance spread over the three dimensions of time, space and power, we present
the notion of security across three layers — cryptographic primitives, security protocols and security systems —
as depicted in Table 1. It is evident from the literature of cryptanalytic results and security breaches that each of
these three layers demonstrate a fundamental trade-off between performance and security. Quite often, architectural
designs focussed on the fundamental principles of time-space-power efficiency introduce security vulnerabilities in
cryptographic primitives, security protocols and security systems. Most critical vulnerabilities are generally noticed in
the systems layer, spread across the range of hardware systems, software systems and hardware-software interfaces,
where the time-space-power design constraints are considered to be of highest priority. This is where we advocate
the inclusion of security as a fundamental architectural constraint to complete the design landscape.

Primitive Level Mathematical Models Pseudo-Random Generators, Functions, and Permutations
Key-usage Paradigms Symmetric Key Cryptography, Asymmetric Key Cryptography
Cryptographic Modules Block Ciphers, Stream Ciphers, Hash Functions, Signatures, etc.
Cryptographic Modes Encryption, Authentication, Authenticated Encryption, etc.

Protocol level Transport Layer Security, Secure Sockets Layer, Secure Shell, IP Security, Wireless Security, etc.

System Level Software Abstraction, Hardware Abstraction, Software-Hardware Interface, Operating Systems, etc.

Table 1. The layers of Security — Cryptographic Primitives, Security Protocols and Security Systems

Authors’ addresses: Prasanna Ravi, Temasek Labs, Nanyang Technological University, Singapore, prasanna.ravi@ntu.edu.sg; Zakaria Najm,
Temasek Labs, Nanyang Technological University, Singapore, zakaria.najm@ntu.edu.sg; Shivam Bhasin, Temasek Labs, Nanyang Technological
University, Singapore, sbhasin@ntu.edu.sg; Mustafa Kairallah, School of Physical and Mathematical Sciences, Nanyang Technological University,
Singapore, mustafam001@ntu.edu.sg; Sourav Sen Gupta, School of Computer Science and Engineering, Nanyang Technological University,
Singapore, sg.sourav@ntu.edu.sg; Anupam Chattopadhyay, School of Computer Science and Engineering, Nanyang Technological University,
Singapore, anupam@ntu.edu.sg.

, Vol. 1, No. 1, Article . Publication date: April 2018.

Security-Efficiency Trade-Off

The trade-off between security and efficiency is as old as the dawn of cryptography. Formal notion of information-
theoretic security, as introduced by Shannon in 1950s, warrants the use of perfectly random one-time pads, which
are absolutely useless in terms of practical efficiency. Cryptography practitioners, hence, introduced the notion of
pseudo-random generators to approximate the desirable properties of one-time pads, and we followed the path of
computational security. In a similar vein, we discarded the inefficient symmetric key-exchange mechanism of Merkle
Puzzles that provided a quadratic computational gap between the users and the adversary to adopt the efficient
asymmetric key-exchange mechanism like Diffie-Hellman, providing an exponential advantage to the users. Even
today, most of the theoretical proofs in security rely on the random-oracle property of compression functions, whereas
practical instantiations could only remain efficient till the construction of standard hash functions. It is evident that
security and efficiency do not go hand-in-hand, and in this paper, we provide practical evidences to argue that security
generally comes at the cost of efficiency. We will henceforth adopt a top-down approach in this paper, wherein we
refer to practical instances where this security-efficiency trade-off can be observed at various layers of the stack —
starting with the abstraction of cryptographic primitives, progressively moving down to the implementations.

Depending on the application and the use case in hand, a secure design always looks to achieve a multitude of
different objectives like fast performance, low resource utilization, low power consumption and many more. In this
paper, we will concentrate on the three fundamental efficiency parameters — time, space and power. In the quest for
optimizing these resources, practical instantiations of secure algorithms often render themselves vulnerable. There
are various categories of such vulnerabilities, some of which are as follows:

o Inherent security-efficiency trade-off is done when deciding the various parameters for a given secure algorithm.

o Efficient instantiations of a given secure algorithm might yield very good performance compared to a random or
a generic instantiation of the same, but the same efficient instance might pave way for unforeseen vulnerabilities.

e Cryptographic primitives when implemented in a standalone mode may be secure, but quite often, an efficient
encapsulation of the primitive into a broader class of security protocols might lead to vulnerabilities.

o Careless optimization technique implemented on a secure algorithm might lead to leakage of information.

e Generic security-agnostic performance enhancement approach developed for a specific platform might lead to
creation of side channels, thus weakening the implementation of any secure algorithm on the same platform.

e Certain efficient implementation strategies providing time-efficiency open gates to side channel leakage.

e Optimizations employed by (semi-)automated tools over a given implementation of a secure algorithm (in most
of the case, the source code) might discard inefficient features that ensured security in the first place.

We broadly classify the literature of security vulnerabilities introduced due to performance improvements into
three categories of efficiency — time, space and power — affecting the three layers of security — primitives, protocols
and systems. The cross-layer cross-category taxonomy in context of this paper is set as XXX.YY, where XXX denotes
the affected security layer, and YY denotes the efficiency node, which causes the security loophole.. The two-way table
of references, in line with this taxonomy;, is presented as Table 2. Sections 2, 3 and 4 present in details the evidences
of security-efficiency trade-off from the literature in a more systematic format (layer-wise) to support our argument.

Time Efficiency Space Efficiency Power Efficiency
TE SE PE

Primitive Level PRI [5, 20-22, 27, 47, 54, 56, 63, 66, [10, 12—14, 19, 27, 44, 47, 50— [10, 12, 13, 19, 27, 44,47, 50, 51,

79, 81, 87, 88] 53,55, 61, 63, 65, 66,68-70,79] 53, 55, 61, 68]
Protocol Level PRO (6, 35, 84] [36, 46, 46] -
System Level SYS [2-4,8,9, 15,17, 18, 24, 29,31, [2,4,8,9, 15, 18, 24, 31, 38,39, [82]

34, 38-40, 42, 43, 48, 49, 58, 60, 43,48, 49, 58, 59, 72,77, 78, 80,
67,71,72,76,77, 80, 83,89-91] 83, 85, 85, 89, 91]

Table 2. Literature of Security-Efficiency trade-off : Layers of Security vs Efficiency Considerations

2 PRIMITIVE LEVEL

The computational security notion governing the security of both private key and public key cryptographic primitives
are very well understood. While the security of public key cryptographic primitives are derived through polynomial
time reductions from provably hard mathematical problems, security of private key primitives are derived from
constructions like Feistel structures and SPN (Substitution and Permutation) networks governed by well defined
mathematical concepts like confusion and diffusion. Though there have been a number of reported attacks and
vulnerabilities of these primitives in literature [5, 21, 87], none of them are catastrophic but merely point out to the
existence of certain corner cases, weak instances and insecure algorithmic optimizations. We would like to focus on
such instances in this section that especially argue our case of the conflict between security and efficiency at the
primitive level. We separately analyse classical public key, post-quantum public key and symmetric key cryptographic
primitives.

2.1 Public Key Cryptography

The traditional public key cryptographic primitives like RSA and ECC based cryptographic systems used in almost all
secure communications derive their security guarantees from hard problems based in the field of number theory.
While the security of RSA depends on fatorization of a product of two large prime numbers, ECC relies on the
hardness of solving the discrete logarithm problem. Though the underlying hard problems of these schemes are
rendered intractable by classical computers, a number of weaknesses and vulnerabilities are known to have been
exploited leading to practical attacks on the RSA and ECC based cryptographic schemes. And following the argument
of our paper, it is not surprising to know that many of those vulnerabilities stem from the presence of the cross-layer
phenomenon between security and efficiency, which will be covered in the following discussion.

2.1.1 Exploiting Reduced Entropy in KeyPair Generation (Type PRI.TE). Keypair generation is a very important
procedure in both RSA and ECC based cryptography and reuse of randomness is a common implementation strategy
used to improve efficiency, but this techinque does not have a good track record in security as it has lead to a number
of well known attacks.

