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ABSTRACT
With over 42 billion USD market capitalization (October 2020),
Ethereum is the largest public blockchain that supports smart con-
tracts. Recent works have modeled transactions, tokens, and other
interactions in the Ethereum blockchain as static graphs to provide
new observations and insights by conducting relevant graph anal-
ysis. Surprisingly, there is much less study on the evolution and
temporal properties of these networks. In this paper, we investigate
the evolutionary nature of Ethereum interaction networks from a
temporal graphs perspective. We study the growth rate and model
of four Ethereum blockchain networks, active lifespan and update
rate of high-degree vertices. We detect anomalies based on tempo-
ral changes in global network properties, and forecast the survival
of network communities in succeeding months leveraging on the
relevant graph features and machine learning models.
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1 INTRODUCTION
The emergence of blockchain technology provides new scenarios
for transaction data mining. Generally speaking, blockchain is a
distributed ledger of transactions or records, stored in a chrono-
logical or sequential order. Owing to its decentralized, traceable,
immutable, and transparent nature (in most cases), blockchain is
expected to be critical in the ‘trust economy’ of the future [48].

Cryptocurrencies and blockchain are tightly coupled, since the
birth of blockchain technology with Bitcoin [55] over a decade ago.
Subsequently many cryptocurrencies and business applications laid
the foundation for inclusive decentralization and consensus-driven
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automation through incentives and smart contracts [15]. While
Bitcoin and similar cryptocurrency networks deal only with users
(wallets) transacting over blockchain, Ethereum [13] operates an
automation layer on top of a permissionless blockchain through
the smart contracts, which are autonomous agents that can execute
complex logic across a decentralized network.

With over USD 42 Billion market capitalization (October 2020),
Ethereum is the largest public blockchain that supports smart con-
tracts [18]. Ethereum is a transaction-based state-transition ma-
chine, where the state is made up of accounts. Transfer of asset
and information between accounts, recorded in the blockchain,
cause transitions in the Ethereum ‘world state’. There are two types
of accounts in Ethereum – users and contracts. Transactions in
Ethereum are initiated by user accounts, signed with their private
keys, while internal messages in Ethereum can be generated by con-
tract accounts. Ether is the primary asset (currency) for Ethereum
blockchain. In addition to ether, Ethereum blockchain allows cre-
ation of Tokens, an abstraction of digital assets, via relevant meth-
ods implemented through smart contracts. Similar to transacting
ether (the base currency), Ethereum accounts may also transact
in various Tokens, through mechanisms defined in the respective
smart contracts. This allows for a complex asset-transfer-ecosystem
of various fungible (e.g., ERC20) and non-fungible (e.g., ERC721)
tokens (assets) to flourish on Ethereum blockchain.

Ethereum, and similar public blockchains supporting smart con-
tracts, also bring forth a fascinating ecosystem of humans (users)
and autonomous agents (contracts), cohabiting the underlying
blockchain fabric. It is neither like online social networks, where
the players are all human users, nor like the core financial networks,
where all interactions are transfer of value or asset. In essence, a
blockchain network like Ethereum is closer to the Internet or Web,
where users and programs are allowed to interact with one another,
following predefined rules of engagement. In addition to this Web-
like architecture, there is also an interaction framework for smart
contracts (agents), where they can call, invoke, or kill each other to
maintain and advance the ‘world state’ of the blockchain.

This motivates us to study Ethereum blockchain, as a representa-
tive of similar public blockchain networks supporting decentralized
automation through smart contracts. We are interested in all inter-
actions in the ecosystem: user-to-user, user-to-contract, contract-
to-user, and contract-to-contract [44]. Details of our interaction
networks are presented in § 3.
Motivation.Recentworks [3, 15, 26, 36, 44, 67, 68, 71, 71] havemod-
eled transactions, tokens, and other interactions in the Ethereum
blockchain as static graphs to provide new observations and in-
sights by conducting relevant graph analysis. Surprisingly, there is
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much less study on the evolution and temporal properties of these
networks. In this paper, we investigate the evolutionary nature of
Ethereum interaction networks from a temporal graph perspective.
Specifically, we aim at addressing three main research questions:
(1) How do Ethereum blockchain networks evolve over time? What
growth model do they follow? What is the active lifespan of each
vertex? How do the high-degree vertices change over time?
(2) How network properties (e.g., reciprocity, assortativity, cluster-
ing coefficient, core decomposition) change over time for Ethereum
blockchain networks? Do they indicate anomalies and other exter-
nal aspects of the network (e.g., popularity, exchanges)? What is
the right “time granularity” for such temporal analysis?
(3) Can we detect meaningful communities in Ethereum blockchain
networks, and also forecast the ‘continuation’ (survival) of these
communities in succeeding months leveraging on the relevant
graph properties (features) and machine learning models?

Contributions. Our main contributions are as follows.
(1) To the best of our knowledge, we are the first to conduct a
comprehensive study of the evolutionary, temporal, and predictive
aspects of the large-scale Ethereum blockchain network, cohab-
ited by both human users and autonomous smart contracts. We
investigate their complex interactions by constructing four tem-
poral networks from the entire Ethereum blockchain data, namely
TraceNet, ContractNet, TransactionNet, and TokenNet, at various
time granularities. We open source our code and dataset [79].
(2)We study the annual growth rate of four blockchain networks,
demonstrating that Ethereum interaction networks are growing
at a fast speed and the account information is updated at a fast
pace, however all the graphs get sparser and mature over time, and
follow the preferential attachment growth model. The user accounts
remain active much longer than smart contracts on Ethereum (§ 4).
(3) We employ global network properties such as reciprocity, as-
sortativity, clustering coefficient, and core decomposition, to detect
significant changes and anomalies over Ethereum blockchain net-
works. We correlate these anomalies with external aspects of the
network, e.g., popularity, exchanges, and systematically drill-down
to the appropriate time granularity for our analyses (§ 5).
(4)We forecast the ‘continuation’ (survival) of certain network com-
munities in succeeding months leveraging on the relevant graph
properties (as features) and machine learning models, achieving up
to 77% correct predictions for continuation (§ 6).

Our results will be useful for emerging fields such as blockchain
intelligence (https://blockchaingroup.io) and blockchain-based so-
cial networks [58, 60] that are building blockchain search engines,
making use of data mining and analytics skills to help clients avoid
transaction risks. We matched our network analysis results with
real-world incidents (§ 4, 5, 6). Researchers working in natural
language processing and sentiment analysis using tweets and on-
line articles about blockchain [41, 72] can find supporting views
and references from our work. Our community longevity predic-
tion method and results (§6) can be utilized by companies to build
blockchain ecosystems.