Exploiting reuse of operating group and primes: Adrian et al.[5] reported the famous "LogJam" attack in 2015, an MITM
(Man In The Middle) attack on TLS connections in which servers could be tricked into using "Export Grade" Diffie
Hellman that operated over 512-bit groups. The main vulnerability stemmed from the usage of same 512 bit group
across 8.4% of Alexa Top Million websites and the same 1024 bit group 3.4% of all HTTP servers, thus a massive
precomputation step could be used to amortize the attack time over multiple entities using the same group. Heninger
et al. [56] performed the then largest network survey of TLS and SSH servers in 2012 and reported vulnerabilities
due to usage of keys with insufficient entropy and usage of same key in shared hosting conditions. Another similar
vulnerabililty due to reuse of ephemeral keys in Elliptic Curve Digital Signature algorithm was reported by a hacker
group named FailOverflow on Sony PlayStation 3.

Exploiting use of efficient prime generation algorithms: Svenda et al.[81] performed statistical analysis on a large
number of public key and moduli used for RSA generated from a variety of cryptographic libraries and smart cards
and observed that a given key could be classified into its correct key source with a very high accuracy of 85%, thus
exposing anonymity of users. This is due to the existence of multiple efficient algorithms for prime generation like
random sampling method, incremental search algorithm, rejection sampling, use of "Square" regions etc. which leave
an observable signature for themselves allowing for easy detection. The same authors further discovered that the
prime generation algorithm used by the cryptographic library RSAIib from Infineon Technologies AG only generated
primes that were of the form

p =k M+ (65537 mod M)

wherein the RSA prime p generated only depends on a and k and M is known. The primes of this form were shown
to be easily factorizable and also were easy to be fingerprinted due to the abnormal decrease in entropy.

2.1.2 Efficient Parameter Instantiations (Type PRI.TE). Modular exponentiation used in RSA algorithms is very
costly in terms of performance and resource utilitzation. Thus, use of efficient parameters to speed up implementations
is very common. For example, use of a small secret key exponent for signatures will significantly speed up signature

generation, but Wiener [88] showed that private key exponents satisfying the bound d < N%2° where d, N are the
private key exponent and modulus respectively leads to a break of the RSA cryptosystem. by Boneh et al. [21] to
d < N°22_Similarly, usage of a small private key exponent has been shown to be exploited by a number of attacks
like Hastad Broadcast attack [54], partial key exposure attack [22] using variants of the Coppersmith’s theorem [].

2.1.3 Efficient Techniques for Modular Exponentiation (Type PRI.TE). The Chinese Remainder Theorem (CRT) is a
well known efficient technique to perform modular exponentiation which computes over primes half the size as that
of the original modulus leading to a speed-up upto a factor of four. But Boneh et al. [20] showed that a single fault
injected during computation using one of the prime factors in a CRT optimized RSA signature generation procedure
results in trivial retrieval of the key from the faulty signature. A recent report by Weimer [87] showed that this
simple fault classical attack still poses a threat to real world systems using TLS with RSA signature schemes. The
countermeasure against the fault attack leads to significant decrease in performance as it requires an additional
signature verification and hence is not widely deployed.

2.2 Post Quantum Public Key Cryptography

The cross-layer phenomenon not only is observable in classical cryptography, but also extends its presence into post
quantum cryptographic primitives. The cryptographic community is actively working towards standardization of
quantum resistant public key cryptographic primitives, better known as "Post-Quantum" cryptography. There have
been several proposals for post quantum cryptography from varied fields of mathematics among which lattice based
cryptography and code based cryptography seem to be the more promising proposals that provide both quantum
resistance guarantees along with practical efficiency comparable on a scale with traditional public key cryptography.

2.2.1 Lattice based cryptography (Type PRI.TE & PRI . SE). Lattice based cryptography, in its infancy was considered
to be near impractical due to the schemes suffering from asymptotically large key sizes and operation counts
(Z(n*log(n))) where n is the security parameter. But, the security of these schemes were based on hard problems
on general lattices which were considered to be NP — Hard in the worst case, thus offering very good security
guarantees. A lot of research then was focussed on increasing the efficiency of lattice based cryptographic schemes,
with the main direction being development of schemes with hardness on algebraically structured ideal lattices [63, 66],
yielding asymptotic efficiency in both space and time, with reduced key sizes and computation time (O(nlog(n))),
since arithmetic could be done over polynomials in rings as opposed to matrix vector arithmetic in the case of general
lattices. This triggered a large body of work towards efficient implementation of lattice based cryptographic primitives
on a range of devices from the smallest 8-bit AVR microcontrollers [62, 75] to reconfigurable hardware [57, 74]. But,
the caveat present here is that the same hard problems over the structured ideal lattices which determines the security
guarantees of these efficient schemes are not known to be as hard as that on general lattices. Even with extensive
cryptanalytic efforts on these structured variants [26, 30], there are not any known weakness still known that could be
exploited from their algebraic structure. With many of the efficient lattice based cryptographic schemes basing their
security over hard problems on algebraically structured lattices [7, 23], cryptanalysis of lattice based cryptographic
schemes will be intensely scrutinized over the coming years.

2.2.2 Code based cryptography (Type PRI.TE & PRI.SE). One can also observe very similar trends in code based
cryptography where there is a dilemma in a choice between structured but efficient instantiations as opposed to
unstructured but inefficient instantiations of code based cryptographic schemes. The first code based cryptographic
scheme, the McEliece encryption scheme [65] was proposed using binary Goppa codes, but these schemes suffered
from large sizes of public keys along with complex decoding procedures. A large body of work concentrated on
development of efficient but secure choices of algebraically structured linear codes like Reed-Solomon [14], Reed-
Muller codes [79], quasi-cyclic and quasi-dyadic codes [69] and many more. But, most of them are known to be
broken with only the initial proposal of the Binary-Goppa codes [65] and the QC-MDPC codes [70] still considered to
be secure. According to the state of the art, the QC-MDPC code based schemes over very compact keys (1 — 2KB)
while at the same time being very efficient, but have a certain error probability associated with their decryption
procedures, which was shown to be exploitable through the GJS reaction attack reported in [52], provided the same
key is used across many number of encryptions. But, the relateively inefficient binary Goppa code variant of the
McEliece encryption scheme still stands unscathed even with about close to 40 years of cryptanalysis efforts.

2.3 Symmetric Key Cryptography

2.3.1 Security of Private-Key Primitives (Type PRI.SE & PRI.TE & PRI.PE). The security of all symmetric key
cryptographic primitives are directly related to the size of the shared secret, which is commonly indicated by the bit
security level. A bit security of n bits indicates that a black box attacker has to perform at the most 2" operations to
retrieve the secret key. The bit security level is determined based on the best known attacks against the symmetric
key primitive and thus need not be equal to the bit size of the secret. Moreover, due to the sustainable decrease in
the cost of computational power, recommended security levels for various cryptographic applications are regularly
increased, with the most recent instance being the declaration of any security level below 112 bits to be insecure
according to NIST [11], thus phasing out the use of PRESENT-80 [19] and LED-64 [51] light weight block ciphers.
Thus, upgrading the bit security level of any symmetric key primitive would indicate increasing the bit size of the
key, implying larger storage, more operations on the key and ultimately a larger resource footprint.

The area of lightweight cryptography has attracted a lot of attention which has spurred the development of many
light weight cryptographic designs like efficient block ciphers (PRESENT, LED, SIMON/SPECK [12], SKINNY [13],
GIFT [10]), stream ciphers (Grain [55], Plantlet [68], Fruit [44], Lizard [53]) and Hash Functions (PHOTON [50]).
The main reason can be attributed to the emergence of embedded device technologies like Bluetooth, Internet-of-
Things (IoT), Wireless Sensor Networks (WSNs), Wearable Devices etc. which primarily operate on low power over
computationally constrained platforms. While most of these ciphers achieve competitive bit-security levels, they
build upon less secure and more efficient building blocks leading to low resource consumption, but require a higher
number of iteration rounds which adds up to processing time. Besides, since this field is relatively new, the security
gap between these lightweight primitives and their old trusted counterparts (AES, SHA-2 [41] , SHA-3 [37]) has not
been extensively studied, thus leading to restrain from using these lightweigtht designs from use in high security and
sensitive applications.