2 RELATEDWORK
Graph analyses of cryptocurrency networks. Several works
have studied Bitcoin and other cryptocurrency networks based

on graph theory and network analyses. These studies have been
feasible due to the transparency offered by public permissionless
blockchain, which allows anyone to access transactional informa-
tion on the networks. Graph analyses of blockchain started with
the motivation of de-anonymizing the “pseudonymous” Bitcoin
accounts, via clustering addresses based on transaction behav-
ior [17, 50]. Similar analyses have since been performed on other
“anonymous” cryptocurrencies like Monero [54], Zcash [35], and
across different cryptocurrency ledgers [77]. BitIodine [69] and
Elliptic [1] performed chain analysis on the Bitcoin transaction
network to extract intelligence. Other works measured network
characteristics to predict the market-price of Bitcoin [31, 39, 75],
search for influential patterns [24], information propagation [20],
stability of Bitcoin P2P network [21], among others.
Network properties of transaction graphs. The large-scale net-
work properties of Bitcoin transaction graph were studied in [32,
64], and the abstraction of any blockchain as a transaction network
for analysis has been considered in [3]. Unlike our study of more
diverse interaction networks in the Ethereum blockchain, these
works were only about the bitcoin (or cryptocurrency) transac-
tion graph, where all interactions are transfer of value. Ferretti and
D’Angelo also studied only transactions in the Ethereum blockchain
[26] – not all types of network interactions. Somin et al. investi-
gated the entire address graph spanned by ERC20 token trade in
Ethereum blockchain [67], and also studied the social signals in the
Ethereum ERC20 token trading network [68]. Victor and Lüders
recently measured Ethereum-based ERC20 token networks [71].
Measurements on Ethereum blockchain network. To the best
of our knowledge, mainly two past works [15, 44] measured the
entire Ethereum blockchain network and all interactions therein
— via large-scale static graph analyses. These approaches closely
followed the norms of measuring social networks, Internet, and
the Web [2, 12, 25, 45, 53, 66, 74], as the entirety of the Ethereum
blockchain network presents itself as an equally complex system.
Surprisingly, none of the aforementioned works studied the evo-
lution and temporal properties of these networks. In this paper,
we investigate the evolutionary nature of Ethereum interaction
networks from temporal graphs perspective.
Temporal analyses of Ethereumblockchain network.Very re-
cently and almost concurrent to ours, Bai et al. [7] analyzed the evo-
lutionary behavior of various interactions in Ethereum blockchain
from a temporal graph point of view, and correlated them with the
average Ether price in a time window. Different from [7], we deeply
investigate the growth model of Ethereum blockchain network,
active lifespan of different types of vertices, how the network prop-
erties evolve at various time granularities and correlate them with
anomalies and other external factors of the network, and last but
not least, leveraging on the relevant graph properties (features) and
machine learning models we forecast the ‘continuation’ (survival)
of network communities in Ethereum blockchain graphs.
Temporal analyses of social networks, Internet, and theWeb.
Prior studies focused on the evolution and growth of online social
networks, including Flickr, LiveJournal, Yahoo! 360, movie-actor,
email, and scientific collaboration networks [6, 33, 40, 43, 52, 56,
61]. Their major findings include (a) preferential attachment (or
its variant) growth model: vertices arrive one by one, and link
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themselves to a pre-existing vertex with probability proportional to
the degree of the latter, (b) proximity bias in link creation between
existing users, and (c) density of the network follows rapid growth,
decline, and then slow but steady growth.

Kleinberg [37, 38], Watts and Strogatz [73] proposed models to
explain the small-world phenomenon and navigability in social net-
works. Leskovec, Kleinberg, and Faloutsos [46] considered citation
graphs and showed that these exhibit densification and shrinking
diameters over time; they proposed a forest-fire graph model to
explain the decreasing diameter phenomenon. The linkage pattern
of blogs and the emergence of bursty communities in the blogspace
were studied in [42]. Structural properties of different snapshots of
the world-wide web graph and online collection growth in Pinterest
were investigated in [27, 59] and [47], respectively.

In the context of social network groups, the relationships be-
tween structural features of a group and its future growth were
analyzed in [6, 34]. Ribeiro et al. studied the recent evolution of the
‘Manosphere’, web-based misogynistic groups [63]. To the best of
our knowledge, we are first to analyze and forecast the ‘continua-
tion’ (survival) of communities in Ethereum blockchain network
(in fact, for any blockchain network) leveraging on the relevant
graph properties (features) and machine learning models.

3 DATASETS AND EXPERIMENTAL SETUP
There are two types of ‘accounts’ on Ethereum: (1) Externally
Owned Accounts (EOA) or User Accounts, operated with private
keys typically owned by human users/wallets, and (2) Contract
Accounts (CA), governed by the internal contract code acting as an
autonomous agent. There are a few special accounts in Ethereum,
like the Null address 0x01 used for contract creation, and the Burn
address2 used for ‘burning’ ether. There are four types of interaction
between these Ethereum accounts: (1) User-to-User (transaction or
token transfer), (2) User-to-Contract (call or kill), (3) Contract-to-
User (transaction or token transfer), and (4) Contract-to-Contract
(create, call, kill, or hard fork). Interactions from a User or Contract
to the Null address 0x0 denote creation of smart contracts, and
transactions to User or Contract accounts without a from address
denote generation of ether as mining rewards.
Table 1: Ethereum Blockchain Data : Block #0 to #9193265

Approximate Size of Dataset Row Count
contracts 21.7 GB 20440014
transactions 265 GB 611647042
traces 702 GB 1290574220
token transfers 97.7 GB 168407170

In this paper, we study temporal evolution of all these interac-
tions between Ethereum accounts, by constructing various interac-
tion networks from the Ethereum blockchain data, where vertices are
accounts (users or contracts) and arcs represent their interactions.
In past literature [15, 26, 44, 67, 68], different static interaction net-
works were constructed, such as money flow graph, smart contract
creation graph, smart contract invocation graph, transaction and
token networks. Following one of the most recent studies [44], we
consider four interaction graphs introduced below, which provide
us the most comprehensive view of all interactions in the Ethereum

1Null : https://etherscan.io/address/0x0000000000000000000000000000000000000000
2Burn : https://etherscan.io/address/0x000000000000000000000000000000000000dead

blockchain network. Since we are interested on the temporal analy-
sis, given a start and end time, we consider the accounts (vertices)
and interactions (arcs) present within that duration.

3.1 Data Extraction
Weextract all relevant data from the ethereum_blockchain dataset
under the Google Cloud bigquery-public-data repository [19]
till 2019-12-31 23:59:45 UTC, which amounts to all blocks from
genesis (#0) up to #9193265. Google BigQuery is a data warehouse
that handles large-scale data and makes it easy to access via SQL
interface. Ethereum blockchain data is available on it and is updated
daily. The entire blockchain data is stored in seven different tables,
out of which, we extract data from ‘contracts’, ‘token transfers’,
‘traces’, and ‘transactions’ tables for our temporal analysis (Table 1).

The traces table stores executions of all recorded (successful)
messages and transactions in the Ethereum blockchain. The from
and to addresses recorded in each trace help us create individual
arcs in the interaction network of Ethereum accounts (unique 20-
byte addresses), and it is also possible to group all traces triggered
by a particular transaction. This is the most comprehensive table
for analysis. The transactions table contains all transaction details
such as source and target address, and amount of ether transferred.
The transaction table contains all the transactions sent by user
accounts. Transactions carry messages containing value (ether) or
data (information) from a user to another user or to a smart con-
tract. Transaction table also contains “User to Null” transactions
that result in creation of new smart contracts. The contracts table
contains all Contract Accounts, their byte code and other proper-
ties of byte code such as block_timestamp, block_number, token
types (e.g., ERC721, ERC20). The token transfers table focuses on
all transactions with tokens on the blockchain.

3.2 Ethereum Blockchain Networks
We create four interaction networks to perform temporal analysis
on Ethereum blockchain, based on the extracted tables, as follows.
TraceNet is built from the ‘traces’ table. It contains all user and
smart contract accounts (in the given period) as vertices, and all
recorded messages and successful transactions as arcs. This is the
most comprehensive interaction network for the blockchain.
ContractNet is also constructed from the ‘traces’ table, since the
‘contracts’ table only contains information for each smart contract
account, and not their transactions. We build ContractNet by con-
sidering those transactions in the ‘traces’ table where both from
and to addresses are smart contracts (verified using the ‘contracts’
table). Therefore, ContractNet is a sub-graph of TraceNet.
TransactionNet is built based on the ‘transactions’ table, which
contains all transactions from user accounts to other users, smart
contracts, or the Null address 0x0. The vertices in the graph are
addresses (users, contracts, null) and the arcs are the transaction
activities (transfer of ether, call, kill, contract creation).
TokenNet is built based on the ‘token transfers’ table containing
the token-based transaction activities from one address to another.
The vertices are still addresses (users, contracts), but the arcs only
denote movement of tokens (e.g., ERC721, ERC20) of various types.

Importance of interaction networks. Each aforesaid interac-
tion network provides us with a distinctly different perspective

https://etherscan.io/address/0x0000000000000000000000000000000000000000
https://etherscan.io/address/0x000000000000000000000000000000000000dead
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Figure 1: Data extraction pipeline for Ethereum data analysis

on Ethereum blockchain [44] — “While TraceNet presents a global
view of interactions between Ethereum accounts, ContractNet fo-
cuses only on the automated multi-agent network of contracts,
providing us with a functional view of the Ethereum state machine.
TransactionNet helps us analyze the base ether transactions in the
blockchain, and TokenNet focuses on the rich and diverse token
ecosystem built on top of the Ethereum blockchain.”
Environment setup.We conduct the experiments on a single core
of a 32GB, 2.67GHz server. The code is implemented in Python 3.7.
NetworkX and python igraph libraries are used for our analysis.
We partially follow the planned data pipeline depicted in Figure 1,
where we will extract the tables from Google BigQuery, cache the
data in ORC files, create the four interaction networks in Neo4j
format, and finally analyze the derived graphs in python.
Open-sourcing data and tool. Our code and data corresponding
to the four extracted graphs are available at [79]. We are developing
an automatic ETL process (in Python), as described in Figure 1. We
plan to publish the automated toolchain in due course of time.

4 EVOLUTION OF THE ETHEREUM
BLOCKCHAIN NETWORKS

In this section, we investigate the following questions by analyzing
the annual changes in the four interaction networks. (a) How do
Ethereum blockchain networks evolve over time? (b)What growth
model do they follow? (c)What is the active lifespan of each vertex?
(d) How do the high-degree vertices change over time?

4.1 Evolution of Vertices, Arcs, and Density
We measure the number of vertices, arcs, and their evolution over
the years. Ethereum blockchain started in July 2015, and thus, there
is only half a year’s data for 2015. For consistency of our analysis
on a yearly yardstick, we start from the year 2016. We measure the
number of new vertices or arcs added, and the number of old vertices
or arcs deleted, over each pair of consecutive years. Therefore, these

measurements start from 2017. We use simple undirected versions
of the four interaction networks, that is, we consider at most one,
undirected arc between every pair of vertices, with multiple arcs
between vertices counted only once in the simple graph. The density
for each network is computed as the number of existing arcs over
the number of all possible arcs in the simple undirected version.

Figures 2 and 3 demonstrate the annual growth of vertices and
arcs for the four networks. In general, with the graph size expanding,
the numbers of vertices and arcs both increased. We notice that the
number of new vertices and arcs added into the graphs is almost of
the same order of total number of vertices and arcs in the graph at
that time, respectively. This implies that the Ethereum interaction
networks are growing at a fast speed and the account information is
updated at a fast pace as well. This is indicative of a highly active
network, which implies that any analysis of Ethereum blockchain
and any prediction task should be conducted in a short-time period
so as to achieve a good-quality consistent result.

In case of TransactionNet, TraceNet, and TokenNet, the highest
number of vertices and arcs were measured in 2018. In these three
networks larger number of new vertices and arcs appeared over
2018, and less number of vertices and arcs disappeared. However
in 2019, the number of removal exceeded the number added, re-
sulting in the graph sizes to shrink a little. In contrast, we see that
ContractNet keeps an upward trend over all years, though in 2019
its increment rate also reduced because a larger number of smart
contract accounts were removed. This matches quite closely with
reality, as we know that around mid-2019, Ethereum was consid-
ered to offer less features compared to the new chains (e.g., EOS,
Tron), resulting in a number of contracts moving to the new chains,
or to their own chains (like Binance). It is also interesting to note
that the cost of deploying contracts on Ethereum blockchain rose
sharply after the high-activity period in 2018, demotivating de-
velopers to host their applications (contracts) on the chain. The
continuing debate on smart contract security and chain scalability
issues for Ethereum during early months of 2019 did not help either.
During this period, out of the top-50 dApps listed on DappRadar
(https://dappradar.com), only three were deployed on Ethereum.

Figure 4 shows the graph density for four networks across five
years. Since the density is measured as a ratio of the number of
arcs over the number of possible arcs, we consider the density
values in 2015 even though we only have half a year’s data.With
the expansion of networks, the densities drops, indicating that all the
graphs get sparser over time. We notice that the arc increment over
two consecutive years is less than vertex increment over the same
years for all the networks, resulting in the density to drop. This
indicates that the utilization of Ethereum network is low, as the
accounts (vertices) interact with only a limited number of other
accounts (vertices). We have noticed that the multi-arc, directed
graph densities also drop over years, with the trend similar to Figure
4. It seems that all four networks approach saturation in terms of
density by 2018 and 2019. TraceNet is the only network which
seems to have hit the saturation point in 2016, much earlier than
the other three. This depicts the actual underlying trend of sparsity
in Ethereum blockchain, as TraceNet is the only graph that contains
all vertices and all arcs corresponding to Ethereum interactions. The
other networks consider only specific subsets of vertices, thereby
underestimating the total number of possible arcs.
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Figure 2: Evolution of #vertices for TraceNet, TransactionNet, ContractNet, and TokenNet
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Figure 3: Evolution of #arcs for TraceNet, TransactionNet, ContractNet, and TokenNet
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Figure 4: Evolution of density for the four networks
Table 2: TraceNet: New vertices connecting with old vertices

year # old vertices # new vertices
# new vertices with
arc to old vertices
(% of new vertices)