2.3.2 Post-Quantum Security of Private-Key Primitives (Type PRI.SE & PRI.TE & PRI.PE). Unlike public-key
primitives, there are no known quantum attacks on private-key primitives except for Grover’s Search Algorithm [47],
which can speed up brute-force search attack from 2" to 2"/?. Hence, post-quantum private-key primitives have to be
at least twice as large as their classical counterparts in order to achieve the same security level, which, again, shows
the trade-off between efficiency and security [27].

2.3.3 Recent Case Study: Hardware Evaluation of CAESAR Candidates (Type PRI.SE & PRI.TE & PRI.PE). The
CAESAR competition [1] was announced in 2013, to allow the academic community to choose a set of authenticated
encryption algorithms to be studied. Over 5 years, more than 50 submissions have been intensively studied, evaluating
their security, software performance and hardware efficiency. In March, 2018, the CAESAR competition was concluded
by selecting 7 final proposals, divided into three use cases, as follows:

(1) Lightweight applications (resource constrained environments): ACORN and Ascon.
(2) High-performance applications: AEGIS, MORUS and OCB.
(3) Defense in depth: COLM and Deoxys-IL.

In [61], the authors have studied the hardware performance, area and efficiency of all the third round candidates
of the competition, by implementing them for ASIC. Their results showed that , when comparing ciphers designed
for use cases segregated as lightweight and defense-in-depth applications, there is a clearly observable 10x gap in
the throughput/area efficiency, where the lightweight candidates are significantly both faster and smaller than there
defense-in-depth counterparts. Thus, all lightweight cryptographic designs clearly demonstrate instances of conflict
between security and all types of efficiencies like Space efficiency (SE) through small designs, time efficiency (TE)
through high throughput rates and power efficiency (PE) through reduced power consumption.

3 PROTOCOL LEVEL

In almost all real world systems, crytograhic primitives are not implemented in a standalone mode, but are encapsulated
in a larger cryptographic protocol along with other cryptographic primitives to achieve different security objectives.
The TCP/IP (Transmission Control Protocol/Internet Protocol) stack is one of the most used communication protocols
used in most of the computer networks around the world. It has a modular architecture with multiple layers, with
each layer secured with different cryptographic protocols that are required to interact with each other to provide
end-to-end security. Incorporating such sucurity measures at each layer is considered costly sometimes, but there

are several trivial attacks like Packet Sniffing, Sppofing, Cache Poisoning, Proxy routing table updates, DoS style of
attacks and many more that are possible if all the layers are not properly secured. But, there have been multiple other
instances where application of certain optimization techniqeus have compromised the security of even a provably
secure protocol, with the Transport Layer Security (TLS) protocol being the main focus of this section.

3.1 Data compression techniques used in TLS protocol

Transport Layer Security (TLS) (Previously known as Secure Sockets Layer (SSL)) is one of the most widely used
cryptographic application in the world, which mainly provides security to the transport-layer of the TCP/IP stack.
Data compression techniques were widely being utilized to decrease network traffic congestion, but this compression
mechanism leaked information about the internal state of the data. This has been known to be exploited by a number
of vulnerabilities like BREACH [46], CRIME [36] and TIME [16] attacks.

3.1.1 CRIME Attack (Type PRO. SE). Both HTTP requests from the client and responses from the servers in cleartext
are typically compressed by the TLS protocol using the DEFLATE' compression technique before they are encrypted
to be sent over the insecure channel. Juliano Rizzo and Thai Duong [36] reported Compression Ratio Info-leak Made
Easy (CRIME), a side channel attack that can retrieve information about session tokens and cookies. The attacker
maliciously injects information into the victim’s HTTP request and observes the size of the encrypted request. By
adaptively altering the injected information depending on the observed sizes of the encrypted requests, an attacker
can easily deduce information regarding some secret tokens embedded in the HTTP request.

3.1.2 TIME Attack (Type PRO.SE). Following the CRIME attack, the major vendors deprecated the use of TLS
compression technique at both the client and server sides which successfully thwarted the CRIME attack. Later,
Tal Be’ery and Amichai Shulman reported Timing Info-leak Made Easy (TIME) attack [16], a variant of the CRIME
attack but mainly targetting HT TP responses. The attacker carefully crafts additional information to be padded into
the victim’s HTTP requests and observes a larger RTT (Round Trip Time) for those manipulated requests in which
the added information matches wih the internal data. Using the observable time difference due to compression, the
attacker can retrieve internal information about the HT TP responses.

3.1.3 BREACH Attack (Type PRO. SE). Gluck et al. [46] reported a variant of the CRIME attack called the Browser
Reconnaissance and Exfiltration via Adaptive Compression of Hypertext (BREACH) attack, which targets the size of the
HTTP compressed responses (instead of TLS compressed requests as in CRIME) to reveal secret information about
secret tokens and cookies in the body of the response.

3.2 Attacks on the encryption mode used in TLS protocol

There is another class of attacks that specifically target the CBC (Cipher Block Chaining) mode of encryption used in
the context of the TLS protocol. Block ciphers are usually used in different modes to encrypt large amounts of data,
ECB (Electronic Code Book) mode, Counter mode and CBC (Cipher Block Chaining) mode to name a few. The CBC
mode for block ciphers is known for its efficient properties like reuse of ciphertext as initialization vector during
encryption and its ability to decrypt data in parallel. The CBC mode in a standalone configuration is secure, but has
caused a lot of security concerns when used in the TLS protocol [6, 35, 84].

3.2.1 BEAST Attack (Type PRO.TE). TLS records are typically first authenticated using the HMAC construction,
padded with deterministic data to align the data to the block size and then encrypted. Different error responses were
invoked for the cases when the padding is correct but the HMAC was wrong or when the padding itself is wrong.
The attacker tweaks the ciphertexts to evoke response regarding the correctness of the padding to reveal information
about the plaintext. This attack which was first published by Vaudenay [84] was later shown to be practical by
Duong et al. [35] in 2011, famously known as the BEAST attack. The BEAST attack was made possible due to a
number of reasons, but one of the two main reasons were the differential error response on either incorrect padding
or authentication and use of the last ciphertext of the previous packet as the IV of a new packet for want of time
efficiency, with the attack very well aided by the structure of the CBC mode. The attack could be thwarted by evoking
the same response for both incorrect padding and incorrecting authentication. But, in doing so, the sender has to
recalculate both the padding and the MAC, even in cases when packet has been correctly authenticated, increasing
the computation times upon failure.

Thttps://tools.ietf.org/html/rfc1950

3.2.2 LUCKY13 Attack (Type PRO.TE). Even on evoking the same response from the server upon failure due to
different reasons to avoid information leakage, the attacker can still learn about the number of padded bytes based
on the time taken for authentication. A padding error evokes a faster error response but the attacker can observe a
slower response upon correct padding but incorrect authentication. Here again, the timing leakage is caused due to
want of efficiency to avoid calculating the MAC even upon noticing an incorrect padding. Thus, fixing this requires
the server to calculate MAC for both correctly and incorrectly padded messages. But, there existed still existed a
timing leakage due to the difference in times for authenticating the data which gave information about the number
of padded bytes. This attack which is very similar to the BEAST attack but uses a timing oracle was proposed by
Nadhem AlFardan and Kenny Paterson [6], which is famously known as the LUCKY13 attack.

The above attacks led to abandoning the use of CBC mode atleast in the context of TLS protocol as MAC-then-
encrypt along with CBC has too many issues which could not be resolved very easily, while also looking like a source
of many other hidden vulnerabilities.

4 SYSTEM LEVEL

The theoretically secure cryptographic primitives and the corresponding cryptographic protocols are ultimately
required to be implemented on real world systems through which one can leverage their security guarantees. They
are implemented in a wide array of real world systems, ranging from the smallest micro-controllers used in wireless
sensor networks to the most powerful general purpose computers powering the data centres. System designers are
always in pursuit of efficient yet secure implementations of cryptographic primitives and protocols as they are always
considered to be adding a significant overhead in terms of efficiency to the application in hand. This endless pursuit
of implementation efficiency has been constantly plagued with security issues as well. Thus, following the trend
observed in the higher layers of the cryptographic stack, we observe that this cross layer phenomenon has made its
presence felt in various aspects of system level security as well, which will be covered in this section. We would like
to diversify the section into three parts namely

(1) Hardware Security
(2) Software Security
(3) Hardware/Software Interface Security

4.1 Hardware Security

Hardware security as a discipline encompasses multiple fields dealing with cryptographic engineering and security
such as hardware trojans, physical attacks, protection of the IC supply chain both pre-silicon and post-silicon,
development of hardware root of trust and security enhanced hardware infrastructure. But following the line of
work from the previous sections, we will focus on hardware security challenges from the stand point of efficient
implementations of cryptographic primitives and protocols. Side channel attacks (especially power analysis) and
fault attacks usually pose as a major threat towards secure cryptographic designs from the standpoint of hardware
security, which will be the main focus of this section.

4.1.1 Generic Side channel protection approaches. Side-channel countermeasures against power analysis attacks
have been developed on two different lines: leakage hiding and leakage randomisation.

Leakage Hiding Countermeasures

Leakage hiding aims at data independent processing which removes any side-channel basis. Dual-rail precharge
logic (DPL) are a fair representative of this class of countermeasures [83]. DPL leads to over two times overhead
both in area and time/performance. It suffers from two security vulnerabilities i.e. early propogation effect and
routing imbalance [31]. Fixing any of these vulnerabilities leads to more elaborate design leading to area/performance
overheads [18, 38] and thus compromising security with efficiency (Type SYS.TE and SYS. SE). Similarly, there are
also known leakage countermeasures that work in the time domain that work by randomizing the occurence of the
sensitive operations. But, Clavier et al. in [28] showed that desyncrhonizing the sensitive operations within a time
window of ¢ will only lead to a linear increase in the number of execution traces required by the attacker to perform
the attack, while increasing ¢ clearly hampers performance of the design (Type SYS.TE).

One of the most fundamental requirements for a side channel resistant design is to run in constant time so as to
not leak information about data through side channels. But, constant time implementations are usually slower and
time consuming to implement. For instance, the variable time operation of the base field operations in Wolfssl or
Openssl implementations were exploited through timing attacks reported in [3]. Though not all timing variations are
directly related to the secret, which might seem to mitigate known side channel attacks, they have also been shown
to open the door to new attacks [34]. These instances can be classified under the Type SYS.TE.

Leakage Randomisation Countermeasures

The alternate line of countermeasures is built upon leakage masking which is used to randomise the leakage of
sensitive computations. We will consider private circuits [59], which form the basis of all masked implementations
which assume an attacker with very strong probing capabilities. A t-order private circuit requires the attacker to
probe t + 1 signals to get intelligible inormation on 1 — bit. Since each bit is represented by t — bits of the masked
implementation, the area/performance overheads are evident. A practical study on implementation aspects of private
circuits on FPGA was reported in [78] which reported a very large overhead of about 38% in the number of slices
and 9x in performance as compared to the unprotected design. They also demonstrated that CAD tools in the bid to
decrease CLB utilization and increase performance, optimize away the security measures employed in the private
circuit design and thus require to provide explicit constraints in order to prevent insecure optimizations. Thus, these
instances can be classified under the Type SYS. SE.

Similarly, building efficient algorithmic level masking countermeasures for asymmetric key cryptographic primitives
based on ECC and RSA also remains an elusive task. With a plethora of known attacks with different capabilities [40],
development of an efficient yet secure countermeasure to thwart all known attacks and possible future attacks is
a daunting task. For example, data re-randomisation countermeasure for secure ECC designs against the powerful
single execution attacks yield almost a two times increase in computational time [29]. These instances fall under the
Type SYS.TE.

4.1.2 Security Oblivious Power Management (Type SYS.PE). Power, energy and thermal management has become
a very crucial characteristic in today’s modern commodity hardware, right from the ubiquitous embedded systems
that are battery powered to the power hungry enterprise level systems. For instance, Dynamic Voltage Frequency
Scaling (DVES) is one of the most used techniques for energy management, wherein power consumption is regulated
based on runtime task demands, by controlling the two crucial factors that majorly contribute to power consumption
of the device - voltage and frequency. Tang et al. [82] demonstrated a remote fault attack on the ARM Trustzone
CPU possible due to a fundamental flaw in the security oblivious DVFS technique. Pervasive software access was
provided to the hardware registers which were used to control the voltage and frequency parameter of the device,
that allowed an attacker to inject faults into the computation through remote software commands. This instance
clearly demonstrates the need to employ efficiency improvements in secure designs with extreme caution and also
stresses the need for widespread security measures at every level of a secure design.

4.2 Software Security

For a long time, work on compiler optimizations have only focussed on ensuring functional coherence between the
source code and its compiler optimized version [64, 73]. But there have been a number of works across literature that
have revealed a very clear case of bumping into security errors where many a time compiler optimizations have lead
to violating a security guarantee made by the original source code [33, 85, 90]. The formalization of this problem was
first done by Silva et al. in [33] coining the term of correctness-security gap in compiler optimizations. This triggered a
large body of work to study and diminish the effect of compiler optimizations on security [32, 90]. Silva et al. [33]
point out to three types of vulnerabilities introduced by compiler optimizations.

(1) Information Leakage through Persistent State
(2) Code Elimination through Undefined Behaviour
(3) Side Channel Attacks

4.2.1 Information Leakage through Persistent State (Type SYS.TE). One of the most famous compiler optimizations
that is known for its security flaws is the dead store elimination (DSE). A secret key residing in memory is usually
overwritten with random data after use (or deleted), so as to avoid its persistence in memory. This scrubbed data is

never read again by the program, so this is sensed by the compiler and thus the last instruction which accesses the
memory location (i.e) the scrubbing instruction is optimized away thus leading to security issues. Though this issue
has been known for quite sometime and has been claimed to be preventable through a variety of techniques [42, 60, 67],
a recent work by Yang et al. [90] evaluated the known techniques used in various security projects and noticed that
many of them are flawed. They propose a scrubbing-safe DSE optimization, but it still remains to be seen that DSE
can truly be trusted to be secure. Another well known optimization is the inline function call, which eliminates
overhead steps of explicitly calling a function. But it has the implication of merging of the stack frames of the caller
and callee function. Thus, any secret variable used inside a function lives for a longer time as it now becomes a part
of the callee function, which is a typical example of violating boundaries of trust-separated domains where a variable
could trespass the boundary implemented by the programmer. Code motion is another widely adopted optimization
technique, through which the compiler re-orders code by examining dependencies between the various instructions
used. This might again lead to a situation of a persistence of a secret variable in memory for a longer duration that
desired.

4.2.2 Code Elimination through Undefined Behaviour (Type SYS.SE). Wang et al. [85] point out to a curious case of
software bugs which they term as Optimization Unstable codes. These are code segments that can invoke undefined
behaviour by the program, for eg. divide by zero, referencing a null pointer, shifting an n bit integer by more than n
places etc. These type of codes are deemed to function erratically and thus the compilers more often than not take
advantage of these code segments and optimize them away under the assumption that these undefined behaviours
do not exist. Thus, any sanity checks like checking for an integer overflow or a null pointer reference will always
evaluate to false and will be considered to be dead code by the compiler to be optimized away. These optimizations can
sometime result in vulnerabilities based on buffer overflow or memory allocation. Wang et al. [85] also make a crucial
observation of a general trend in compilers becoming more and more aggressive with successive generations in doing
away with codes with undefined behaviour thus rising security concerns about their optimization characteristics.