# new vertices without
arc to old vertices
(% of new vertices)

2017 170805 17531523 6014500 (34.31%) 11517023 (65.69%)
2018 3928217 35850173 17405374 (48.55%) 18444799 (51.45%)
2019 6081076 30502971 21597957 (70.81%) 8905014 (29.19%)

4.2 Network Growth Model
Tables 2-5 show the connection of a new vertex with an old vertex
from the previous year. In the four networks, we calculate the num-
ber of new vertices, the number (and percentage) of new vertices
which have at least one arc in the current year to some old vertex,
and the number (and percentage) of new vertices which have no
arc in the current year to any old vertex. Clearly, by an old vertex
we refer to an account that exists in the current year and also in
the previous year. Although the old vertices constitute only a small
fraction of total vertices in the current year (Figure 2), the percent-
age of new vertices which have arcs to old vertices seem to increase
every year. In 2018, for example, 41% of new vertices connect to
old vertices in ContractNet. This ratio increases to 74% in 2019,
which clearly indicates that as the Ethereum network matures, more
accounts remain active and more than half of new vertices participate
in interactions with old vertices.

Table 3: TransactionNet: New vertices connecting with old vertices

year # old vertices # new vertices
# new vertices with
arc to old vertices
(% of new vertices)

# new vertices without
arc to old vertices
(% of new vertices)

2017 163982 14789934 5646964 (38.18%) 9142970 (61.82%)
2018 3599770 28583252 14279239 (49.96%) 14304013 (50.04%)
2019 5060613 21240780 14807280 (69.71%) 6433500 (30.29%)

Table 4: ContractNet: New vertices connecting with old vertices

year # old vertices # new vertices
# new vertices with
arc to old vertices
(% of new vertices)

# new vertices without
arc to old vertices
(% of new vertices)

2017 1859 3070553 182920 (5.96%) 2887633 (94.04%)
2018 426000 7196954 2927928(40.68%) 4269026 (59.32%)
2019 1108567 8266061 6086678(73.63%) 2179383 (26.37%)

Table 5: TokenNet: New vertices connecting with old vertices

year # old vertices # new vertices
# new vertices with
arc to old vertices
(% of new vertices)

# new vertices without
arc to old vertices
(% of new vertices)

2017 21560 5220566 2045159 (39.18%) 3175407 (60.82%)
2018 2186066 23459461 9120122 (38.88%) 14339339 (61.12%)
2019 4797840 21402631 11922021 (55.70%) 9480610 (44.30%)

Figure 5 shows the correlation between old vertex degree in
the previous year (2018) to its number of new connections in the
current year (2019). On the𝑋 -axis, we sort the old vertices based on
their number of connections to new vertices, while 𝑌 -axis presents
the total degrees of these old vertices in 2018 (blue), as well as their
number of connections to new vertices in 2019 (red). We see that if
in previous year a vertex had high degree values, it is highly likely
that in the current year it would have more new vertex connections.
We also verified this observation statistically by measuring the Pear-
son Correlation Coefficient between the number of new vertices
connected in 2019 and the vertices degree in 2018. In case of Trans-
actionNet, TraceNet, TokenNet, and ContractNet, these correlation
coefficients are 0.99841, 0.99911, 0.99965, and 0.99995, respectively,
revealing the strong positive correlation between the two factors.
This observation indicates that the Ethereum blockchain graphs fol-
low the preferential attachment growth model: The more connected
a vertex is, the more likely it is to receive new arcs growth [8].
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(c) ContractNet
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Figure 5: Correlation between vertex degree to its number of new connections

Table 6: Top-10 highest degree vertices/accounts in TransactionNet
Top-10 accounts in 2018. Highlighted accounts continue being top-10 in 2019.
Account Name Type
0xea674fdde714fd979de3edf0f56aa9716b898ec8 Ethermine Mining Pool
0x52bc44d5378309ee2abf1539bf71de1b7d7be3b5 NanoPool Mining Pool
0x3f5ce5fbfe3e9af3971dd833d26ba9b5c936f0be Binance Exchange
0x2a0c0dbecc7e4d658f48e01e3fa353f44050c208 IDEX Dec. Exchange
0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c SparkPool Mining Pool
0x829bd824b016326a401d083b33d092293333a830 F2Pool Mining Pool
0x8d12a197cb00d4747a1fe03395095ce2a5cc6819 EtherDelta 2 Dec. Exchange
0xfbb1b73c4f0bda4f67dca266ce6ef42f520fbb98 Bittrex Exchange
0xa7a7899d944fe658c4b0a1803bab2f490bd3849e IDEX 2 Dec. Exchange
0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0 EOSToken Token (dead)

Top-10 accounts in 2019. Highlighted accounts were also in top-10 of 2018.
Account Name Type
0xdac17f958d2ee523a2206206994597c13d831ec7 TetherToken Token
0x174bfa6600bf90c885c7c01c7031389ed1461ab9 More Gold Coin Token
0xea674fdde714fd979de3edf0f56aa9716b898ec8 Ethermine Mining Pool
0x52bc44d5378309ee2abf1539bf71de1b7d7be3b5 NanoPool Mining Pool
0x2a0c0dbecc7e4d658f48e01e3fa353f44050c208 IDEX Dec. Exchange
0x3f5ce5fbfe3e9af3971dd833d26ba9b5c936f0be Binance Exchange
0xa7a7899d944fe658c4b0a1803bab2f490bd3849e IDEX 2 Dec. Exchange
0xd1ceeeeee83f8bcf3bedad437202b6154e9f5405 Dice2Win Gambling
0x8e766f57f7d16ca50b4a0b90b88f6468a09b0439 Maximine Coin Token
0xfbb1b73c4f0bda4f67dca266ce6ef42f520fbb98 Bittrex Exchange

4.3 Evolution of High-Degree Vertices
Table 6 lists the top-10 most frequently used accounts (highest de-
gree vertices) in TransactionNet. It is no surprise that the most ac-
tive vertices are large mining pools (Ethermine), trusted exchanges
(Binance) and decentralized exchanges (IDEX), popular token con-
tracts (EOS, Tether), and a contract for gambling (Dice2Win). It is
interesting however, to note that most of the top-10 vertices in 2018
continue to be top-10 in 2019 as well. The ones staying in top-10
across the years are mostly exchanges and mining pools, with the
exception of SparkPool and F2Pool, which did not slide down too
far. Amongst the vertices dropping out of the top-10 list of 2018,
EOSToken is the most interesting one, as it moved to the EOS Chain,
killing its Ethereum token contract in June 20193. The top vertex
in 2019 thus turned out to be the token contract for Tether USD
(USDT), a stable digital token pegged at 1 USD.