4.2.3 Information Leakage through Side Channel (Type SYS.TE). Compiler optimizations are also considered to be
notorious in removing certain timing guarantees of the source code that were placed intentionally by the developer
to ensure constant time implementations. Well known optimizations like strength reduction, Peephole optimizations,
Common Subexpression Elimination etc. are techniques typically used by compilers for combination, simplification
and replacement of certain parts of codes trying to achieve more performance and lesser resource utilization. But,
usage of these optimizations more often than not, could lead to possible exploits through a number of side channel
attack vectors. Time critical parts of the code are sometimes written in inline assembly to ensure that compilers do
not perform any alteration leading to vulnerabilities. Similarly, there are countless instances littered across literature
dealing with compiler optimizations that clearly demonstrate yet another clear case of trying to reach the ever elusive
sweet-spot that remains hidden between the security and efficiency guarantees.

In complex applications like Internet of Things (IoT) and smart autonomous cars, developers are using many
generic complex software stacks wherein most cases, the knowledge of the low level architechture behaviour is
abstracted away. In such a scenario, implementation of cryptographic primitives encapsulated in several software
layers can lead to unforeseen security vulnerabilities. Automated countermeasure insertion against side channel
attacks at compilation time from a high level abstract language is a deep research topic. Though design using high
level languages makes the code easier to write, read and verify for implementation bugs and flaws, most of the
underlying levels are abstracted away. Both the underlying micro-architechture and the compilation can introduce
hidden information leakage [17, 71, 76]. The more the number of abstracted levels, lesser is the control over the actual
behaviour of implementation, thus might lead to unforeseen security bugs and vulnerabilities.

4.3 Hardware/Software Interface Security

Apart from hardening devices against attacks purely exploiting vulnerabilities either in hardware or software, it
is also important to know that there is also considerable leakage present at the interface between hardware and
software, which is more commonly known as the microarchitectural level. The trillion fold increase in computational
power over the last sixty years [45] can be attributed to a number of microarchitectural optimization strategies such
as Cache memories, Pipelining, Branch Prediction, Multi-threading, out of order execution, virtualization etc. But,
these optimizations also brought along with them hidden vulnerabilities that have been shown to be exploited by a
number of attacks, which together can be bracketed under the term of microarchitectural attacks.

Cache Memory hierarchy - A necessary evil

The ever increasing gap between processor and memory speeds, is greatly attributed to the bisection of the semicon-
ductor industry into two parts- Microprocessor and Memory [25]. While the microprocessor industry laid emphasis
on increasing the speed of the processor, capacity had been the main driver for the memory industry. Cache memories
were introduced in the 1960s in order to bridge this fast growing gap between processor and memory. Staring with
a single level cache, architectures evolved to have upto 3 levels of caches - with the caches closer to the processor
smaller and faster compared to the ones farther. There is an observable cache sharing hierarchy, wherein all cache
levels except the Last Level Cache are local to the processor. This resource sharing which leads to an observable
resource contention at multiple cache levels that allows for visibility of activities of other co-located entities that
contest for resources at the same level. This granularity in visibility also increases as one moves up from the Last
Level Cache (LLC) to the first level cache which is the closest to the processor.

Caches were traditionally only used to store instruction and data (Using D-cache for data and I-Cache for in-
struction) to increase system performance. But, there are also other smaller caches that are local to a processor
core. Translational look-aside buffer, (TLB) which store page translation addresses used during page mapping and
Branch Target Buffer (BTB) which store the branching addresses of upcoming branch instructions with the help of
the Branch Prediction Unit (BPU) are a few examples of the same. In addition to speeding up information access
from memory, the cache access times almost always depend on either the data value or the address or both. This
differential behaviour of cache memory access towards data has been exploited in a wide variety of attacks which
together can be referred to as Cache Timing Attacks.

Achieving Parallelism through Resource Sharing (Type SYS.SE and SYS.TE)

Instrucion level parallelism is another key objective that had been the main focus of architecture designers to
improve processor resource utilization and achieve execution of multiple instructions per clock cycle. Several archi-
tectural level design optimizations like symmetric multi-processing, hardware multi-threading, out of order execution
and speculative execution were used to achieve the afore mentioned objective. This resource sharing resulted in
observable resource contention at a very fine level at various execution units like ALUs, FPUs, memory controllers,
system buses, interconnects etc. Thus, any entity like a parallel thread, process or a Virtual Machine will be able to
observe the footprint of other similar co-located entities on contended resources at the same level. For eg. one can
observe resource contention of execution units and L1 cache at a thread level or between processes or VMs running
on the same core, while the resource contention between two entities located on different cores is only observable at
lower levels like the Last Level Cache, system bus etc. Resource contention at multiple levels acrorss the processor
hierarchy renders visibility of behaviour of other co-locatd entities mainly through timing-channels, which has lead
to a number of microarchitectural attacks.

4.3.1 Reported Attacks. Gu et al. [43], in their survey of microarchitectural timing attacks broadly classify the
same based on two axes - according to the level of sharing and the degree of concurrency required for the attack. While
an attacker at the top level enjoys a very fine grained visibility of a co-located victim’s behaviour, an attacker working
at the bottom, at the bus level can only observe something close to the overall throughput variation. Similarly, an
attacker at the thread level only requires to perform pre-emptive multitasking, while an attacker at the Last Level
Cache requires true concurrency with the victim process to perform the attack.

4.3.2 Based on Attack styles. Exploitation of resource contention at caches have been achieved through different
attack styles like PRIME+PROBE, FLUSH+RELOAD, EVICT+TIME, MELTDOWN and SPECTRE. These are majorly
side channel attacks that typically rely on timing leakage coming from resource contention observable across various
levels of the cache hierarchy. Refer to Tab.3 for the description of the various reported styles of microarchitectural
timing attacks.

There are other types of attacks that use cache as a covert channel to perform Denial of Service attacks [86] that
can saturate the caches with the attacker’s own data leading to serious performance degradation for the victim. These
style of attacks have also been known to be performed on other types of caches like TLB [58] and BPU [2].

10

Class of Attack Description

PRIME+PROBE The attacker first primes the cache by filling it with its own lines in one or more sets.
Once the victim finishes its execution, the attacker probes the previously loaded lines to
observe any observable timing difference in the memory accesses.

FLUSH+RELOAD An exact inverse of the PRIME+PROBE attack, wherein the attacker flushes the cache indexed
by virtual addresses and lets the victim to execute.
Once the victim has finished execution, the attacker reloads the same lines to check if the
victim has accessed any of the same lines.

EVICT+TIME A similar approach as that of the PRIME+PROBE attack, but first lets the victim run to
observe the average run time.
The attacker then evicts certain lines of interest and lets the victim run again to observe
timing differences based on which some inference can be made on the victim’s internal state.

MELTDOWN Relies on execution of so called transient instructions (instructions which follow after a
branch instruction or an exception) that are not meant to be executed by the victim.
The Out of order execution technique used to increase time efficiency is exploited in this
kind of attack, whose activity can be observed in the shared caches across various levels.
MELTDOWN results in a privilege escalation vulnerability specific to Intel processors through
execution of instructions after an instruction trap.

SPECTRE These attacks exploit the speculative execution technique used to predict direction of branch-
ing instructions, thus relying on execution of transient instructions.
Though the results of these transient instructions are thrown away, their footprints are not
erased from the shared caches across various levels.
These attacks which can result read arbitrary memory from victim’s process, apply to Intel,
AMD and ARM processors.