In contrast, the top-10 contracts (in terms of activity) in case
of ContractNet change quite rapidly. Table 7 lists the top-10 most
frequently used contracts (highest degree vertices) in ContractNet.
It is clear that Bancor, one of the most popular tokens on Ethereum,
is the only contract that persists in the top-10 list across the two
years. Popularity of remaining contracts, mostly for gaming (Cryp-
toKitties, Ethermon, Gods Unchained), token exchange (Bittrex, 0x)

3Owner invoked SELF DESTRUCT on Jun-08-2019 06:13:43 PM +UTC

Table 7: Top-10 highest degree vertices/contracts in ContractNet
Top-10 contracts in 2018. Highlighted contracts continue being top-10 in 2019.
Contract Name Type
0x8e306b005773bee6ba6a6e8972bc79d766cc15c8 MerkleMine Token Distribution
0xa3c1e324ca1ce40db73ed6026c4a177f099b5770 Bittrex Controller Exchange Control
0x1f573d6fb3f13d689ff844b4ce37794d79a7ff1c Bancor Token
0xabc1c404424bdf24c19a5cc5ef8f47781d18eb3e EthermonData Gaming Contract
0x58b6a8a3302369daec383334672404ee733ab239 LivepeerToken Token
0x12459c951127e0c374ff9105dda097662a027093 0x Exchange v1 Dec. Exchange
0xf20b9e713a33f61fa38792d2afaf1cd30339126a BancorNetwork Token Network
0x06012c8cf97bead5deae237070f9587f8e7a266d CryptoKitties Gaming Contract
0x182ebf4c80b28efc45ad992ecbb9f730e31e8c7f MultiMerkleMine Token Distribution
0xdf6164efd12678bf6a7d5a1ddf73c831493f6574 Ethermon Battle Gaming Contract

Top-10 contracts in 2019. Highlighted contracts were also in top-10 of 2018.
Contract Name Type
0x06a6a7af298129e3a2ab396c9c06f91d3c54aba8 0xUniverse Gaming Contract
0xfc30a1a7a650d10b20500bc10b06ff8f4b650ad2 0xUniverse Balance Gaming Contract
0xf0155486a14539f784739be1c02e93f28eb8e960 No known name Token Exchange
0x01eacc3ae59ee7fbbc191d63e8e1ccfdac11628c FairWin Ponzi Scheme
0x5ec8515d15c758472f3e1a7b9eca3e996e8ba902 UtilFairWin Ponzi Scheme
0x0777f76d195795268388789343068e4fcd286919 GU : Rare Pack Gaming Contract
0x448a5065aebb8e423f0896e6c5d525c040f59af3 Maker Contract DAO Contract
0x6ebeaf8e8e946f0716e6533a6f2cefc83f60e8ab GU : GODS Gaming Contract
0x1f573d6fb3f13d689ff844b4ce37794d79a7ff1c Bancor Token
0x89d24a6b4ccb1b6faa2625fe562bdd9a23260359 Sai Stablecoin Token

and distribution (MerkleMine), change quite fast over time. The
most interesting contracts in the lists are FairWin and UtilFair-
Win, pertaining to one of the fastest-growing Ponzi schemes on
Ethereum. In late September 2019, the contract was drained of USD
10M worth of ether, resulting in one of the biggest-ever scams.

The difference in the rate of change in popularity of top vertices
in TransactionNet and ContractNet prompted us to measure the
average lifespan of accounts and contracts on these networks.

4.4 Average Activity Period of Vertices
Figures 6 and 7 present the distributions of active period for vertices
in TransactionNet andContractNet, respectively.While the vertices
measured in Figure 6 are only smart contracts, the vertices mea-
sured in Figure 7 include both user accounts and contracts. In case
of contracts, we only consider ‘activity’ as transactions/messages
involving the contract account (to or from), and not the initial trans-
action for contract creation. The 𝑋 -axis in case of both the figures
refers to the amount of active period from 1 month to 48 months,
and the 𝑌 -axis shows the number of accounts (vertices) that remain
active for each period. We define the active period of a vertex as the
duration from its first transaction activity to the last transaction
activity between Jan 2016 and Dec 2019.

We observe that in general, 80% of smart contract accounts (in
ContractNet) have the active period of 1 month, and 91% of smart
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Figure 6: User accounts’ active period (including user to null
transaction for smart contract creation)
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Figure 7: Smart contracts’ active period (active period for
transaction only, not including contract creation)
contract accounts have less than or equal to 6 months of active
period (Figure 7). However, the same measurements on Transac-
tionNet shows longer active periods per vertex (Figure 6). Thus,
it is clear that user accounts are active much longer than smart
contracts on Ethereum. Still, our measurements show that 88% of
Ethereum accounts have an active period of no more than 6 months,
and up to 68% of accounts are only active within a month. This
substantiates our previous observations regarding the highly-active
vertices (Tables 6 and 7), which remain popular for a longer time
in case of accounts in TransactionNet, but not for ContractNet.

5 TEMPORAL EVOLUTION OF
NETWORK PROPERTIES

After analyzing the evolution of Ethereum networks, we investigate
their network properties from temporal graphs perspective. We
study global network properties such as reciprocity, assortativity,
connected components, core decomposition, and global clustering
coefficient. By analyzing the temporal changes of these properties,
we not only understand how the network is connected, but also re-
alize how these connections change over time. The temporal study
can reveal any anomaly occurred in a specific time duration, that is,
whether the property value during a time period is larger/smaller
(out of scope) than the average value of this property in the neigh-
boring time periods. As a result, it is possible to shrink the analysis
period and locate a more accurate time duration.

5.1 Definitions of Global Properties
We start with definitions of the following global network properties.
Reciprocity represents the probability of reciprocal relationship
[4, 11, 28, 29, 51, 78, 80, 81]. It is defined as the ratio of the number
of arcs that points to both direction, to the total number of arcs
in the graph. We use simple, directed graph, i.e., we consider at
most one, directed arc between a pair of source and target vertices.
Reciprocity provides a measure of the simplest feedback process,
e.g., the tendency of a vertex to respond to another vertex stimulus

in a communication network. It also estimates the error introduced
when a directed graph is simplified as an undirected graph.
Assortativitymeasures the preference of vertices getting attached
to other vertices that are similar in some way (e.g., vertex degree).
Following [57], we employ the following equation that computes
the degree assortativity 𝜌 of an observed network.