Table 3. Different styles of microarchitectural timing attacks exploiting resource contention at the shared cache memories

4.3.3 Based on level of sharing: (Type SYS.SE and SYS.TE)
Given the visibility of co-located entities rendered possible by resource sharing, attacks have been reported over a
multiple of levels in the processor hierarchy. They are

(1) Thread Shared State
(2) Core Shared State

(3) Package Shared State
(4) System Shared State

An attacker present at the thread level usually observes contention at thread shared resources like ALUs [4],
BTB [2], FPU [8], BPU [39], return stack buffers [24] etc. Attacks at the Core shared state [9, 15, 72] typically target
activity in the L1 and L2 level caches due to contention among different threads and processes running on the same
core. Attacks at the Package shared state [48, 49, 91] target activity in the Last Level Cache which is typically shared
by multiple processors on the same core. These attacks typically have to work with lesser granularity in observing
the victim’s behaviour and require more concurrency with the victim entity residing on the other core. Contention
on system level resources like System buses, processor interconnects and system interfaces like PCIExpress have also
been shown to be exploitable by a number of covert channel, side channel and DOS style attacks [77, 80, 89].

With the above cited literature on microarchitectural attacks across the entire processor hierarchy, we can clearly
see that major architectural optimization techniques have been employed without foreseeing the possible security
threats. These instances observable at the interface between hardware and software again stand as evidence of the
eternal conflict between security and efficiency.

11

5 PROPOSAL FOR A SECURITY AWARE DESIGN FLOW

In Sections 2,3,4, we surveyed as many references as possible available in literature from academia and the industry
to provide evidence of the ever existing trade-off between security and efficiency across multiple layers of the
cryptography stack. We could see that optimization strategies somehow always opened gates to some unforseeable
security vulnerability or protecting against powerful attacks becomes a very costly affair from a designer’s perspective,
who always targets high performance and low resource utilization. Since vulnerabilities can be introduced at any
level, a security engineer’s job to ensure security at each and every level becomes a paramount task.

No longer can security be considered as an afterthought for a digital system design. Incorporation of security
to existing digital systems using an ad-hoc approach has only lead to a number of attacks as seen in previous
sections [16, 35, 36, 46]. Also some of the optimization techniques like cache memory hirarchy, out of order execution,
speculative execution, branch prediction etc. were introduced long before security was being seriously considered
as being a threat to digital computer systems. With an ever increasing number of types of attacks and the attack
surfaces, it is now supremely important to integrate the notion of security into each and every level of the design
flow of a digital system.

We would like to propose a fully security aware design flow that would be useful for a security engineer who is
required to incorporate all the required and necessary security measures and functionalities for any given application.
Refer Fig.1 for our proposal for a security aware design flow, which tries to incorporate security at each and every
step of the design flow for both hardware and software implementations.

-

Application Description]

|

Identification of all the required cryptographic primitives (
for application in hand, and identification of adversarial Security Specification
capabilities relevant to the primitives. \

|

p N
Choice of Implementation I [Identification of physical adversarial model and possible

) L Platform attack surfaces
Identification of weak instances of all primitives, and \ l
identification of safe algorithms for all procedures in the p
primitives. Identification of minimum security level for Choice of Cryptographic
the implementation platform. Primitives
L
_ Addresses PRL.TE, PRI.SE and PRI.PE Y, l Ensuring presence of all the required cryptographic

primitives in the cryptographic suite, and

hoi f -fi
i aileRsHi identification of bad use cases of the protocol

Cryptographic Protocol
l Addresses PRO.TE, PRO.SE

Re-visit and Re-evaluate the security proofs even on -
insignificant changes Incorporation of Custom
Optimizations

Addresses PRO.TE, PRO.SE

Partitioning

—

Hardware/Software]

Ensuring functionality of implemented primitives and
protocol as per the security specification, and

Hardware/Software hardening the primitives with best known
Description countermeasures against possible attacks.
\
Security analysis of utilized optimizations to remove Addresses SYS.TE, SYS.PE and SYS.SE)
unwanted security vulnerabilities "
L . Incorporation of Custom
Use optimizations with extreme care L
Optimizations
Addresses SYS.TE, SYS.PE and SYS.SE ST -
J Cross check optimizations done by compilers whether
(unwanted security vulnerabilities are introduced or
Compilation/Build countermeasures removed.
\
Addresses SYS.TE and SYS.SE Y,

Fig. 1. Our proposal for a Security Aware Design Flow

12

6 CONCLUSION

In this position paper, we have shown numerous examples about how security and efficiency stands in sharp contrast
with each other. This is a fact that is not yet well understood in the design community, leading to regular and severe
security breaches. The vulnerabilities presented in this paper shows security issues across multiple design layers
and due to the pursuit to achieve different performance objectives, e.g., space, time and power. Consequently, we
advocate a security-aware design flow that includes security as an architectural design constraint. This work calls for
the development of an early design space exploration tool that includes security as a quantifiable metric. Further
interesting directions could be to study the interplay between security wrappers in different design layers.

REFERENCES

[1] CAESAR Competition. https://competitions.cr.yp.to/caesar-submissions.html. Accessed: 2018-04-01.

[2] Onur Acii¢cmez, Cetin Kaya Kog, and Jean-Pierre Seifert. Predicting secret keys via branch prediction. In Cryptographers Track at the RSA
Conference, pages 225-242. Springer, 2007.

[3] Onur Aciicmez and Werner Schindler. A vulnerability in rsa implementations due to instruction cache analysis and its demonstration on
openssl. In Tal Malkin, editor, Topics in Cryptology — CT-RSA 2008, pages 256-273. Springer Berlin Heidelberg, 2008.

[4] Onur Aciicmez and Jean-Pierre Seifert. Cheap hardware parallelism implies cheap security. In Fault Diagnosis and Tolerance in Cryptography,
2007. FDTC 2007. Workshop on, pages 80-91. IEEE, 2007.

[5] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry, Matthew Green, J Alex Halderman, Nadia Heninger, Drew Springall,
Emmanuel Thomé, Luke Valenta, et al. Imperfect forward secrecy: How diffie-hellman fails in practice. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 5-17. ACM, 2015.

[6] Nadhem J Al Fardan and Kenneth G Paterson. Lucky thirteen: Breaking the tls and dtls record protocols. In Security and Privacy (SP), 2013
IEEE Symposium on, pages 526-540. IEEE, 2013.

[7] Erdem Alkim, Léo Ducas, Thomas Péppelmann, and Peter Schwabe. Post-Quantum Key Exchange-A New Hope. In USENIX Security
Symposium, pages 327-343, 2016.

[8] Marc Andrysco, David Kohlbrenner, Keaton Mowery, Ranjit Jhala, Sorin Lerner, and Hovav Shacham. On subnormal floating point and
abnormal timing. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 623-639. IEEE, 2015.

[9] Gorka Irazoqui Apecechea, Mehmet Sinan Inci, Thomas Eisenbarth, and Berk Sunar. Fine grain cross-vm attacks on xen and vmware are
possible! IACR Cryptology ePrint Archive, 2014:248, 2014.

[10] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng Sim, and Yosuke Todo. Gift: a small present. In International
Conference on Cryptographic Hardware and Embedded Systems, pages 321-345. Springer, 2017.

[11] Elaine Barker. Recommendation for key management part 1: General. NIST special publication, 2016.

[12] Ray Beaulieu, Stefan Treatman-Clark, Douglas Shors, Bryan Weeks, Jason Smith, and Louis Wingers. The simon and speck lightweight block
ciphers. In Design Automation Conference (DAC), 2015 52nd ACM/EDAC/IEEE, pages 1-6. IEEE, 2015.

[13] Christof Beierle, Jérémy Jean, Stefan Kélbl, Gregor Leander, Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim.
The skinny family of block ciphers and its low-latency variant mantis. In Annual Cryptology Conference, pages 123-153. Springer, 2016.

[14] Thierry P Berger and Pierre Loidreau. How to mask the structure of codes for a cryptographic use. Designs, Codes and Cryptography,
35(1):63-79, 2005.

[15] Daniel J Bernstein. Cache-timing attacks on aes. 2005.

[16] Tal BeaAZery and Amichai Shulman. A perfect crime? only time will tell. Black Hat Europe, 2013, 2013.