𝜌 =
|𝐸 |−1 ∑𝑖 𝑗𝑖𝑘𝑖 − [ |𝐸 |−1 ∑𝑖

𝑗𝑖+𝑘𝑖
2 ]2

|𝐸 |−1 ∑𝑖 ( 𝑗2𝑖 + 𝑘2
𝑖
) − [ |𝐸 |−1 ∑𝑖

𝑗𝑖+𝑘𝑖
2 ]2

𝑗𝑖 , 𝑘𝑖 are the degrees of the vertices at the ends of the 𝑖-th arc, with
𝑖 ∈ [1, |𝐸 |], |𝐸 | is total number of arcs. Assortativity, 𝜌 , lies in the
range: −1 ≤ 𝜌 ≤ 1. A network is assortative (i.e., 𝜌 tends to 1) when
high-degree vertices are, on average, linked to other vertices with
high degree, and low-degree vertices are, on average, linked to other
vertices with low degree. A network is disassortative (i.e., 𝜌 tends
to -1) when, on average, high-degree vertices are linked to vertices
with lower degree, and vice versa. Assortativity is measured on
simple, undirected graph.
Connected components. A connected component is a maximal
subgraph in which every pair of vertices is connected. In a directed
network, the component is called “weakly connected” if replacing
the directed arcs with undirected arcs lead to a connected compo-
nent. Finding connected components is useful in network clustering,
summarization, community detection, and entity resolution.
Core decomposition. The 𝑘-core of a (simple, undirected) graph
is a maximal subgraph in which every vertex is connected to at
least 𝑘 other vertices within that subgraph. The set of all 𝑘-cores of
a graph, for each 𝑘 , forms its core decomposition [65]. Core decom-
position can be computed in linear time by iteratively removing
the smallest-degree vertex and setting its core number as its degree
at the time of removal [9, 16, 49]. Core decomposition is related to
many definitions of a dense subgraph, and it can be used to speed-up
or approximate their computation [5, 14, 23]. Specifically, having
larger core number for vertices in the innermost core indicates
higher density of the innermost core.
Global clustering coefficient. The number of triangles of vertex
𝑣 is defined as Δ(𝑣) = |{{𝑢,𝑤} ∈ 𝐸 : {𝑣,𝑢} ∈ 𝐸 ∩ {𝑣,𝑤} ∈ 𝐸}|.
Here, 𝐸 denotes the set of arcs in the network 𝐺 . A triple 𝛾 at a
vertex 𝑣 is a path of length two for which 𝑣 is the center vertex. The
number of triples of vertex 𝑣 , having degree 𝑑 (𝑣), is then defined
as 𝛾 (𝑣) =

(𝑑 (𝑣)
2

)
. The local clustering coefficient of a vertex is the

likelihood that its neighbours are also linked. The computation of
this score involves triangle counting. The global clustering coefficient
𝐶 (𝐺) is the normalized sum of those local clustering coefficients.
Formally, 𝐶 (𝐺) = ∑

𝑣∈𝑉
Δ(𝑣)
𝛾 (𝑣) . Here, 𝑉 denotes the set of vertices

in 𝐺 . Triangle count and clustering coefficient are used as features
for classifying a website as spam/ non-spam; to find community
structure of a social network [22, 70].

5.2 Finding Appropriate Time Granularity
What is the right “time granularity” for temporal analysis? We
address this question empirically in this section. In particular, we
consider a good time granularity as the shortest time duration by
which we can detect an anomaly (i.e., a property value during a
time period is larger/smaller than the average value of this property
in the neighboring time periods). Moreover, an anomaly detected at
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Figure 8: Time granularity analysis for reciprocity; ContractNet 2016
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Figure 9: Time granularity analysis for assortativity; ContractNet 2016
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Figure 10: Time granularity analysis for core number in the innermost core; ContractNet 2016

 1⋅10
−3

 1⋅10
−2

 1⋅10
−1

2015
2016

2017
2018

2019

A
v

g
. 
cl

u
st

er
in

g
 c

o
ef

f

Year granularity

Avg. clustering coeff

 1⋅10
−3

 1⋅10
−2

 1⋅10
−1

Jan−Jun

Jul−Dec

2017

A
v

g
. 

cl
u

st
er

in
g

 c
o

ef
f

6−month period

Avg. clustering coeff

 1⋅10
−3

 1⋅10
−2

 1⋅10
−1

Jan−Mar

Apr−Jun

Jul−Sep

Oct−Dec

2017

A
v

g
. 

cl
u

st
er

in
g

 c
o

ef
f

3−month period

Avg. clustering coeff

 1⋅10
−3

 1⋅10
−2

 1⋅10
−1

Ja
n

F
eb

M
ar

A
pr

M
ay Ju
n

Ju
l

A
ug S
ep O
ct

N
ov

D
ec

2017

A
v

g
. 

cl
u
st

er
in

g
 c

o
ef

f

1−month period

Avg. clustering coeff

Figure 11: Time granularity analysis for average clustering coefficient (computed over the largest weakly connected compo-
nent); ContractNet 2017
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Figure 12: Statistics on # bi-directional arcs, density, and # triangles for individual months in ContractNet (2016, 2017)
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a shorter time granularity is significant if the impact of the anomaly
is shown even at a higher granularity covering that shorter dura-
tion. We, therefore, introduce a systematic, drill-down approach to
find the right granularity. We employ four possible time granulari-
ties: annual, half-yearly, quarterly, and monthly, for analyzing the
properties of Ethereum network. First, when a property value in the
annual granularity data is found to be out of scope than the average
value of this property in the neighboring time periods, we divide
the anomalous year-level data into two six-month periods data and
conduct the analysis. If one of the value is found to be still much
smaller (or larger) than that of the other period, we can further
reduce the granularity to three-month periods or even one-month
periods. In this way, we can empirically identify the right granular-
ity, which is the shortest time duration by which we can detect the
anomaly. We present our experimental results on ContractNet.
Empirical Findings. We observe anomalies in ContractNet 2016,
based on annual data and with three global network properties:
reciprocity, assortativity, and the core number for vertices in the
innermost core. In Figure 8(a), the reciprocity in year 2016 is two
orders of magnitude smaller than the average of other years. In
Figure 9(a), the assortativity in year 2016 is one order of magnitude
higher than its average over other years 4. As shown in Figure
10(a), once again the core number for the innermost core in 2016 is
two orders of magnitude higher than the average of that over other
years. Based on the abnormal values observed in annual granularity
data, we drill-down to smaller time scale, which is 6-months. The
results are shown in Figures 8(b), 9(b), and 10(b). The horizontal
red line indicates the annual result in 2016 as a reference. The
difference in property values between the first and second half of
2016 is prominent in these figures. In the next step, we further split
year 2016’s data into 3-months basis (Figures 8(c), 9(c), 10(c)). In
the quarterly granularity data, we can identify a specific 3-months
period where the property value is larger (or smaller) than the
average of other quarters in the same year. If we further split the
data into monthly basis, we can locate the specific month (October
2016) when the anomaly occurred. These results indicate that the
monthly data probably has the most suitable time granularity for
anomaly detection and for our subsequent temporal analysis.