[17] Shivam Bhasin, Nicolas Bruneau, Jean-Luc Danger, Sylvain Guilley, and Zakaria Najm. Analysis and improvements of the DPA contest v4
implementation. In Security, Privacy, and Applied Cryptography Engineering - 4th International Conference, SPACE 2014, Pune, India, October
18-22, 2014. Proceedings, pages 201-218, 2014.

[18] Shivam Bhasin, Sylvain Guilley, Florent Flament, Nidhal Selmane, and Jean-Luc Danger. Countering early evaluation: an approach towards
robust dual-rail precharge logic. In Proceedings of the 5th Workshop on Embedded Systems Security, page 6. ACM, 2010.

[19] Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Christof Paar, Axel Poschmann, Matthew JB Robshaw, Yannick Seurin, and Charlotte
Vikkelsoe. Present: An ultra-lightweight block cipher. In International Workshop on Cryptographic Hardware and Embedded Systems, pages
450-466. Springer, 2007.

[20] Dan Boneh, Richard A DeMillo, and Richard J Lipton. On the importance of checking cryptographic protocols for faults. In International
conference on the theory and applications of cryptographic techniques, pages 37-51. Springer, 1997.

[21] Dan Boneh and Glenn Durfee. Cryptanalysis of rsa with private key d less than n/sup 0.292. IEEE transactions on Information Theory,
46(4):1339-1349, 2000.

[22] Dan Boneh, Glenn Durfee, and Yair Frankel. An attack on rsa given a small fraction of the private key bits. In International Conference on the
Theory and Application of Cryptology and Information Security, pages 25-34. Springer, 1998.

[23] Joppe Bos, Léo Ducas, Eike Kiltz, Tancréde Lepoint, Vadim Lyubashevsky, John M Schanck, Peter Schwabe, and Damien Stehlé. CRYSTALS -
Kyber: a CCA-secure module-lattice-based KEM. Technical report, 2017.

[24] Yuriy Bulygin. Cpu side-channels vs. virtualization malware: The good, the bad, or the ugly. Proceedings of the ToorCon, 2008.

[25] Carlos Carvalho. The gap between processor and memory speeds. In Proc. of IEEE International Conference on Control and Automation, 2002.

[26] Hao Chen, Kristin Lauter, and Katherine E Stange. Attacks on search RLWE. https://www.microsoft.com/en-us/research/publication/attacks-
on-search-rlwe/, 2015.

13

https://competitions.cr.yp.to/caesar-submissions.html

[27] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene Peralta, Ray Perlner, and Daniel Smith-Tone. Report on post-quantum
cryptography. US Department of Commerce, National Institute of Standards and Technology, 2016.

[28] Christophe Clavier, Jean-Sébastien Coron, and Nora Dabbous. Differential power analysis in the presence of hardware countermeasures. In
International Workshop on Cryptographic Hardware and Embedded Systems, pages 252-263. Springer, 2000.

[29] Jean-Sébastien Coron. Resistance against differential power analysis for elliptic curve cryptosystems. In International Workshop on
Cryptographic Hardware and Embedded Systems, pages 292-302. Springer, 1999.

[30] Ronald Cramer, Léo Ducas, Chris Peikert, and Oded Regev. Recovering short generators of principal ideals in cyclotomic rings. In Annual
International Conference on the Theory and Applications of Cryptographic Techniques, pages 559-585. Springer, 2016.

[31] Jean-Luc Danger, Sylvain Guilley, Shivam Bhasin, and Maxime Nassar. Overview of dual rail with precharge logic styles to thwart
implementation-level attacks on hardware cryptoprocessors. In Signals, Circuits and Systems (SCS), 2009 3rd International Conference on,
pages 1-8. IEEE, 2009.

[32] Chaogiang Deng and Kedar S Namjoshi. Securing a compiler transformation. In International Static Analysis Symposium, pages 170-188.
Springer, 2016.

[33] Vijay D’Silva, Mathias Payer, and Dawn Song. The correctness-security gap in compiler optimization. In Security and Privacy Workshops
(SPW), 2015 IEEE, pages 73-87. IEEE, 2015.

[34] Margaux Dugardin, Sylvain Guilley, Jean-Luc Danger, Zakaria Najm, and Olivier Rioul. Correlated extra-reductions defeat blinded regular
exponentiation. In Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th International Conference, Santa Barbara, CA, USA,
August 17-19, 2016, Proceedings, pages 3-22, 2016.

[35] T Duong and J Rizzo. Beast: Surprising crypto attack against https. Blog, September, 42:45-47, 2011.

[36] Thai Duong and Julianno Rizzo. The crime attack. https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_
-1Ca2GizeuOfaLU2HOU/edit#slide=id.g1d134dff 1_222.

[37] Morris] Dworkin. Sha-3 standard: Permutation-based hash and extendable-output functions. Technical report, 2015.

[38] Maik Ender, Alexander Wild, and Amir Moradi. Safedrp: Yet another way toward power-equalized designs in fpga. In International Workshop
on Constructive Side-Channel Analysis and Secure Design, pages 83-101. Springer, 2017.

[39] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over aslr: Attacking branch predictors to bypass aslr. In Microarchi-
tecture (MICRO), 2016 49th Annual IEEE/ACM International Symposium on, pages 1-13. IEEE, 2016.

[40] Junfeng Fan, Xu Guo, Elke De Mulder, Patrick Schaumont, Bart Preneel, and Ingrid Verbauwhede. State-of-the-art of secure ecc implementations:
a survey on known side-channel attacks and countermeasures. In Hardware-Oriented Security and Trust (HOST), 2010 IEEE International
Symposium on, pages 76-87. IEEE, 2010.

[41] PUB FIPS. 180-4. Secure hash standard (SHS), March, 2012.

FreeBSD. explicit_bzero - freebsd library functions manual. https://www.freebsd.org/cgi/man.cgi?query=explicit_bzero&sektion=3.

[43] Qian Ge, Yuval Yarom, David Cock, and Gernot Heiser. A survey of microarchitectural timing attacks and countermeasures on contemporary
hardware. Journal of Cryptographic Engineering, pages 1-27, 2016.

[44] Vahid Amin Ghafari, Honggang Hu, and Ying Chen. Fruit-v2: ultra-lightweight stream cipher with shorter internal state. IACR Cryptology
ePrint Archive, 2016:355, 2016.

[45] GIZMODO. The trillion fold increase in computing power, visualized. https://gizmodo.com/
the-trillion-fold-increase-in-computing-power-visualiz-1706676799.

[46] Yoel Gluck, Neal Harris, and Angelo Prado. Breach: reviving the crime attack. Unpublished manuscript, 2013.

[47] Lov K Grover. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on
Theory of computing, pages 212-219. ACM, 1996.

[48] Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. Flush+ flush: a fast and stealthy cache attack. In International
Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 279-299. Springer, 2016.

[49] Daniel Gruss, Raphael Spreitzer, and Stefan Mangard. Cache template attacks: Automating attacks on inclusive last-level caches. In USENLX

Security Symposium, pages 897-912, 2015.

Jian Guo, Thomas Peyrin, and Axel Poschmann. The photon family of lightweight hash functions. In Annual Cryptology Conference, pages

222-239. Springer, 2011.

Jian Guo, Thomas Peyrin, Axel Poschmann, and Matt Robshaw. The led block cipher. In Cryptographic Hardware and Embedded Systems—CHES

2011: 13th International Workshop, Nara, Japan, September 28—October 1, 2011, Proceedings, volume 6917, page 326. Springer, 2011.

[52] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on mdpc with cca security using decoding errors. In International
Conference on the Theory and Application of Cryptology and Information Security, pages 789-815. Springer, 2016.

[53] Matthias Hamann, Matthias Krause, and Willi Meier. Lizard-a lightweight stream cipher for power-constrained devices. IACR Transactions
on Symmetric Cryptology, 2017(1):45-79, 2017.