From ContractNet 2017, we identify that the average cluster-
ing coefficient is abnormal compared to the other years. For effi-
ciency reason, we compute the average clustering coefficient over
the largest weakly connected component. Figure 11(a) reveals the
higher value of this property. Further drilling-down, we detect that
the anomaly happened in the third quarter (Jul-Sep) of 2017, and
in particular during August 2017.
Correlation of anomalies with real incidents. In this section,
we correlate the aforementioned anomalies with real incidents that
occurred around those periods in Ethereum blockchain, and fur-
ther affirm them by conducting more temporal analyses over the
monthly granularity data (Figure 12).

4Notice that Y-axis is negative in Figure 9, sinceContractNet is disassortative indicating
that there exist generic smart contracts that are used by many other smart contracts.
For instance, smart contracts for “decentralized exchanges” perform cryptocurrency
exchanges in a decentralized manner, and tend to have many other smart contracts
using their services. Thus, the disparity in the degree of such smart contracts and the
other smart contracts transactingwith it creates higher disassortativity of ContractNet.

The first prominence of Ethereum in the media was in October
2016, such as in Wall Street Journal and Reuters. There were plenty
of positive news; Vitalik Buterin (creator of Ethereum) was placed
on Fortune’s 40 under 40, Wall Street Journal reported on the In-
ternational Blockchain Week, IBM said that Banks were adopting
blockchain “dramatically faster” than expected, rumour spread that
Microsoft and Bank of America were working together on a private
Ethereum chain project5. As a result, a lot of Tokens were deployed
on the network, which increased the number of one-directional
arcs to the Token Contracts. This is evident in Figure 12(a), where
we notice a lot more one-directional arcs in October 2016 compared
to other months in the same year. Analogously, the overall activity
in the network increased in October 2016. Since plenty of contracts
and tokens were deployed on Ethereum, a lot more interactions
and transactions happened among all kinds of accounts, includ-
ing high-degree with high-degree and low-degree with low-degree
vertices. As a result, the assortativity also increased in October
2016. Moreover, the density of ContractNet increased in this period
(Figure 12(b)) due to a higher number of interacting contracts, such
as Tokens, Token Distributions, Decentralized Exchanges and Pre-
diction Markets, where a number of contracts started interacting
with one another. Higher density resulted in a larger core number
for the innermost core in October 2016.

At a monthly level, in August 2017, we find 93334 triangles in
ContractNet, out of which 77013 triangles has two vertices in com-
mon – the Bittrex Controller6 andDefaultSweeper7 contracts. These
two contracts were created in August 2017 by Bittrex cryptocur-
rency exchange, one of the most popular exchanges at that time.
We observe that the third vertex in almost all the triangles are User
Wallets exchanging tokens through the Controller and Sweeper.
Thus, the triangles involving Bittrex proliferated in August 2017,
resulting in an increase in the global clustering coefficient during
that month (Figure 12(c)).

6 DETECTION AND SURVIVAL PREDICTION
OF CONTRACTNET COMMUNITIES

Our aforementioned analyses were based on temporal properties
looking at historical Ethereum blockchain network. To better un-
derstand how these graph properties help predict the future of the
network, we next formulate and address the third key question of
our study: Can we forecast the ‘continuation’ (survival) of network
communities in succeeding months leveraging on the relevant graph
properties (features) and machine learning models?

A community, with respect to graphs, can be defined as a subset
of vertices that are densely connected to each other and loosely
connected to the vertices outside the community. In Ethereum
blockchain network, small communities can be formed through (a)
frequent transactions and token transfers between user accounts
and contract accounts, and (b) via create, call, kill, and hard fork
actions between smart contracts. We first identify interesting com-
munities in Ethereum ContractNet using an efficient community
detection algorithm (§6.1) and then study what settings and graph

5https://weekinethereumnews.com/
6https://etherscan.io/address/0xa3c1e324ca1ce40db73ed6026c4a177f099b5770
7https://etherscan.io/address/0xb2233fcec42c588ee71a594d9a25aa695345426c

https://weekinethereumnews.com/
https://etherscan.io/address/0xa3c1e324ca1ce40db73ed6026c4a177f099b5770
https://etherscan.io/address/0xb2233fcec42c588ee71a594d9a25aa695345426c
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Figure 13: The number of vertices and arcs in communities
obtained from ContractNet 2018 and 2019
properties are appropriate for the prediction of survival of these
communities (§6.2).

6.1 Community Detection
We consider a number of state-of-the-art community detection
methods [76], including Multilevel [10], Arc-betweenness [30], and
Walktrap [62]. Their algorithms are implemented in Python “igraph”
package. We find that Multilevel scales well over our large-scale
datasets and also produces good-quality communities [76], there-
fore we present our results with this method. In particular, Multi-
level is a greedy approach that first assigns a different community
to each vertex, then a vertex is greedily moved to the community
of one of its neighbours with which it achieves the highest posi-
tive contribution to modularity. The above step is repeated for all
vertices until no further improvement can be achieved. The com-
putational complexity of Multilevel is O(𝑁 log𝑁 ), where 𝑁 is the
number of vertices in the network.

Figures 13(a) and 13(b) show the number of vertices and arcs
in each (non-overlapping) community obtained using Multilevel
algorithm over ContractNet 2018 and 2019 networks. We consider
multi-arc, undirected versions of these graphs by retaining multiple
interactions between each pair of smart contracts (vertices). In the
scatter plot, the 𝑋 -axis shows the number of vertices present in
communities in descending order and the𝑌 -axis reports the number
of arcs in the corresponding community.

We observe that the size of the communities follows power-law:
a few large communities followed by a long-tail of remaining small
communities. In ContractNet 2019, only 0.7% communities have
both # vertices and # arcs > 105, whereas we find about 42% commu-
nities with # vertices < 10. In general, # arcs is linear to # vertices for
larger communities. Smaller communities can be much denser, we
identify 7.5% communities having # vertices < 10, however # arcs
> 103. We note that such dense communities are generally related
to tokens, as in the case with CoTrader (COT)8 and Power Candy
(POC)9, where the other vertices in the communities are token
related contracts created by the same user accounts, or generic coin
distribution contracts like MerkleProofAirdrop. Such communities
with extremely high internal activity is quite common with tokens.

6.2 Community Continuation Prediction
Due to fast changing pace in Ethereum network, we focus on short-
term predictions. We detect communities from three consecutive
months’ data and predict the survivability of these communities in
the next (i.e., fourth) month. Specifically, we split the annual dataset
8https://etherscan.io/address/0x5c872500c00565505f3624ab435c222e558e9ff8
9https://etherscan.io/address/0xc9c4d9ec2b44b241361707679d3db0876ac10ca6

into 3-month periods based on a sliding window technique. We
employwindow size of 3months and slide stride of 1month, thereby
creating nine 3-month blocks from the annual data (Figures 14, 15).

The next step is to extract communities from each 3-month
blocks dataset using Multilevel algorithm. As a result, we obtain
total 7 915 communities from ContractNet 2018 and 6 986 commu-
nities from ContractNet 2019. Multilevel algorithm is also applied
to detect communities in the next month’s data following each
3-month block. Since communities having too small number of
vertices are not interesting for our prediction task, we consider
those communities with a minimum of five vertices extracted from
3-month blocks and a minimum of three vertices for those detected
from 1-month data.

Our final step in data preparation is to match the communities
in a 3-month block to those in the following 1-month block, and
subsequently label the communities in 3-month blocks. A commu-
nity in a 3-month block is labelled as class 1 (“surviving” class) if
we find a match of this community in the following 1-month block.
A community 𝐶1 in a 3-month block and another community 𝐶2

in the following 1-month block are matched when 𝐶2 has at least
half of the vertices that are present in 𝐶1. On the other hand, a
community in a 3-month block is labelled as class 0 (“not surviving”
class) if we do not find a match of this community in the following
1-month block. Since we have more communities in class 0 than
that in class 1, balancing class sizes is necessary to avoid the train-
ing biased towards class 0. Therefore, for each run we uniformly at
random downsample class 0. After that, 80% of dataset is used for
training and 20% of dataset is used for testing. We employ 20-fold
cross validation, the testing accuracy is an average of these 20 runs.

For each community (which is a subgraph consisting of vertices
and arcs), we consider the following thirteen network properties
[44]: #vertices, #arcs, density, #triangle, global clustering coefficient,
reciprocity, assortativity, transitivity, #articulation points, adhesion,
cohesion, diameter, and radius. We have discussed #vertices, #arcs,
density, #triangle, global clustering coefficient, reciprocity, and as-
sortativity in previous sections (§4-§5). Transitivity is calculated
as a ratio of the number of closed triplets over the number of con-
nected triples of vertices in a network. It measures the probability
that the adjacent vertices of a vertex are connected. An articulation
point or cut vertex is a vertex whose removal (along with all its
incident arcs) increases the number of connected components of
a graph. Adhesion measures the minimum number of arcs that
need to be removed to disconnect the graph. Cohesion refers to the
minimum number of vertices that must be deleted to disconnect the
network. The eccentricity of a vertex 𝑣 is the maximal shortest path
distance between 𝑣 and any other vertex. The radius of a network
is defined as the minimum eccentricity across all vertices, and the
diameter is the maximum eccentricity across all vertices. We notice
that all these features are numeric, and except reciprocity, adhesion,
# arcs, and assortativity, the rest are computed on simple, undirected
version of the community graph. For reciprocity, we additionally
consider whether an arc exists in both directions. For adhesion, #
arcs, and assortativity, we consider multi-arc, undirected graphs,
since they retain more information than simple, undirected graphs.
Prediction results.We employ both random forest (RF) and logis-
tic regression (LR) for training. RF and LR are widely adopted due
to their simplicity, robustness, and ability to produce good-quality

https://etherscan.io/address/0x5c872500c00565505f3624ab435c222e558e9ff8
https://etherscan.io/address/0xc9c4d9ec2b44b241361707679d3db0876ac10ca6
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(a) Prediction accuracy for ContractNet 2018

 0.6

 0.7

 0.8

 0.9

 1

Ja
n−

M
ar

F
eb

−
A

pr
M

ar
−
M

ay
A

pr
−
Ju

n
M

ay
−
Ju

l
Ju

n−
A

ug
Ju

l−
S
ep

A
ug

−
O

ct
S
ep

−
N

ov

A
cc

u
ra

cy

3−month blocks

Accuracy
Average

(b) Prediction accuracy for ContractNet 2019

Figure 14: Random forest prediction accuracy
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Figure 15: Logistic regression prediction accuracy

Table 8: Top-3 important features based on ContractNet 2019 com-
munity survivability prediction using random forest

Feature Importance Effect

Density 0.2028 Higher-density communities survive
#arcs 0.1848 More-arc communities survive

Assortativity 0.1485 Higher-assortativity communities survive

results. They are suitable for our prediction task since we intend to
obtain both prediction result and feature importance.

Figures 14 and 15 show the prediction accuracy. Each histogram
demonstrates the accuracy for the corresponding 3-month period.
The horizontal red line represents the accuracy when we combine
all 3-months datasets as one dataset. Using RF the average accuracy
is 0.72 for ContractNet 2018 and 0.77 for ContractNet 2019. With
LR the average accuracy is 0.60 for ContractNet 2018 and 0.64 for
ContractNet 2019. Combining all 3-months data together, although
the accuracy does not improve, we find that the accuracy for each
run is more stable compared to predicting for each quarterly data
individually. Moreover, logistic regression performs worse than
random forest in this community prediction task. This is because
random forest is able to train if the variables are not linearly separa-
ble. The ensemble of multiple decision trees also reduces overfitting.
In contrast to RF, logistic regression is a simple model with a linear
decision boundary. Our accuracy results prove this point.

In Table 8, we list the top-3 important features extracted from RF
prediction usingContractNet 2019 dataset. Density feature achieves
the highest importance score, followed by # arcs, and assortativ-
ity. Further analyses in these features reveal the fact that higher
values of density, # arcs, and assortativity tend to be class 1. Both
density and # arcs positively influence the graph size. Recall that
assortativity measures the preference of vertices getting attached
to other vertices that are similar according to vertex degree. The
higher is the assortativity, more arcs happen between vertices with
higher degree which imply that the network formed by them is
denser. Therefore, it can be concluded that if the community is
dense, having more arcs, or with higher assortativity, it is likely
that the community will survive in the next month.

7 DISCUSSION AND CONCLUSIONS
In this work we investigated the evolutionary, temporal, and pre-
dictive aspects of four Ethereum blockchain interaction networks
(TraceNet, ContractNet, TransactionNet, and TokenNet), and con-
ducted a comprehensive empirical evaluation on the graphs.

We find that Ethereum interaction networks are growing at a
fast speed, and the account information is updated at a fast pace.
However, all the graphs get sparser and mature over time, thereby
more old accounts remain active, and more than half of new vertices
participate in interactions with old vertices. The networks follow
the preferential attachment growth model. The user accounts re-
main active much longer than smart contracts on Ethereum. As
a consequence, the high-degree user accounts from the previous
year continue to be high-degree in the following year. In contrast,
high-degree contract accounts change rapidly over successive years.

By analyzing the temporal changes of global network properties,
e.g., reciprocity, assortativity, core decomposition, and clustering
coefficient, we realize how their connections change over time, and
reveal anomalies occurred in a specific time duration. We correlate
these anomalies with external ‘real-life’ aspects of the network,
e.g., popularity, exchanges, and systematically drill-down to the
appropriate time granularity for our analyses.

Last but not least, we detectmeaningful communities in Ethereum
blockchain networks.We also forecast the continuation (survival) of
network communities in succeeding months leveraging on the rel-
evant graph properties (as features) and machine learning models,
achieving up to 77% correct predictions for continuation.

To facilitate research, we open source our blockchain network
dataset [79]. In future, we shall conduct temporal analyses over
other public blockchain platforms to mine interesting time-evolving
and predictive phenomena across the Web of blockchain networks.
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