[54] Johan Hastad. Solving simultaneous modular equations of low degree. siam Journal on Computing, 17(2):336-341, 1988.

[55] Martin Hell, Thomas Johansson, and Willi Meier. Grain: a stream cipher for constrained environments. International Journal of Wireless and
Mobile Computing, 2(1):86-93, 2007.

[56] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Mining your ps and gs: Detection of widespread weak keys in
network devices. In USENIX Security Symposium, volume 8, page 1, 2012.

[57] James Howe, Ciara Moore, Maire O’Neill, Francesco Regazzoni, Tim Giineysu, and Kevin Beeden. Lattice-based encryption over standard

lattices in hardware. In Proceedings of the 53rd Annual Design Automation Conference, page 162. ACM, 2016.

Ralf Hund, Carsten Willems, and Thorsten Holz. Practical timing side channel attacks against kernel space aslr. In Security and Privacy (SP),

2013 IEEE Symposium on, pages 191-205. IEEE, 2013.

—
N
Do

—

—
(54
(=}

[t

—
i
=

—

—
(3}
(¢S]

—

14

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit%23slide=id.g1d134dff_1_222
https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-lCa2GizeuOfaLU2HOU/edit%23slide=id.g1d134dff_1_222
https://www.freebsd.org/cgi/man.cgi?query=explicit_bzero&sektion=3
https://gizmodo.com/the-trillion-fold-increase-in-computing-power-visualiz-1706676799
https://gizmodo.com/the-trillion-fold-increase-in-computing-power-visualiz-1706676799

(69]
[70]
(71]
(72]
(73]
(74]

(75]

[76]
(77]
(78]
(79]
(80]
(81]
(82]
(83]

(84]

Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware against probing attacks. In Annual International Cryptology
Conference, pages 463—481. Springer, 2003.

ISO/IEC. Iso/iec 9899:201x for ¢ programming language. http://www.open-std.org/jtc1/sc22/wgl4/www/docs/n1548.pdf.

Sachin Kumar, Jawad Haj-Yahya, Mustafa Khairallah, and Anupam Chattopadhyay. A Comprehensive Performance Analysis of Hardware
Implementations of CAESAR Candidates. Technical report, 2018.

Zhe Liu, Hwajeong Seo, Sujoy Sinha Roy, Johann Grofschadl, Howon Kim, and Ingrid Verbauwhede. Efficient Ring-LWE encryption on 8-bit
AVR processors. In International Workshop on Cryptographic Hardware and Embedded Systems, pages 663-682. Springer, 2015.

Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings. J. ACM, 60(6):43, 2013.

John McCarthy and James Painter. Correctness of a compiler for arithmetic expressions. Mathematical aspects of computer science, 1, 1967.
Robert] McEliece. A public-key cryptosystem based on algebraic. Coding Thv, 4244:114-116, 1978.

Daniele Micciancio. Generalized compact knapsacks, cyclic lattices, and efficient one-way functions. Computational Complexity, 16(4):365-411,
2007.

Microsoft. Securezeromemory function. https://msdn.microsoft.com/en-us/library/windows/desktop/aa366877(v=vs.85).aspx.

Vasily Mikhalev, Frederik Armknecht, and Christian Miiller. On ciphers that continuously access the non-volatile key. IACR Transactions on
Symmetric Cryptology, 2016(2):52-79, 2017.

Rafael Misoczki and Paulo SLM Barreto. Compact mceliece keys from goppa codes. In International Workshop on Selected Areas in Cryptography,
pages 376-392. Springer, 2009.

Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo SLM Barreto. Mdpc-mceliece: New mceliece variants from moderate density
parity-check codes. In Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, pages 2069-2073. IEEE, 2013.

Amir Moradi, Sylvain Guilley, and Annelie Heuser. Detecting hidden leakages. In Applied Cryptography and Network Security - 12th
International Conference, ACNS 2014, Lausanne, Switzerland, June 10-13, 2014. Proceedings, pages 324-342, 2014.

Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the case of aes. In Cryptographers’ Track at the RSA
Conference, pages 1-20. Springer, 2006.

James A Painter. Semantic correctness of a compiler for an algol-like language. Technical report, STANFORD UNIV CALIF DEPT OF
COMPUTER SCIENCE, 1967.

Thomas Péppelmann, Léo Ducas, and Tim Giineysu. Enhanced lattice-based signatures on reconfigurable hardware. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 353-370. Springer, 2014.

Thomas Péppelmann, Tobias Oder, and Tim Giineysu. High-performance ideal lattice-based cryptography on 8-bit atxmega microcontrollers.
In Progress in Cryptology - LATINCRYPT 2015 - 4th International Conference on Cryptology and Information Security in Latin America, Guadalajara,
Mexico, August 23-26, 2015, Proceedings, pages 346-365, 2015.

Pablo Rauzy, Sylvain Guilley, and Zakaria Najm. Formally proved security of assembly code against power analysis - A case study on balanced
logic. J. Cryptographic Engineering, 6(3):201-216, 2016.

Andre Richter, Christian Herber, Holm Rauchfuss, Thomas Wild, and Andreas Herkersdorf. Performance isolation exposure in virtualized
platforms with pci passthrough i/o sharing. In International Conference on Architecture of Computing Systems, pages 171-182. Springer, 2014.
Debapriya Basu Roy, Shivam Bhasin, Sylvain Guilley, Jean-Luc Danger, and Debdeep Mukhopadhyay. From theory to practice of private
circuit: A cautionary note. In Computer Design (ICCD), 2015 33rd IEEE International Conference on, pages 296-303. IEEE, 2015.

Vladimir Michilovich Sidelnikov. A public-key cryptosystem based on binary reed-muller codes. Discrete Mathematics and Applications,
4(3):191-208, 1994.

WonJun Song, John Kim, Jae-Wook Lee, and Dennis Abts. Security vulnerability in processor-interconnect router design. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security, pages 358—-368. ACM, 2014.

Petr Svenda, Mati$ Nemec, Peter Sekan, Rudolf Kvasnovsky, David Formanek, David Komarek, and Vashek Matyas. The million-key
question-investigating the origins of rsa public keys. In 25th USENIX Security Symposium. Proceedings, 2016.

Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. Clkscrew: exposing the perils of security-oblivious energy management. In 26th
USENIX Security Symposium, 2017.

Kris Tiri and Ingrid Verbauwhede. A logic level design methodology for a secure dpa resistant asic or fpga implementation. In Proceedings of
the conference on Design, automation and test in Europe-Volume 1, page 10246. IEEE Computer Society, 2004.

Serge Vaudenay. Security flaws induced by cbc padding-applications to ssl, ipsec, wtls... In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 534-545. Springer, 2002.

Xi Wang, Nickolai Zeldovich, M Frans Kaashoek, and Armando Solar-Lezama. Towards optimization-safe systems: Analyzing the impact of
undefined behavior. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles, pages 260-275. ACM, 2013.

Yao Wang and G Edward Suh. Efficient timing channel protection for on-chip networks. In Networks on Chip (NoCS), 2012 Sixth IEEE/ACM
International Symposium on, pages 142-151. IEEE, 2012.

Florian Weimer. Factoring rsa keys with tls perfect forward secrecy, 2015.

Michael] Wiener. Cryptanalysis of short rsa secret exponents. IEEE Transactions on Information theory, 36(3):553-558, 1990.

Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: High-speed covert channel attacks in the cloud. In USENIX Security
symposium, pages 159-173, 2012.

Zhaomo Yang, Brian Johannesmeyer, A Trier Olesen, Sorin Lerner, and Kirill Levchenko. Dead store elimination (still) considered harmful. In
26th USENIX Security Symposium. USENIX Association, 2017.

Yuval Yarom and Katrina Falkner. Flush+ reload: A high resolution, low noise, 13 cache side-channel attack. In USENIX Security Symposium,
pages 719-732, 2014.

15

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf
https://msdn.microsoft.com/en-us/library/windows/desktop/aa366877(v=vs.85).aspx

